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GPT: Generative Pretraining Models for Language
CLIP: Contrastive Language-Image Pretraining for Vision
BERT: Bidirectional Encoder Representations from Transformers.



Background: Pretraining for three types of architectures
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Nice to generate from; can’t condition on future words
Examples: GPT-2, GPT-3, LaMDA Y,
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Decoders

Gets bidirectional context — can condition on future!
Wait, how do we pretrain them?
Examples: BERT and its many variants, e.g. RoOBERTa

Good parts of decoders and encoders?
What’s the best way to pretrain them?
Examples: T5, Meena



General Deep learning in Al Trends

 To Complex tasks

 E.g., generating slides from an outline, summarizing and reporting information
from diverse sources

* |Integrating into physical devices
* E.g., Robots

 Multimodal and broadly
e Use vision, language, audio, and broader knowledge like DB, as input or outputs

e Complex learning systems
* Integrate predictive/generative
* Integrate retrieval of private memories or data
* Integrate with planning, task decomposition, and prioritization



Transformer Models

Transformers are efficient, multi-

modal data processors
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GPT1 (Radford et al. 2018) - Improving Language
Understanding by Generative Pre-Training

Text Task T .
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* Pre-training: Maximize data likelihood as a product of conditional probabilities, trained on Books Corpus
» Predict each token based on the k tokens (the “context”) that came before



GPT-2 (Radford et al. 2019) - Language Models are
Unsupervised Multitask Learners

* A general systems learn to model P(output|input, task)
« Task can be specified in natural language
« Aims to general purpose language learner

We would like to move towards more general systems which can perform many tasks — eventually
without the need to manually create and label a training dataset for each one.

“Our suspicion is that the prevalence of single task training on single domain datasets is a major
contributor to the lack of generalization observed in current systems. Progress towards robust systems
with current architectures is likely to require training and measuring performance on a wide range of
domains and tasks.”



GPT-2 Architecture and Model Sizes
* Architecture similar as GPT-1 and BERT

Parameters Layers  diioder

117M 12 768 GPT-1 Size
345M 24 1024 BERT Size
762M 36 1280 GPT-2 Size
1542M 48 1600

 GPT-2 is generatively trained on WebText data and not fine-tuned
oh anything else

— 8 million documents (40GB text)



GPT-2: Zero shot Excellent Performance

Perplexity (PPL); lower is better

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8§ WikiText103 1BW

(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)
SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 834 29.41 635.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

* SOTA in many tasks

without tuning for them

“The diversity of tasks the model is able to perform in a
zero-shot setting suggests that high-capacity models
trained to maximize the likelihood of a sufficiently varied
text corpus begin to learn how to perform a surprising
number of tasks without the need for explicit supervision.”



GPT-3 (Brown et al. 2020): few shot generalization

Language Models are Few-Shot Learners

Tom B. Brown® Benjamin Mann* Nick Ryder” Melanie Subbiah®
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry
Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
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Models and Architectures

Model Name Mparams  Mayers  @model heads @head Batch Size  Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 104
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 104
GPT-3 XL 1.3B 24 2048 24 128 1M 2.0 x 10~
GPT-3 2.7B 2.7B 32 2560 32 80 Y 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 10~
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~
GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 104

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.
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Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoOBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
Total Compute Used During Training

Rough compute
price to train GPT-
3175B: ~$4.5M



The three settings we explore for in-context learning

Traditional fine-tuning (not used for GPT-3)

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer examples
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese => prompt

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt

Few-shot “In
Context Learning”

Larger GPT models trained on
even more data are good at many
tasks, especially text generation,
and can be “trained” at inference
time with in-context examples
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Figure 3.8: Performance on SuperGLUE increases with model size and number of examples in context. A value

of K = 32 means that our model was shown 32 examples per task, for 256 examples total divided across the 8 tasks in
SuperGLUE. We report GPT-3 values on the dev set, so our numbers are not directly comparable to the dotted reference
lines (our test set results are in Table 3.8). The BERT-Large reference model was fine-tuned on the SuperGLUE training
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Emergent Abilities of Large Language Models

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten
Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff
Dean, William Fedus

Scaling up language models has been shown to predictably improve performance and sample efficiency on
a wide range of downstream tasks. This paper instead discusses an unpredictable phenomenon that we
refer to as emergent abilities of large language models. We consider an ability to be emergent if it is not
present in smaller models but is present in larger models. Thus, emergent abilities cannot be predicted
simply by extrapolating the performance of smaller models. The existence of such emergence implies that
additional scaling could further expand the range of capabilities of language models.

