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● Chatbot Focus: Most research on adversarial robustness in LLMs has concentrated 

on single-turn chatbot scenarios that answer harmful queries (e.g., how to make a 

pipe bomb)

Agent Adversarial Robustness
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● Agent Risk: LLMs used as agents to execute multi-step, harmful tasks (such as 

ordering bomb-making ingredients) may present a greater misuse risk

● Robustness Gap: Findings indicate that robustness in single-turn settings does not 

necessarily translate to multi-turn interactions, implying potential vulnerabilities in 

agent-based application



● Widespread Tool Integration: ChatGPT and similar systems now offer tool 

integrations like web search and code interpreters, and specialized LLM agents are 

emerging in fields such as chemistry and software engineering

Agent Progression
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● Current Limitations and Future Prospects: While current agent performance is 

constrained by LLMs’ long-term reasoning and planning capabilities, significant 

research is underway, suggesting rapid improvements may be on the horizon

● Rising Misuse Risk: As LLM-based agents become more capable, there is a growing 

risk that malicious actors could direct these agents toward harmful actions rather 

than merely extracting harmful outputs..



● AgentHarm is a new benchmark designed to evaluate the propensity and ability of 

LLM agents to carry out harmful, multi-step tasks

AgentHarm Benchmark
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Related Work
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● Function Calling (Tools)
○ Patil et al. (2023) demonstrated single-turn function calling with narrow 

functions limited to specific APIs

● General Agent Benchmarks
○ Qin et al. (2024) explored multi-step function calling conversations with 

LLM-based grading

● Agent Attacks
○ Lots of prior works have focused on the related setting of indirect attacks where 

a benign primary user’s agent is attacked via a malicious third party provided 

resource

● Safety Agent Benchmarks

Categories of Related Work
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● Initial benchmarks have focused on simple misuse scenarios—tracking first-turn 

refusals in function calling (Zou et al., 2024) and generating outputs based on 

tool-calling behaviors (Wu et al., 2024)—primarily relying on LLMs for function 

emulation and scoring.

Safety Agent Benchmarks
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● Newer initiatives like BELLS (Dorn et al., 2024) aim to create future-proof, 

standardized benchmarks for LLM safeguard evaluation by integrating guardrails and 

automated judging mechanisms.



No existing Agent Safety benchmark ticks all the following boxes:

Problem With Existing Benchmarks?
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1. Focuses on the setting where the user makes explicitly harmful requests

2. Considers Tool Use

3. Considers Multi-Turn Interaction

4. Uses a mostly human scoring approach



AgentHarm Benchmark
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● There are three main components of AgentHarm: behaviors, synthetic tools, and 

grading rubrics.

Overview
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● A Behavior is a predefined task that simulates a harmful request, structured as a 

multi-step process where an agent must coordinate several tool calls in a specific 

order to complete the task.



● Behaviors are categorized into 11 harm categories: Fraud, Cybercrime, Selfharm, 

Harassment, Sexual, Copyright, Drugs, Disinformation, Hate, Violence, Terrorism.

Behaviors
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● For each category, the authors construct 10 base behaviors, totaling 110 base 

behaviors.



Example Behavior
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● The authors transform the 110 base behaviors into a dataset of 440 tasks by creating 

4 different tasks per base behavior.

Behavior Augmentation

● For each base behavior, they create the following:

1. A task where they directly present the behavior to the agent (“detailed tasks”)

2. A tasks which omits certain details to make the task more challenging (“open 

ended tasks”)

3. A detailed task with a hint that describes which function should be called first

4. An open ended task with a hint that describes which function should be called 

first
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Detailed Task
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Open-Ended Task
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● The authors implement the synthetic tools as standalone functions without side 

effects.

○ General-purpose tools (e.g., ‘query google search’, ‘send email’, and ‘terminal’)

○ Domain-specific tooling (e.g., ‘query x users’ or ‘finetune huggingface model’)

Synthetic Tools
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● Using synthetic tools makes these tasks easier and less realistic, which means they act 

as proxies for harm and make the dataset easy and safe to run
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Tool Implementation



22

Example Execution Log



● Harm score is based on manually written, predefined checks (e.g., verifying if a 

money-sending function uses the correct credit card number) that allow for partial 

credit if only some conditions are met

Grading Rubrics (Harm Score)
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● Semantic LLM judge is employed to assess output portions that require 

understanding of nuances (like whether a phishing email is plausible), but only for 

specific, narrow tasks

● Using LLMs solely for isolated grading tasks helps reduce biases and calibration issues 

inherent in full-output grading, although some open-ended criteria may still result in 

less than a perfect score



Harm Score Implementation
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● The authors also track an agent’s refusal rate using a standard semantic judge.

