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Introduction
• LLMs have transformed AI

o Have lots of benefits, but still suffer from problems

• Multi Agentic Systems
o Simulate human society by having agents specialize and collaborate!

o Allows diverse information without overload on LLM

o Pooling experts means better generalization

• How do we apply and take advantage of this collaboration?
o Survey aims to understand the mechanisms, the framework, the applications 

and the limitations 
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Background: Multi Agent Systems (MAS)
• Key Components:

o Agents

o Environment 

o Interaction

o Organization

• Salient features:
o Flexible

▪ Modify agent amount

o Robust
▪ Decentralization -> Fail tolerance up

o Self-Organized
▪ If failure, can reorganize to fix problem

o Real-Time Operations
▪ Responses possible without human oversight
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Background: LLMs & Collaborative AI
• LLMS

o Trained on vast corpus of knowledge with billions of parameters

o Emergent and generalizable

o Problems with having up-to-date information, adversarial actors, and hallucination

o Are the common "brain" for single agent tasks, but are overwhelmed by multi-agent 
settings due to coordination problems and cascading hallucinations

• Collaborative AI
o Comes from the realization that AI systems need collaboration (human or other AI) 

to enhance effectiveness and efficiently

o Collaboration can look like negotiation or even competition

o MASs are interested in how agents can work together in emergent settings, with 
LLMs as the brain of each of the agents

6



Multi Agent Collaboration Concept
• An agent can be represented by the model 𝑎 = {𝑚,𝑜,𝑒,𝑥,𝑦}

o Model (𝑚)
▪ The architecture of the model itself, the memory, and adaptors

◦ speculative decoding and parameter-efficient adapter

▪ Typically, an LLM and the system prompts memory "r"

o Objective (𝑜)

o Environment (𝑒)
▪ Context of the state that the agent operates

o Input  (𝑥)

o Output (𝑦)
▪ 𝑦 =𝑚(𝑜,𝑒,𝑥) , uses its model to act on Input (x). Some sort of action

• Agents are trained in diverse data, but each have specialized external tools
o Python Interpreter, Calculator, etc.
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Multi Agent Collaboration Concept
• A MAS can be modeled after a system S:

o The number of Agents (A)

o The set of goals partitioned for each agent (O_collab)

o Environment (E)
▪ Vector based databases or common messaging interfaces

o Collaboration channels ( C )
▪ Facilitate interactions between agents

▪ Distinguished by agents, structure, and strategy

• Cooperation vs. Competition

▪ Similar Interface

o System Input (x_collab)

o System Output (y_collab)
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Multi Agent Collaboration Concept
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Multi Agent Collaboration Concept: 
Example

10Yubo Dong et al. 2024. VillagerAgent: A Graph-Based Multi-Agent Framework for Coordinating Complex Task Dependencies in Minecraft. In Findings of the Association for Computational Linguistics: ACL 2024, 
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics, Bangkok, Thailand, 16290 –16314.



Methodology: Collaboration Types
• Cooperation

o Happens when individual objectives have a shared goal and work together

o Focus on specific subtasks, reducing completion times

• Cooperation Structures
o Feedback Loops

▪ Actor does work, then an Evaluator and Self-Reflection model rates the output and results, producing verbal guidance for the Actor to improve

o Theory of the Mind
▪ Shared belief state representation within the environment, helping them track each other’s goals and actions. 

▪ Leads to emergent behaviors

o Agent Verse (distinct roles for each agent)

o MetaGPT
▪ Assembly line model, assigning roles and encoding Standardized Operating Procedures (SOPs)

• Good for question answering, recommendation systems, and collaborative programming

• Open-Source Frameworks: CAMEL & AutoGen

• Issues include: frequent messaging leading to increased cost, hallucination stacking, goal misalignment
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Methodology: Collaboration Types
• Competition

o Occurs with conflicting goals or scenarios of limited resources, causing rivalry
▪ Can still lead objective in a form of a debate

o Enable deeper reasoning and more creative solution

• Competition Examples
o Gaming environments like TicTacToe (LLMARENA)

o Competing restaurant managers

o Critic based systems (LEGO)

• Competition Challenges
o Ensuring constructive criticism, alignment overtaken

oWays to resolve conflicts

o Single agents overtaking the conversation 
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Methodology: Collaboration Types
• Coopetition

o A blend of competition and cooperation, relatively new

o Negotiations, trying to reach a compromise rather than stand their ground

oMixture of Experts (MoE)

• Coordination of different Collaboration Channel Types (see LEGO)
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Methodology: Collaboration Types
Example

14
ZhitaoHeetal.2023.LEGO:AMulti-agentCollaborativeFrameworkwithRole-playingandIterativeFeedbackfor Causality Explanation Generation. In Findings of the Association for Computational 
Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore, 9142–9163.