Published in Transactions on Machine Learning Research (08/2022)
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AN ABILITY IS EMERGENT IF IT IS NOT PRESENT
IN SMALLER MODELS BUT IS PRESENT IN LARGER
MODELS.

4 )

gualitative change is also known as a phase

transition—a dramatic change in overall behavior
that would not have been foreseen by examining
smaller-scale systems (Huberman & Hogg, 1987).

\_ J




Table 2: Parameters, training examples, and training FLOPs of large language models.

Model Parameters Train tokens Train FLOPs
GPT-3 125M 300B 2.25E+420
350M 3008 6.41E+20

T60M 300B 1.37TE+21

1.3B 300B 2.38E+21

2.7B 3008 4.7TE+21

6.7B 300B 1.20E+22

13B 300B 2.31E+22

1758 3008 3.14E+23

LaMDA 2.1M 2628 3.30E+18
17TM 313B 3.16E+19

57TM 262B 8.90E+19

134M 170B 1.37TE+420

262M 2648 4.16E+20

453M 150B 4.08E+20

1.1B 142B 9.11E+20

2.1B 137B 1.72E+421

3.6B 136B 2.96E+21

8.6B 132B 6.78E+21

208 132B 2.30E+422

69B 292B 1.20E+23

137B 6748 5.54E+23

Gopher 417M 300B 7.51E420
1.4B 3008 2.52E+21

7.1B 300B 1.28E+22

280B 325B 5.46E+23

Chinchilla 417TM 314B 7.86E+20
1.4B 314B 2.63E+21

7.1B [sic] 199B 8ATE+21

70B 1.34T 5.63E+23

PaLM 8B 7808 3.74E+22
62B 780B 2.90E+23

540B 7808 2.53E+24

Anthropic LM 800M 8508 4.08E+21
3B 8508 1.53E+422

12B 8508 6.12E+22

52B 850B 2.656E+422




One example of few-shot promoting

Input
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Review: This movie sucks.

Sentiment: negative.

Vs

Review: | love this movie.
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Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models that used more training compute also typically have more parameters—hence, we show an
analogous figure with number of model parameters instead of training FLOPs as the z-axis in Figure 11.
A-D: BIG-Bench (2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G:
Hendrycks et al. (2021a), Rae et al. (2021), and Hoffmann et al. (2022). H: Brown et al. (2020), Hoffmann
et al. (2022), and Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).



Few Shot Prompting many different NLP tasks

BIG-Bench. Selecting four emergent few-shot prompted tasks from BIG-Bench, a crowd-sourced suite of over
200 benchmarks for language model evaluation (BIG-Bench, 2022).

* TruthfulQA. This benchmark is adversarially curated against GPT-3 models, which do not perform above
random, even when scaled to the largest model size.

* Grounded conceptual mappings. language models must learn to map a conceptual domain, such as a cardinal
direction, represented in a textual grid world (Patel & Pavlick, 2022)., performance only jumps to above random
using the largest GPT-3 model.

e Multi-task language understanding. Figure 2G shows the Massive Multi-task Language Understanding (MMLU)
benchmark, which aggregates 57 tests covering a range of topics including math, history, law, and more
(Hendrycks et al., 2021a).

 Word in Context. Finally, Figure 2H shows the Word in Context (WiC) benchmark (Pilehvar & Camacho- Collados,
2019), which is a semantic understanding benchmark.
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Figure 4: Top row: the relationships between training FLOPs, model parameters, and perplexity (ppl) on
WikiText103 (Merity et al., 2016) for Chinchilla and Gopher. Bottom row: Overall performance on the
massively multi-task language understanding benchmark (MMLU; Hendrycks et al., 2021a) as a function of
training FLOPs, model parameters, and WikiText103 perplexity.
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Figure 5: Adjacent plots for error rate and cross-entropy loss on three emergent generative tasks in BIG-Bench

for LaMDA. We show error rate for both greedy decoding (17" = 0) as well as random sampling (7" = 1). Error
rate is (1 - exact match score) for modified arithmetic and word unscramble, and (1 - BLEU score) for IPA

transliterate.



What about other metrics

(A) Mod. arithmetic (B) IPA transliterate (C) Periodic elements
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Figure 7: Multiple evaluation metrics for emergent BIG-Bench tasks that are generative in nature. For all
three tasks, emergent behavior is apparent for all evaluation metrics.