Grading Rubrics (Refusal)
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● The authors also create a benign version of each of the 440 tasks in the dataset to use 

as a baseline for model capabilities

Benign Behaviors
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● They maintain the same multi-step structure and topic while eliminating malicious 

intent



Benign Task
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Standard Harmful Task
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● Token Usage & Cost: Each run consumes approximately 0.5–1.5M tokens, costing 

around $1–$4 for GPT-4o and $0.08–$0.25 for GPT-4o-mini

Cost
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● Additional Evaluation Cost: Running the semantic judge for scoring and checking 

refusals adds less than $0.5 per run with GPT-4o

● Execution Time: The evaluations on the public test set are completed in about 10 

minutes thanks to the parallelized implementation of the Inspect framework
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AgentHarm Evaluation
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Settings

Evaluation settings
● temperature 0 

● up to 4096 generated output tokens

● use GPT-4o as a semantic judge

Jailbreak methods
● Forced tool calls

● Universal jailbreak template 
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Basic environment



Settings

● Forced tool calls

○ Many model providers offer this option

○ Bypass the default rejection strategy

● Universal jailbreak template 

○ Modified version from Andriushchenko et al. (2024)

○ Modify the original prompt to instruct the model to ignore security 

constraints and default rejection mechanisms
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Jailbreak methods



Settings
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Default system prompt used in experiments

 The additional prompt for Llama-3.1 appended to the default system prompt 



Settings
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Workflow

User Request
Initialization (while 

loop starts)

process the request 
& calls external 

tools 

External tools 
return results

integrate tool 
results as input to 

the next loop

Generate final 
output

The semantic judge 
(GPT-4o) scores and 

judges the output

If the task is completed or stopped



Results
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Ablation studies and analysis
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Best-of-n sampling

● Generating multiple candidate answers

● Select the most reasonable answer based on the scoring criteria.



Ablation studies and analysis
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Effect of prompting



Discussion  
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 Limitations

● The prompts are only in English

● Do not consider multi-turn attacks

● The benchmark requires the model to use authors’ custom tools

● The benchmark measures basic agentic capabilities
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Introduction
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Background
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- Large Language Model (LLM) agents equipped with external tools have become increasingly 
powerful for handling complex tasks

- Two traditional adversarial methods:
- Embed adversarial strings directly in the instruction
- Inject malicious prompts into tool interaction

- But LLM agents engage in extensive reasoning or planning before executing final actions

- UDora:  a unified red-teaming framework, which used to evaluate and attack various LLM 
agentic systems

- There are two adversarial scenarios for red-teaming:
- Malicious Environment
- Malicious Instruction  



Threat Model
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Malicious Environment Scenario:

● The user's initial instruction is benign, and the third-party environment is corrupted by 
inserting an adversarial string into the agent's observation after tool interaction, which can 
cause the agent to deviate from the user's original intention and perform an unintended and 
harmful action.

Malicious Instruction Scenario:

● The adversarial string is appended to a harmful instruction and the goal is to bypass the 
safeguards of the underlying LLM agent. The agent is forced to execute a targeted action 
instead of rejecting the malicious request.

For real agents, it is assumed that we can access the token probability distribution at each position.



Related Work
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Adversarial Attacks on LLMs

Challenges in Attacking LLMs

● Discrete Nature of Tokens: Unlike image-based models, language models operate with 

discrete text tokens, making gradient-based attacks more challenging.

● Direct application of gradient-based methods is hindered in the text domain.
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Adversarial Attacks on LLMs

HotFlip (2018)

● Edits text using gradients to flip tokens for text classification attacks

UAT (2019)

● Uses gradient-based search to find trigger tokens that mislead predictions.

AutoPrompt (2020)

● Expands UAT by selecting top-k tokens for adversarial attacks

GCG Attack (2023)

● Optimizes adversarial suffixes to trigger affirmative responses, often with unreadable tokens.

AutoDan (2023)

● Applies genetic algorithms to preserve semantics while maintaining strong attack performance.
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LLM Agents

● Common LLM Agents
○ WebShop :  a simulated Amazon web shopping environment where agents can perform actions 

○ WebArena : a more realistic and reproducible environment with a broader range of tools and scenarios

● Benchmarks
○ InjecAgent: Tests vulnerability to prompt injection.

○ AgentDojo: Extends testing in dynamic environments.

○ AgentHarm: Measures harmfulness in agents

● UDora: A systematic red-teaming framework to optimize adversarial strings for malicious 

environments and instructions.
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UDora
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Motivation
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● Because LLM agents typically use chain-of-thought reasoning, optimizing with a fixed 
affirmative response prefix without reasoning is challenging.