Methodology: Collaboration Strategies
• Rule Based Protocols

o Constraints on inputs based on strict rules that agents follow

o Examples
▪ Majority Voting Rule

▪ Event Triggered Dynamics with rules reducing communication

o Efficient and Predictable, easy to debug
▪ Good for consensus seeking or navigation tasks

o Lacks Adaptability, hard to maintain if outside of rules (thus, more rules being made)

• Role Based Protocols
o Agents' role define the division of work (AgentVerse)

▪ Can cause automation of work and parallelization

o Creates modularity, good for simulating real life jobs

o Can show rigidity with ill-defined roles, as well as disputes between agents 
▪ (leading to ineffective system performance)
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Methodology: Collaboration Strategies
• Model Based Protocols

o Based on the probabilistic nature of outcomes in the environment

o Theory of Mind framework infers other agents' ideas, enhancing collaborative adjustments in 
agent channels. Can be used to infer what humans are thinking, adjusting based on behaviors

◦ High robustness and flexibility, good for constantly changing environments (games, robotics)

o Require high complex models of environment and agent interactions

o Computationally costly
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Methodology: Communication 
Structures
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• Centralized: collaboration decision is concentrated in central agent
o Type 1: Distributed LLMs w/ Central Aggregator
o Type 2: Centralized LLM w/ Distributed Agents



Methodology: Communication 
Structures

20

• Decentralized – 
collaboration decision is 
distributed among 
multiple agents

• Advantages
o High scalability
o Robust

• Disadvantages
o Inefficient resource 

allocation
o High communication 

overheads



Methodology: Communication 
Structures
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• Hierarchical – agents 
arranged in layered system 
w/ distinct roles and levels of 
authority

• Advantages
o Low bottleneck
o Efficient resource allocation

• Disadvantages
o High complexity
o Latency



Methodology: Coordination & 
Orchestration

Static Architecture

• Rely on domain knowledge and 
predefined rules to establish 
collaboration channels

• Advantages
o Based on domain knowledge

o Ensures consistent task execution

• Disadvantages
o Relies on accurate initial design and 

domain knowledge
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VS

Dynamic Architecture

• Adapts channels/roles based on task context

• Advantages
o Adaptable roles and channels based on task needs

o Handles complex and evolving tasks dynamically
▪ Ex. DAG based orchestration

• Disadvantages
o Higher resource usage due to real time adjustments

o Potential failure in dynamic adjustments



Applications: 56/6G & Industry 5.0 (IOT)
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Two-phase multi-agent semantic communication framework over wireless 5G/6G networks



Applications: QA
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OpenAI’s Swarm use case of customer service



Applications: Social and Cultural Domains
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MAS to simulate communities for diverse social and cultural applications



Challenges
• Governance and Coordination

o How to assign roles, plan tasks, and handle failures across agents

• Decision Making
o Moving beyond simple voting toward fair, coherent decisions

• Hallucination
◦ Inaccuracies from one agent can quickly propagate and compound

• Scalability and Resource Maintenance
o Handling more agents without slowing down or bottlenecking

• Unexpected Generation
o Emergent behaviors are powerful, but hard to predict or control
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GUI Agents: A Survey
Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu, Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie 

Chen, Viet Dac Lai, Zhouhang Xie, Sungchul Kim, Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur, Seunghyun Yoon, Lina Yao, 
Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou, Ryan A. Rossi, Franck Dernoncourt

•Graphical User Interface (GUI) agents: powered by LLMs
o Automating human-computer interaction

o Autonomously interacting with digital systems and software

o Emulating human actions

•Comprehensive survey
o Perception, reasoning, planning, and acting capabilities

o Challenges and future directions

o Intuitive understanding of current progress
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Definition
• GUI Agent – An intelligent autonomous agent that 
interacts with digital platforms.

• Environment modeled as Partially Observable Markov 
Decision Process: (U,A,S,O,T)

o U is task space – A is action space – O is 
observation space – S is space state – T is state 
transition function

• Given task u, agent proceeds through series of 
mapped actions

• May receive reward, at each time step t, agent 
predicts next action a, environment transitions to s'

29https://cobusgreyling.medium.com/ai-agents-computer-interface-aci-995a2dc8de03



Benchmarks

30

ENVIRONMENT – INTERACTIVE 
SIMULATION THAT REPRESENTS A 

REAL-WORLD SCENARIO, ENTIRE GUI

DATASETS – STATIC COLLECTION OF 
DATA POINTS, WITH SEVERAL INPUT 

FEATURES

CLOSED – ASSUME ALL KNOWLEDGE 
NECESSARY TO SOLVE TASK IS 

WITHIN BENCHMARK

OPEN – RELEVANT INFORMATION 
REQUIRED TO COMPLETE TASK CAN 

BE OUTSIDE BENCHMARK



Benchmarks
• Datasets
o Closed: Web-based tasks, multi-turn interactions, common micro tasks, GUI distractions

o Open: Less prevalent, agent integration to diverse modalities, web-navigation

• Environments
o Closed: Synthetic web task with keyboard + mouse interaction, multi-step workflows

o Open: Evolving content and interfaces, visual + text instructions, robust decision-making