Augmented prompting strategies

prompting and finetuning strategies to further augment the abilities of language models.

Multi-step reasoning. Reasoning tasks, especially those involving multiple steps, have been challenging for language
models and NLP models more broadly (Rae et al., 2021; Bommasani et al., 2021; Nye et al., 2021). A recent prompting
strategy called chain-of-thought prompting enables language models to solve such problems by guiding them to
produce a sequence of intermediate steps before giving the final answer (Cobbe et al., 2021; Wei et al., 2022b; Suzgun
et al., 2022).

Instruction following. Another growing line of work aims to better enable language models to perform new tasks
simply by reading instructions describing the task (without few-shot exemplars). By finetuning on a mixture of tasks
phrased as instructions, language models have been shown to respond appropriately to instructions describing an
unseen task (Ouyang et al., 2022; Wei et al., 20223a; Sanh et al., 2022; Chung et al., 2022).

Program execution. Consider computational tasks involving multiple steps, such as adding large numbers or executing
computer programs. Nye et al. (2021) show that finetuning language models to predict intermediate outputs
(“scratchpad”) enables them to successfully execute such multi-step computations.

Model calibration. Finally, an important direction for deployment of language models studies is calibration, which
measures whether models can predict which questions they will be able to answer correctly. Kadavath et al. (2022)
compared two ways of measuring calibration: a True/False technique, where models first propose answers and then
evaluate the probability “P(True)” that their answers are correct, and more-standard methods of calibration, which use
the probability of the correct answer compared with other answer options.
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Figure 3: Specialized prompting or finetuning methods can be emergent in that they do not have a positive
effect until a certain model scale. A: Wei et al. (2022b). B: Wei et al. (2022a). C: Nye et al. (2021). D:
Kadavath et al. (2022). An analogous figure with number of parameters on the z-axis instead of training
FLOPs is given in Figure 12. The model shown in A-C is LaMDA (Thoppilan et al., 2022), and the model

shown in D is from Anthropic.
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Figure 12: Specialized prompting or finetuning methods can be emergent in that they do not have a positive
effect until a certain model scale. A: Wei et al. (2022b). B: Wei et al. (2022a). C: Nye et al. (2021). D:
Kadavath et al. (2022). The model shown in A-C is LaMDA (Thoppilan et al., 2022), and the model shown
in D is from Anthropic.



Table 1: List of emergent abilities of large language models and the scale (both training FLOPs and number
of model parameters) at which the abilities emerge.

Emergent scale

Train. FLOPs Params. Model  Reference
Few-shot prompting abilities
e Addition/subtraction (3 digit) 2.3E+22 13B GPT-3  Brown et al. (2020)
e Addition/subtraction (4-5 digit) 3.1E+23 1758B
e MMLU Benchmark (57 topic avg.) 3.1E+23 1758 GPT-3  Hendrycks et al. (2021a)
» Toxicity classification (CivilComments) 1.3E+22 7.1B Gopher Rae et al. (2021)
e Truthfulness (Truthful QA) 5.0E+23 280B
e MMLU Benchmark (26 topics) 5.0E+23 280B
* Grounded conceptual mappings 3.1E+23 1758 GPT-3  Patel & Pavlick (2022)
* MMLU Benchmark (30 topics) 5.0E+23 70B  Chinchilla Hoffmann et al. (2022)
* Word in Context (WiC) benchmark 2.5E+24 540B PaLM  Chowdhery et al. (2022)
e Many BIG-Bench tasks (see Appendix E) Many Many Many BIG-Bench (2022)
Augmented prompting abilities
e Instruction following (finetuning) 1.3E+23 688 FLAN  Wei et al. (2022a)
* Scratchpad: 8-digit addition (finetuning) 8.9E+19 40M LaMDA Nye et al. (2021)
* Using open-book knowledge for fact checking 1.3E+22 7.1B Gopher  Rae et al. (2021)
e Chain-of-thought: Math word problems 1.3E+23 688 LaMDA  Wei et al. (2022b)
e Chain-of-thought: StrategyQA 2.9E+23 62B PalLM  Chowdhery et al. (2022)
* Differentiable search index 3.3E+22 11B TH Tay et al. (2022b)
* Self-consistency decoding 1.3E+23 688 LaMDA  Wang et al. (2022b)
e Leveraging explanations in prompting 5.0E+23 280B Gopher  Lampinen et al. (2022)
* Least-to-most prompting 3.1E+23 1758 GPT-3  Zhou et al. (2022)
® Zero-shot chain-of-thought reasoning 3.1E+23 1758 GPT-3 Kojima et al. (2022)
* (Calibration via P(True) 2.6E+23 52B Anthropic Kadavath et al. (2022)
e Multilingual chain-of-thought reasoning 2.9E+23 62B PaLM  Shi et al. (2022)
¢ Ask me anything prompting 1.4E+22 6B EleutherAl Arora et al. (2022)