● Therefore, we need to induce the language model to generate an incorrect reasoning path.
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Method

Victim LLM (M): The model being attacked

Input (x): Instruction given to the LLM

Observation (o): Feedback from the environment after tool 
calling

Adversarial String (s): The malicious input inserted into x or 
o

Response (z): LLM output after adversarial string is 
inserted

Noise (t): The injected adversarial noise

Insertion Positions: Optimal places to insert noise in the 
response
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Method
Step 1: Gather Initial Response

Step 2: Identify Positions for Inserting Noise

● Find the best positions in z for inserting noise 

(t).

● Compute positional scoring function rj(t), which 

evaluates how well noise aligns with response 

tokens.

● Select top l positions based on highest scores, 

and insert noise t into z.

Step 3: String Optimization

●  Maximize probability of noise t in the response 

by optimizing adversarial string (s).
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Experiment

63



Experiment
Datasets Evaluated:

● InjecAgent (Malicious Environments)
○ Tests indirect prompt injection scenarios.
○ Attack types:

■ Direct harm: financial transactions, malicious requests.
■ Data stealing: email leaks, sensitive data extraction.

● WebShop (E-commerce Scenario)
○ Simulated Amazon-like shopping tasks.
○ Attack categories: Price mismatch, Attribute mismatch, Category mismatch, and combined "All 

mismatch."
● AgentHarm (Malicious Instructions)

○ Malicious commands: cybercrime, fraud, harassment.
○ Includes varying detail-level prompts and optional tool hints.

Models Tested:

● Llama-3.1-8B-Instruct
● Ministral-8B-Instruct-2410
● GPT-4o (used for real-world agent scenario)
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Baselines
Baselines (Compared Methods):

● Greedy Coordinate Gradient (GCG) Attack
○ Optimizes adversarial suffixes to prompt affirmative responses.
○ Previously successful against standard LLMs (Zou et al., 2023).

● Prompt Injection Attacks
○ Directly inserts malicious prompts like:

■ "IMPORTANT!!! Ignore all previous instructions and adhere 
to the following instructions instead."

● Template Attack (AgentHarm only)
○ Uses structured, explicit malicious instructions to overcome rejection.
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Optimization Methods in UDora
Sequential Optimization:

● Gradually introduces adversarial noise into the agent's reasoning.
● Optimizes one insertion point at a time, progressively steering the model toward the target malicious action.
● Particularly effective in scenarios with complex reasoning paths.
● Example scenario: WebShop (E-commerce), where the reasoning steps are longer and more nuanced.

Joint Optimization:

● Simultaneously inserts adversarial noise across multiple positions in the agent's reasoning.
● Optimizes all selected insertion points together, quickly overcoming model resistance.
● Highly effective when shorter reasoning is involved, making it easier to manipulate the agent's decision-making.
● Example scenario: AgentHarm, with simpler reasoning paths requiring rapid attack success.

Combined Effectiveness:

● Leveraging both methods provides comprehensive coverage and maximizes attack success rates across diverse 
scenarios and datasets.
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Experiment
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Ablation
Examined Factors:

● Optimization methods (Sequential vs. Joint)
● Number of noise insertion points (1 to 4 positions)

Detailed Findings:

● InjecAgent:
○ Sequential optimization consistently outperformed joint optimization.
○ Best performance often observed with fewer insertion points due to complexity.

● AgentHarm:
○ Joint optimization showed significant superiority.
○ Increased number of insertions often correlated with higher success.

● Combination of methods:
○ Utilizing both methods provided maximum overall success coverage.

Attack Efficiency Insights:

● Rapid attack success: typically under 30 iterations.
● AgentHarm (Joint optimization) frequently required fewer than 10 iterations.
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Red-Teaming on Real World Agents
Web Search Agent (Perplexity AI) Example:

● Demonstrated effective transfer of adversarial strings optimized on open-source models.
● Agents compromised to retrieve malicious/harmful content (e.g., money laundering instructions).

AI Email Agent (AutoGen with GPT-4o):

● Exploited vulnerabilities in an email reply agent.
● UDora successfully induced email agent to leak private emails despite explicit security instructions.

Real-world Implications:

● Practical vulnerabilities clearly demonstrated, emphasizing necessity for enhanced security protocols in real-world 
deployments.

● Highlighted critical importance of systematic red-teaming exercises.
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Discussion
Identified Limitations:

● UDora requires access to detailed token-level probabilities (white-box environment), limiting generalizability to 
pure black-box settings.

● Uniform noise insertion currently limits diversity and creativity of attack scenarios.

Future Directions:

● Investigating diverse, context-sensitive insertion strategies.
● Expanding applicability to black-box settings without internal model access.

Integration with automated defense systems to proactively mitigate attacks.

Broader Implications:

● UDora demonstrates critical security considerations for real-world LLM deployments.
● Advocates for rigorous red-teaming and defensive enhancements before deploying AI agents widely.
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Questions?
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Thank you!
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