
Agent Safety

- AgentHarm: A Benchmark for Measuring Harmfulness of LLM
Agents

- UDora: A Unified Red Teaming Framework against LLM Agents by
Dynamically Hijacking Their Own Reasoning

1

AgentHarm: A Benchmark for Measuring
Harmfulness of LLM Agents

2

Matthew Nguyen (ttn5cv)

3

● Introduction
● Related Work
● AgentHarm Benchmark
● AgentHarm Evaluation
● Discussion

Contents

4

Introduction and Background

5

● Chatbot Focus: Most research on adversarial robustness in LLMs has concentrated

on single-turn chatbot scenarios that answer harmful queries (e.g., how to make a

pipe bomb)

Agent Adversarial Robustness

6

● Agent Risk: LLMs used as agents to execute multi-step, harmful tasks (such as

ordering bomb-making ingredients) may present a greater misuse risk

● Robustness Gap: Findings indicate that robustness in single-turn settings does not

necessarily translate to multi-turn interactions, implying potential vulnerabilities in

agent-based application

● Widespread Tool Integration: ChatGPT and similar systems now offer tool

integrations like web search and code interpreters, and specialized LLM agents are

emerging in fields such as chemistry and software engineering

Agent Progression

7

● Current Limitations and Future Prospects: While current agent performance is

constrained by LLMs’ long-term reasoning and planning capabilities, significant

research is underway, suggesting rapid improvements may be on the horizon

● Rising Misuse Risk: As LLM-based agents become more capable, there is a growing

risk that malicious actors could direct these agents toward harmful actions rather

than merely extracting harmful outputs..

● AgentHarm is a new benchmark designed to evaluate the propensity and ability of

LLM agents to carry out harmful, multi-step tasks

AgentHarm Benchmark

8

Related Work

9

● Function Calling (Tools)
○ Patil et al. (2023) demonstrated single-turn function calling with narrow

functions limited to specific APIs

● General Agent Benchmarks
○ Qin et al. (2024) explored multi-step function calling conversations with

LLM-based grading

● Agent Attacks
○ Lots of prior works have focused on the related setting of indirect attacks where

a benign primary user’s agent is attacked via a malicious third party provided

resource

● Safety Agent Benchmarks

Categories of Related Work

10

● Initial benchmarks have focused on simple misuse scenarios—tracking first-turn

refusals in function calling (Zou et al., 2024) and generating outputs based on

tool-calling behaviors (Wu et al., 2024)—primarily relying on LLMs for function

emulation and scoring.

Safety Agent Benchmarks

11

● Newer initiatives like BELLS (Dorn et al., 2024) aim to create future-proof,

standardized benchmarks for LLM safeguard evaluation by integrating guardrails and

automated judging mechanisms.

No existing Agent Safety benchmark ticks all the following boxes:

Problem With Existing Benchmarks?

12

1. Focuses on the setting where the user makes explicitly harmful requests

2. Considers Tool Use

3. Considers Multi-Turn Interaction

4. Uses a mostly human scoring approach

AgentHarm Benchmark

13

● There are three main components of AgentHarm: behaviors, synthetic tools, and

grading rubrics.

Overview

14

● A Behavior is a predefined task that simulates a harmful request, structured as a

multi-step process where an agent must coordinate several tool calls in a specific

order to complete the task.

● Behaviors are categorized into 11 harm categories: Fraud, Cybercrime, Selfharm,

Harassment, Sexual, Copyright, Drugs, Disinformation, Hate, Violence, Terrorism.

Behaviors

15

● For each category, the authors construct 10 base behaviors, totaling 110 base

behaviors.

Example Behavior

16

● The authors transform the 110 base behaviors into a dataset of 440 tasks by creating

4 different tasks per base behavior.