Why Elbow shape / emergent pattern?

e 1. For certain tasks, there may be natural intuitions for why
emergence requires a model larger than a particular threshold
scale. For instance, if a multi-step reasoning task requires L steps of
sequential computation, this might require a model with a depth of

at least O (L) layers

e 2. more parameters and more training enable better memorization
that could be helpful for tasks requiring world knowledge.

— As an example, good performance on closed-book question-answering
may require a model with enough parameters to capture the compressed
knowledge base itself (though language model-based compressors can
have higher compression ratios than conventional compressors (Bellard,

2021))
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Figure 13: On some benchmarks, task-general models (not explicitly trained to perform a task) surpass prior
state-of-the-art performance held by a task-specific model. A & B: Brown et al. (2020). C: Chowdhery et al.
(2022). D: Alayrac et al. (2022).



https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords to tasks.md#big-bench-lite

Number
Keyword Description
of tasks
traditional NLP tasks
contextual question- 22 identifying the meaning of a particular word/sentence in a passage
The Beyond the Imitation Game answering
- 1 context-free question
Benchmark (B IG-benc h) IS s er'ngx questl 24 responses rely on model's knowledge base, but not on context provided during query time
werl
a collaborative benchmark
. reading 36 a superset of contextual question-answering, measuring the degree to which a model
intended to probe la rge Iangu age comprehension understands the content of a text block
m I N XTr | h ir conversational a superset of reading comprehension, measuring the degree to which a model understands
1 g g
ooy question answering the content of a text block and a conversation
future capabilities. The more than
. . summarization 8 involves summarizing a block of text
200 tasks included in BIG-bench
. paraphrase 14 express the same meaning using different words
are summarized by keyword here, — —
- text simplification 1 express the same meaning using simpler vocabulary
and by task name here. A paper vord semce
. . . . . 1 identifying the meaning of a word based upon the context it appears
introducing the benchmark, disambiguation
i i i coreference
I nCI u dl ng eva I Uatl onresu ItS on resolution poo finding all expressions that refer to the same entity in a text
ut
large language models:
question generation 2 tests model's ability to generate useful and sensible questions
narrative - :
httpS//a rXiV o) rg/a bS/2206 04615 e 7 tests model's ability to understand language beyond surface level reasoning
dialogue system 1 measeres model's ?bility to perform language understanding or generation on a user-to-
machine conversation
memorization 5 tasks that require memorization of data from the pre-training set.
morphology 1 tests model's ability to solve challenges related to segmentation and construction of words
translation 10 the task involves translating between languages
writing style 2 measures model's ability to examine a text's writing style rather than its semantic meaning
tests model's ability to handle particular grammatical phenomena in the input or in the
grammar 2 L


https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/README.md
https://arxiv.org/abs/2206.04615

50 |- Figure 8: Proportion of emergent tasks for keywords in BIG-Bench (each task
can be associated with multiple keywords). We only included keywords with at
45 least five tasks. Smoothly increasing: performance improved predictably as
A0 model scale increased. Emergent with LaMDA/GPT: performance was near-
random until used with LaMDA 137B or GPT-3 175B. Emergent with PaLM:
35 | performance was near-random for all previous models, until using a PaLM
2 model (8B, 62B, or 540B). Flat: no model performs better than random.
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logic, math, code

algorithms 5 measures the ability of a model to execute algorithms

logical reasoning 59 measures the ability of a model to reason about its inputs (eg, solve a word problem)
implicit reasoning 12 measures model's ability to infer implicit reasoning paths

mathematics 28 measures model's ability to perform mathematics of any type (see sub-types below)
arithmetic 22 measures model's ability to perform arithmetic

algebra 6 measures model's ability to perform algebra

mathematical proof 3 measures model's ability to derive or understand a mathematical proof
decomposition 4 tests model's ability to break problems down into simpler subproblems

fallacy 4 measure's model's ability to distinguish correct from fallacious reasoning

negation 4 measure's model's ability to understand negation

computer code 12 the task involves inputs or outputs that are computer code

semantic parsing 2 measure's model's ability to parse semantics of natural-language utterances
probabilistic 1 the task involves probing the model’s ability to reason in the face of uncertainty