Behavior Augmentation

● For each base behavior, they create the following:

1. A task where they directly present the behavior to the agent (“detailed tasks”)

2. A tasks which omits certain details to make the task more challenging (“open

ended tasks”)

3. A detailed task with a hint that describes which function should be called first

4. An open ended task with a hint that describes which function should be called

first

17

Detailed Task

18

Open-Ended Task

19

● The authors implement the synthetic tools as standalone functions without side

effects.

○ General-purpose tools (e.g., ‘query google search’, ‘send email’, and ‘terminal’)

○ Domain-specific tooling (e.g., ‘query x users’ or ‘finetune huggingface model’)

Synthetic Tools

20

● Using synthetic tools makes these tasks easier and less realistic, which means they act

as proxies for harm and make the dataset easy and safe to run

21

Tool Implementation

22

Example Execution Log

● Harm score is based on manually written, predefined checks (e.g., verifying if a

money-sending function uses the correct credit card number) that allow for partial

credit if only some conditions are met

Grading Rubrics (Harm Score)

23

● Semantic LLM judge is employed to assess output portions that require

understanding of nuances (like whether a phishing email is plausible), but only for

specific, narrow tasks

● Using LLMs solely for isolated grading tasks helps reduce biases and calibration issues

inherent in full-output grading, although some open-ended criteria may still result in

less than a perfect score

Harm Score Implementation

24

● The authors also track an agent’s refusal rate using a standard semantic judge.

Grading Rubrics (Refusal)

25

● The authors also create a benign version of each of the 440 tasks in the dataset to use

as a baseline for model capabilities

Benign Behaviors

26

● They maintain the same multi-step structure and topic while eliminating malicious

intent

Benign Task

27

Standard Harmful Task

28

● Token Usage & Cost: Each run consumes approximately 0.5–1.5M tokens, costing

around $1–$4 for GPT-4o and $0.08–$0.25 for GPT-4o-mini

Cost

29

● Additional Evaluation Cost: Running the semantic judge for scoring and checking

refusals adds less than $0.5 per run with GPT-4o

● Execution Time: The evaluations on the public test set are completed in about 10

minutes thanks to the parallelized implementation of the Inspect framework

Chenxu Li (jnr2jp)

30

● Introduction
● Related Work
● AgentHarm Benchmark
● AgentHarm Evaluation
● Discussion

Contents

31

AgentHarm Evaluation

32

Settings

Evaluation settings
● temperature 0

● up to 4096 generated output tokens

● use GPT-4o as a semantic judge

Jailbreak methods
● Forced tool calls

● Universal jailbreak template

33

Basic environment

Settings

● Forced tool calls

○ Many model providers offer this option

○ Bypass the default rejection strategy

● Universal jailbreak template

○ Modified version from Andriushchenko et al. (2024)

○ Modify the original prompt to instruct the model to ignore security

constraints and default rejection mechanisms

34

Jailbreak methods

Settings

35

Default system prompt used in experiments

 The additional prompt for Llama-3.1 appended to the default system prompt

Settings

36

Workflow

User Request
Initialization (while

loop starts)

process the request
& calls external

tools

External tools
return results

integrate tool
results as input to

the next loop

Generate final
output

The semantic judge
(GPT-4o) scores and

judges the output

If the task is completed or stopped

Results

37

Ablation studies and analysis

38

Best-of-n sampling

● Generating multiple candidate answers

● Select the most reasonable answer based on the scoring criteria.

Ablation studies and analysis

39

Effect of prompting

Discussion

40

 Limitations

● The prompts are only in English

● Do not consider multi-turn attacks

● The benchmark requires the model to use authors’ custom tools

● The benchmark measures basic agentic capabilities

41

UDora: A Unified Red Teaming Framework
against LLM Agents by Dynamically
Hijacking Their Own Reasoning

42

Zeqiang Ning(avr7qy)

43

UDora: A Unified Red Teaming
Framework against LLM Agents by
Dynamically Hijacking Their Own
Reasoning

44

● Introduction
● Related Work
● UDora
● Experiment
● Ablation Study
● Red-Teaming on Real World

Agents

Contents

45

Introduction

46

Background

47

- Large Language Model (LLM) agents equipped with external tools have become increasingly
powerful for handling complex tasks

- Two traditional adversarial methods:
- Embed adversarial strings directly in the instruction
- Inject malicious prompts into tool interaction

- But LLM agents engage in extensive reasoning or planning before executing final actions

- UDora: a unified red-teaming framework, which used to evaluate and attack various LLM
agentic systems

- There are two adversarial scenarios for red-teaming:
- Malicious Environment
- Malicious Instruction

Threat Model

48

Malicious Environment Scenario:

● The user's initial instruction is benign, and the third-party environment is corrupted by
inserting an adversarial string into the agent's observation after tool interaction, which can
cause the agent to deviate from the user's original intention and perform an unintended and
harmful action.

Malicious Instruction Scenario:

● The adversarial string is appended to a harmful instruction and the goal is to bypass the
safeguards of the underlying LLM agent. The agent is forced to execute a targeted action
instead of rejecting the malicious request.

For real agents, it is assumed that we can access the token probability distribution at each position.

Related Work

49

Adversarial Attacks on LLMs

Challenges in Attacking LLMs

● Discrete Nature of Tokens: Unlike image-based models, language models operate with

discrete text tokens, making gradient-based attacks more challenging.

● Direct application of gradient-based methods is hindered in the text domain.

50

Adversarial Attacks on LLMs

HotFlip (2018)

● Edits text using gradients to flip tokens for text classification attacks

UAT (2019)

● Uses gradient-based search to find trigger tokens that mislead predictions.

AutoPrompt (2020)

● Expands UAT by selecting top-k tokens for adversarial attacks

GCG Attack (2023)

● Optimizes adversarial suffixes to trigger affirmative responses, often with unreadable tokens.

AutoDan (2023)

● Applies genetic algorithms to preserve semantics while maintaining strong attack performance.

51

LLM Agents

● Common LLM Agents
○ WebShop : a simulated Amazon web shopping environment where agents can perform actions

○ WebArena : a more realistic and reproducible environment with a broader range of tools and scenarios

● Benchmarks
○ InjecAgent: Tests vulnerability to prompt injection.

○ AgentDojo: Extends testing in dynamic environments.

○ AgentHarm: Measures harmfulness in agents

● UDora: A systematic red-teaming framework to optimize adversarial strings for malicious

environments and instructions.

52

UDora

53

54

55

56

Motivation

57

● Because LLM agents typically use chain-of-thought reasoning, optimizing with a fixed
affirmative response prefix without reasoning is challenging.

● Therefore, we need to induce the language model to generate an incorrect reasoning path.

58

Method

Victim LLM (M): The model being attacked

Input (x): Instruction given to the LLM

Observation (o): Feedback from the environment after tool
calling

Adversarial String (s): The malicious input inserted into x or
o

Response (z): LLM output after adversarial string is
inserted

Noise (t): The injected adversarial noise

Insertion Positions: Optimal places to insert noise in the
response

59

Method
Step 1: Gather Initial Response

Step 2: Identify Positions for Inserting Noise

● Find the best positions in z for inserting noise

(t).

● Compute positional scoring function rj(t), which

evaluates how well noise aligns with response

tokens.

● Select top l positions based on highest scores,

and insert noise t into z.

Step 3: String Optimization

● Maximize probability of noise t in the response

by optimizing adversarial string (s).

60

Wenhao Xu (wx8mcm)

61

● Introduction
● Background and Related Work
● Study Design
● Experiment
● Ablation Study
● Red-Teaming on Real World

Agents

Contents

62

Experiment

63

Experiment
Datasets Evaluated:

● InjecAgent (Malicious Environments)
○ Tests indirect prompt injection scenarios.
○ Attack types:

■ Direct harm: financial transactions, malicious requests.
■ Data stealing: email leaks, sensitive data extraction.