reasoning



understanding the world

causal reasoning

consistent identity

physical reasoning

common sense

visual reasoning

understanding humans
theory of mind

emotional
understanding

social reasoning
gender prediction
intent recognition
humor

figurative language

17

48

14

10

16

19

measures ability to reason about cause and effect

tests model's ability to apply consistent attributes to objects or agents during extended text
generation

measures the ability of a model to reason about its inputs using basic physics intuition of how
objects interact

measures ability to make judgements that humans would consider “common sense”

measures model's ability to solve problems that a human would be likely to solve by visual
reasoning

tests whether model demonstrates a theory of mind

tests model's ability to identify or understand human emotion

tests model's ability to interpret or reason about human social interactions

predicts the implicit gender information when prompted with gender-specific terms or Names
predicts the intent of a user utterance

measures the model's ability to recognize humor in text

tasks that measure model's ability to work with figurative language (e.g. metaphors, sarcasm).



scientific and technical
understanding

biology
chemistry
physics
medicine

domain specific

mechanics of interaction
with model

self play

self evaluation

multiple choice

free response

game play

repeated interaction

non-language

numerical response

148

84

10

16

19

measure's model's ability to understand biological properties
knowledge of chemistry is useful for solving these tasks
knowledge of physics is useful for solving these tasks

tests model's ability to perform tasks related to medicine

test the ability to understand domain-specific knowledge

involves multiple copies of the model interacting with each other
involves using the model's own judgment of its performance to score it

involves multiple choice responses, or assigning log probabilities to a list of specific allowed
outputs. This includes programmatic as well as json tasks.

involves the model generating unconstrained textual responses (each model interaction will be
either multiple choice or free response , but atask caninvolve many interactions of both

types)
the task corresponds to a human game

the task involves repeated interaction with the language model, rather than production of a
single shot output

the task involves inputs or outputs that are not language or numbers (e.g., interpreting or
generating ascii art images, or reading DNA sequences)

the model's response should consist of numeric diaits



targeting common
language model
technical limitations

context length 13 measures ability to handle long context
ltiost 12 measures ability to perform a task that requires the model to internally perform many
multi-ste
3 sequential steps before outputing a token
out of distribution 16 task probes a task which is designed to be very dissimilar from the likely training corpus
instructions 2 the ability to follow natural language instructions
tokenization 3 task probes abilities potentially obfuscated by model tokenization
the task involves processing data at paragraph level, where each paragraph is coherent,
paragraph 2

semantically distinct text
pro-social behavior

measures whether model behavior matches human preferences and values that are hard to

alignment 4 . :
define or formalize

social bias 9 measures changes in model responses depending on the social group a subject belongs to

racial bias 4 sub-type of social bias, exploring the impact of race

gender bias 9 sub-type of social bias, exploring the impact of gender

religious bias 5 sub-type of social bias, exploring the impact of religion

political bias s sub-type of social bias, exploring the impact of political affiliation

e 1 measures the model's ability to identify text as toxic (rude, profane, hateful, or disrespecting) in
nature, or to respond appropriately to toxic text.

inclusion 1 measures the model's ability to generate text that is inclusive with regard to social attributes

such as agender or race



More LLM



Many Large Scale PreTrained Language Model

e Basics (GPT, BERT, T5)
e PaLM

— (decoder-only trained with next-token prediction)

* BLOOM

— BLOOM is essentially similar to GPT3 (auto-regressive model for
next token prediction), but has been trained on 46 different
languages and 13 programming languages.

* Flan-PaLM / Flan-T5
* Many many new recent LLMs on huggingface: Llama3, Mistral



PaLM

PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery, et al, Erica Noah Fiedel
Large language models have been shown to achieve remarkable performance across a variety of natural language
tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to
adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning,
we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways
Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables
highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-
of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a
number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art
on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released
B1G-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model
scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong
capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks.
We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data
memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language
models and discuss potential mitigation strategies.
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Build a Large Language Model (From Scratch)
Book by Sebastian Raschka

Supervised-instruction RLHF with
finetuning PPO or DPO
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Scaling Instruction-Finetuned Language Models

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa
Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun

Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew
Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model
performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular
focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data.
We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model
classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU,
BBH, TyDIQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks
outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art
performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5
checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM
62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained
language models.
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Chain-of-thought prompting is highly effective but having to
write few-shot exemplars can be tedious and zero-shot CoT
doesn’t always work well. Our CoT finetuning significantly
improves zero-shot reasoning abilities, such as on
commonsense reasoning.

r[ Input prompt j \

| see a person walking towards the
Text input —— back of the bus. The person looks as if
they are walking backwards.

| Explain why with step-by-step

reasoning.
\o J
/—( Flan-PaLM outputj ™

When a bus drives forward, the
person walking towards the back of
the bus will appear to be walking
backward.

Final answer —QThus, the answer is the bus drives forwardJ

Instruction =

Rationale




Instruction finetuning

Please answer the following question.
What is the boiling point of Nitrogen?

AN

Chain-of-thought finetuning

\

Answer the following question by
reasoning step-by-step.

The cafeteria had 23 apples. If they i
used 20 for lunch and bought 6 more,
\how many apples do they have?

-

-~

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

Language
model

/

Multi-task instruction finetuning (1.8 tasks)

e T R B R

Inference: generalization to unseen tasks

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

Figure 1: We finetune various language models on 1.8K tasks phrased as instructions, and evaluate them on unseen tasks.

We finetune both with and without exemplars (i.e., zero-shot and few-shot) and with and without chain-of-thought,
enabling generalization across a range of evaluation scenarios.



Instruction —— Give the rationale before answering!

Could Geoffrey Hinton have had a
conversation with George Washington?

-

Text input

Rationale ==

Final answer —lSo the final answer is no.
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4 TO-SF

Commonsense reasoning
Question generation
Closed-book QA
Adversarial QA
Extractive QA
Title/context generation
Topic classification
Struct-to-text

55 Datasets, 14 Categories,
193 Tasks

- /

Finetuning tasks

-

Natural language inference
Code instruction gen.
Program synthesis

Dialog context generation

Muffin

Closed-book QA
Conversational QA
Code repair

69 Datasets, 27 Categories, 80 Tasks

(G
/

CoT (Reasoning)

Arithmetic reasoning
Commonsense Reasoning
Implicit reasoning

-

Explanation generation
Sentence composition

9 Datasets, 1Category, 9 Tasks

_/
3

/

< A Dataset is an original data source (e.g. SQUAD).
< A Task Category is unique task setup (e.g. the SQUAD dataset is configurable for multiple task categories such as
extractive question answering, query generation, and context generation).
< ATask is a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g.
query generation on the SQUAD dataset.)

4 )

Natural
Instructions v2

Cause effect classification
Commonsense reasoning
Named entity recognition
Toxic language detection
Question answering
Question generation
Program execution

Text categorization

372 Datasets, 108 Categories,
1554 Tasks

- /

Held-out tasks
( N [ N\ )
MMLU BBH TyDIiQA MGSM
Abstract algebra Sociology Boolean expressions Navigate .
College medicine Philosophy Tracking shuffled objects =~ Word sorting Infoll;rnatlon Gra';:le sc;)lrool
Professional law Dyck languages seeking QA ALY P e
57 tasks 27 tasks 8 languages 10 languages
. /L /X .




. pre-training Pretrain = Finetune % Finetune
Params  Model Arhitecture Objective FLOPs FLOPs Compute
80M Flan-T5-Small encoder-decoder span corruption 1.8E+20 2.9E+18 1.6%
250M  Flan-T5-Base encoder-decoder span corruption 6.6E+20 9.1E+18 1.4%
780M  Flan-T5-Large encoder-decoder span corruption 23E+21 2.4E+19 1.1%
3B Flan-T5-XL encoder-decoder span corruption 9.0E+21 5.6E+19 0.6%
11B Flan-T5-XXL encoder-decoder span corruption 3.3E+22 7.6E+19 0.2%
8B Flan-PaLM decoder-only causal LM 3.7E+22 1.6E+20 0.4%
62B Flan-PaLM decoder-only causal LM 29E+23 1.2E+21 0.4%
540B Flan-PaLM decoder-only causal LM 25E+24 5.6E+21 0.2%
62B Flan-cont-PaLM  decoder-only causal LM 48E+23 1.8E+21 0.4%
540B Flan-U-PaLM decoder-only  prefix LM + span corruption 2.5E+23 5.6E+21 0.2%