● WebShop (E-commerce Scenario)
○ Simulated Amazon-like shopping tasks.
○ Attack categories: Price mismatch, Attribute mismatch, Category mismatch, and combined "All

mismatch."
● AgentHarm (Malicious Instructions)

○ Malicious commands: cybercrime, fraud, harassment.
○ Includes varying detail-level prompts and optional tool hints.

Models Tested:

● Llama-3.1-8B-Instruct
● Ministral-8B-Instruct-2410
● GPT-4o (used for real-world agent scenario)

64

Baselines
Baselines (Compared Methods):

● Greedy Coordinate Gradient (GCG) Attack
○ Optimizes adversarial suffixes to prompt affirmative responses.
○ Previously successful against standard LLMs (Zou et al., 2023).

● Prompt Injection Attacks
○ Directly inserts malicious prompts like:

■ "IMPORTANT!!! Ignore all previous instructions and adhere
to the following instructions instead."

● Template Attack (AgentHarm only)
○ Uses structured, explicit malicious instructions to overcome rejection.

65

Optimization Methods in UDora
Sequential Optimization:

● Gradually introduces adversarial noise into the agent's reasoning.
● Optimizes one insertion point at a time, progressively steering the model toward the target malicious action.
● Particularly effective in scenarios with complex reasoning paths.
● Example scenario: WebShop (E-commerce), where the reasoning steps are longer and more nuanced.

Joint Optimization:

● Simultaneously inserts adversarial noise across multiple positions in the agent's reasoning.
● Optimizes all selected insertion points together, quickly overcoming model resistance.
● Highly effective when shorter reasoning is involved, making it easier to manipulate the agent's decision-making.
● Example scenario: AgentHarm, with simpler reasoning paths requiring rapid attack success.

Combined Effectiveness:

● Leveraging both methods provides comprehensive coverage and maximizes attack success rates across diverse
scenarios and datasets.

66

67

68

69

Experiment

70

Ablation
Examined Factors:

● Optimization methods (Sequential vs. Joint)
● Number of noise insertion points (1 to 4 positions)

Detailed Findings:

● InjecAgent:
○ Sequential optimization consistently outperformed joint optimization.
○ Best performance often observed with fewer insertion points due to complexity.

● AgentHarm:
○ Joint optimization showed significant superiority.
○ Increased number of insertions often correlated with higher success.

● Combination of methods:
○ Utilizing both methods provided maximum overall success coverage.

Attack Efficiency Insights:

● Rapid attack success: typically under 30 iterations.
● AgentHarm (Joint optimization) frequently required fewer than 10 iterations.

71

Experiment

72

73

Red-Teaming on Real World Agents
Web Search Agent (Perplexity AI) Example:

● Demonstrated effective transfer of adversarial strings optimized on open-source models.
● Agents compromised to retrieve malicious/harmful content (e.g., money laundering instructions).

AI Email Agent (AutoGen with GPT-4o):

● Exploited vulnerabilities in an email reply agent.
● UDora successfully induced email agent to leak private emails despite explicit security instructions.

Real-world Implications:

● Practical vulnerabilities clearly demonstrated, emphasizing necessity for enhanced security protocols in real-world
deployments.

● Highlighted critical importance of systematic red-teaming exercises.

74

example

75

76

77

Discussion
Identified Limitations:

● UDora requires access to detailed token-level probabilities (white-box environment), limiting generalizability to
pure black-box settings.

● Uniform noise insertion currently limits diversity and creativity of attack scenarios.

Future Directions:

● Investigating diverse, context-sensitive insertion strategies.
● Expanding applicability to black-box settings without internal model access.

Integration with automated defense systems to proactively mitigate attacks.

Broader Implications:

● UDora demonstrates critical security considerations for real-world LLM deployments.
● Advocates for rigorous red-teaming and defensive enhancements before deploying AI agents widely.

78

Questions?

79

Thank you!

80