Table 2: Across several models, instruction finetuning only costs a small amount of compute relative to
pre-training. T5: Raffel et al. (2020). PaLM and cont-PaLM (also known as PaLM 62B at 1.3T tokens):
Chowdhery et al. (2022). U-PaLM: Tay et al. (2022b).
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Fig. 2. A foundation model can centralize the information from all the data from various modalities. This
one model can then be adapted to a wide range of downstream tasks.
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Fig. 1. The story of Al has been one of increasing emergence and homogenization. With the introduction of
machine learning, how a task is performed emerges (is inferred automatically) from examples; with deep
learning, the high-level features used for prediction emerge; and with foundation models, even advanced
functionalities such as in-context learning emerge. At the same time, machine learning homogenizes learning
algorithms (e.g., logistic regression), deep learning homogenizes model architectures (e.g., Convolutional
Neural Networks), and foundation models homogenizes the model itself (e.g., GPT-3).
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For example: 2.5

* 5: Interaction. Foundation models show
clear potential to transform the developer
and user experience for Al systems:
foundation models lower the difficulty
threshold for prototyping and building Al
applications due to their sample
efficiency in adaptation, and raise the
ceiling for novel user interaction due to
their multimodal and generative
capabilities.

« This provides a synergy we encourage
going forward: developers can provide
applications that better fit the user’s
needs and values, while introducing far
more dynamic forms of interaction and
opportunities for feedback.

* E.g. low-code / no-code?

Users

Experience

User-Driven

Prototyping ‘#

Feedback

Prototyping

Developers

Al-Infused
Applications

Multimodal Interaction

/ e.g.natural language
" instruction to media
editing

Generative Applications

writing & code

</> generation

Value-Sensitive Design

e.g. community-
i ‘ = Written content

@ moderation tools
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On the Opportunities and Risks of Foundation Models

Authors: Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von

Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal
Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy

Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, et al. (89 additional authors not shown)

Abstract:Al is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models
foundation models to underscore their critically central yet incomplete character. This report provides a
thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.qg.,
language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures,
training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare,
education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical
considerations). Though foundation models are based on standard deep learning and transfer learning, their
scale results in new emergent capabilities, and their effectiveness across so many tasks incentivizes
homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the
foundation model are inherited by all the adapted models downstream. Despite the impending widespread
deployment of foundation models, we currently lack a clear understanding of how they work, when they falil,
and what they are even capable of due to their emergent properties. To tackle these questions, we believe

much of the critical research on foundation models will require deep interdisciplinary collaboration
~ommanciirate with theair fiindamantallyy eocintachnical natiira
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Figure 1: The taxonomy of LLM safety proposed in this survey.
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Data Pipelines

Name (site)

Databricks

Airflow

Unstructured.io

Fivetran

Airbyte

Anyscale

Alluxio

Description

A unified data platform for building, deploying, and maintaining
enterprise data solutions, including products (like MosaicML and
MLflow) purpose-built for Al

A data pipeline framework to programmatically author, schedule,
and monitor data pipelines and workflows, including for LLMs

Open-source components for pre-processing documents such
as PDFs, HTML, and Word documents for usage with LLM apps

A platform that extracts, loads, and transforms data from various
sources for analytics, Al, and operations

An open-source data integration engine that helps consolidate
data in data warehouses, lakes, and databases

An Al compute platform that allows developers to scale data
ingest, preprocessing, embedding, and inference computations
using Ray

An open-source data platform at the intersection of compute
and storage, bringing data closer to compute, to accelerate
model training and serving, boost GPU utilization, and reduce
costs for Al workloads

Github

) stars

) stars

C) stars

N/A

) stars

() stars

) stars

9.8k

17k

35k

6.9k

Pip
Installs

downloads | 7.6M/week

downloads [5.6M/week

downloads [492k/week

downloads [262/Wee|

downloads | 123k/week

downloads | 1.4M/week

downloads 64/week



Vector Databases

Name
(site)

Pinecone

Weaviate

ChromaDB

Pgvector

Zilliz
(Milvus)

Qdrant
Metal io

LanceDB

Description
A managed, cloud-native vector database with a simple API for
high-performance Al applications

An open-source vector database that stores both objects and
vectors

An Al-native, open-source embedding database platform for
developers

An open-source vector similarity search for Postgres, allowing
for exact and approximate nearest-neighbor search

An open-source vector database, built for developing and
maintaining Al applications

A vector database and vector similarity search engine

A managed service for developers to build applications with ML
embeddings

A serverless vector database for Al applications

Github

n/a

O Stars

o Stars

o Stars

o Stars

O Stars

N/A

0 Stars

12k

17k

14k

32k

21k

5.3k

Pip Installs

downloads | 728k/week

downloads | 1.6M/week

downloads | 578k/week

downloads | 949k/week

downloads | 270k/week

downloads | 791k/week

downloads | 2.7k/week

downloads | 173k/week



Playgrounds

Name (site)

OpenAl
Playground

nat.dev

Humanloop

Parea Al

Description

A web-based platform for experimenting with various machine-
learning models developed by OpenAl

A platform that allows users to test prompts with multiple
language models and compare their performance

A platform that helps developers build applications on top of
LLMs

Platform and SDK for Al Engineers providing tools for LLM
evaluation, observability, and a version-controlled enhanced
prompt playground.

Github

N/A

() stars 6.3k

) stars 15

C)stars 73

Pip Installs

N/A

downloads | 81/week

downloads | 6.2k/week

downloads | 5.7k/week



Orchestrators

Name (site)

Langchain

Llamalndex

Autogen

Microsoft
Semantic Kernel

Haystack

Vercel Al SDK

Vectara Al

ChatGPT

Description

An open-source library that gives developers the tools
to build applications powered by LLMs

A data framework for LLM applications to ingest,
structure, and access private or domain-specific data

A framework for automating and streamlining LLM
workflows using customizable, conversable agents for
complex Al applications

A lightweight open-source orchestration SDK
LLM orchestration framework to build customizable,

production-ready LLM applications

An open-source library for developers to build
streaming Uls in JavaScript and TypeScript

A search and discovery platform for Al conversations
utilizing your own data

An Al chatbot that uses natural language processing to
create humanlike conversational dialogue

Github

C) stars

C) stars

C) stars

) stars

) stars

C) stars

) stars

N/A

99k

38k

38k

23k

19k

11k

155

Pip Installs

downloads ' 7.1M/week

downloads ' 810k/week

downloads '105k/week

downloads | 23k/week

downloads | 20k/week

downloads '887k/week

(node/npm)

N/A

N/A



APIs [ Plugins

Name (site)

Serp API

Wolfram
Alpha API

Zapier API Al
Plugin

Description

A real-time API to access Google search results, as well as
handling proxies, solving captchas, and parsing structured
data

A web-based API providing computational and presentation
capabilities for integration into various applications

A plugin that allows you to connect 5,000+ apps and interact
with them directly inside ChatGPT

Github

) stars 622

N/A

N/A

Pip Installs

downloads ' 119k/week

downloads ' 23k/week

N/A



LLM Caches

Name
(site)

Redis

SQLite

GPTCache

Description

An in-memory data structure store used as a database, cache,
message broker, and streaming engine

A self-contained, serverless, zero-configuration, transactional
SQL database engine

An open-source tool for improving the efficiency and speed of
GPT-based applications by implementing a cache to store the
responses

~ Back to Contents

Logging [ Monitoring / Eval

Name (site)

Braintrust
Data

Arize Al

Weights &
Biases

MLflow

PromptLayer

Description

An Al product stack featuring evaluations, prompt
playgrounds, continuous integration, dataset management,
and access to various Al models through a single API

An observability platform for both LLMs and supervised ML
An MLOps platform for streamlining ML workflows

A platform to streamline ML development

A platform for tracking, managing, and sharing LLM prompt

Github

() stars 68k

) stars 7.2k

) stars < 7.3k

Github

) Stars 296

Ostars Sk

) stars 9.4k

) stars 19k

Pip Installs

downloads | 13M/week

downloads | 72k/week

N/A

Pip Installs

downloads | 81k/week

downloads | 53k/week
downloads | 3.8M/week
downloads | 3.2M/week

downloads | 7.7k/week



Validators

Name (site)

Guardrails Al

Rebuff

Microsoft
Guidance

LMQL

Outlines

LLM Guard

Description

An open-source Python package for specifying structure and
type, validating, and correcting the outputs of LLMs

An open-source framework designed to detect and protect
against prompt injection attacks in LLM apps

A guidance language for controlling LLMs, providing a syntax for
architecting LLM workflows

An open-source programming language and platform for
language model interaction

A tool for helping developers guide text generation to build
robust interfaces with external systems and guarantee that
outputs match a regex or JSON schema

An open-source, comprehensive tool designed to fortify the
security of Large Language Models (LLMs).

Github

() stars

C) stars

() stars

C) stars

C) stars

() stars

4.4k

1.2k

19k

3.8k

10k

1.4k

Pip Installs

downloads | 9.2k/week
downloads [547/week
downloads | 9.2k/week

downloads [897/week
downloads | 416k/week

downloads [ 12k/week
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