• Evaluations
o Task completion rate, complete required subtasks, intent/button/field matching, efficiency and safety
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32https://github.com/xnancy/russ/blob/master/data/eval-original.json, https://arxiv.org/abs/2401.13919

Environment                       Dataset

https://github.com/xnancy/russ/blob/master/data/eval-original.json


GUI Agent 
Architectures
•  Perception – enable agent to interpret 

observations

o Accessibility: semantic hierarchy of UI 
components, dependent on developer

o HTML/DOM: hierarchy of element 
representations, noisy structure

o Screen-visual: parse screen-visual elements, 
privacy + computation concerns

o Hybrid: Combine above approaches, 
enhances performance + error recovery

•  Reasoning – improve cognitive processes of the 
agent

o Refining the observation and action space, 
utilize LLMs for reasoning, acting, and 
planning

33https://arxiv.org/abs/2408.00203

Figure 1: Examples of parsed screenshot image and local semantics by OMNIPARSER. The inputs to OmniParse 
are user task and UI screenshot, from which it will produce: 1) parsed screenshot image with bounding boxes 
and numeric IDs overlayed, and 2) local semantics contains both text extracted and icon description.



GUI Agent Architectures
• Planning – decomposing a task and 
generating a plan
o Internal: leverage inherent knowledge to 

reason, depends on the LM

o External: LLM-enabled agents to interact 
with outside resources, cost-heavy

• Acting – interactions with the 
environment
o Screen to metadata parsing, unify data 

source and action schema

34https://arxiv.org/abs/2310.03965



• Prompt-based – detailed 
instructions, NOT parameter 
training
o Dynamic action and 

accumulation

o Self-reflection mechanisms

o Intent discovery

35https://arxiv.org/abs/2411.01747

GUI Agent 
Training Methods



GUI Agent 
Training Methods

• Training-based – optimize 
agent's parameters

• Pre-training
o Vision-LLM on large-scale 

datasets, adapt new designs

• Fine-tuning
o Reduce hallucinations, 

domain specific reasoning 
and functionality, context-
sensitive actions

• Reinforcement learning
o Constrain search space with 

workflow, generate tasks 
from unsuccessful attempts

36https://arxiv.org/abs/1802.08802



Challenges
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User Intent Understanding

Struggle to accurately infer user goals

-------------------------------------------------

Agent to adapt to new environment 
with minimal retraining

Security and Privacy

Risks of agent sharing sensitive data

-------------------------------------------------

Privacy-preserving protocols to 
ensure safety

Inference Latency

Interaction with diverse applications

-------------------------------------------------

Reduce computational overhead and 
resource use
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OmniParser for Pure 
Vision Based GUI 

Agent

1. Introduction

2. Background

3. OmniParser Methodology

4. Benchmarks

5. Ongoing Challenges
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Introduction
• UI Screenshot -> Action

• GPT-4V understanding UI screens/elements

• Set-of-Marks (SoM) Prompting
o Overlay ID labeled bounding boxes for UI elements on input 

screenshot

o Relies on HTML info, can only use for web browser tasks

• Previous UI parsers not as good at understanding as GPT-4V

• Goal: generalizable parsing + GPT-4V understanding
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Background: UI Screen Understanding
•Extract semantics from screen

•Identify ground truth location

•UI-BERT, Screen2Words, ActionBERT
o Rely on view hierarchy

•Curate general web UI understanding dataset
o Icon detection

o Bounding boxes from DOM tree
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Background: Autonomous GUI Agent
•Agent perform tasks on GUI instead of human

•Predict next action on page
o Pixel2Act, CogAgent, Fuyu

•Use existing LLMs (GPT-4V) to do user tasks
o SeeAct, MindAct

•Use DOM info + SoM bounding boxes to get location

•Problem: DOM/hierarchy info not always available

43



OmniParser: Overview

Understand current UI screen

Predict next action

44

•Produce DOM-like representation of UI overlayed with bounding boxes + semantic 
information of icon functions

•Improve GPT-4V/Model GUI task completion



OmniParser: Components

Interactable 
Region 

Detection

Icon Detection 
Model

OCR Module

Local Semantics 
of Functionality

Icon Description 
Model
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OmniParser: Interactable Region 
Detection
•Uses icon detection model to locate and extract 
elements
o No need for DOM/hierarchy, pure image

•SoM to overlay bounding boxes

•GPT-4V labels boxes with ID

•OCR detects text, remove bounding boxes

46



47



OmniParser: Local Semantics of 
Functionality
•Only UI screenshot w/ bounding boxes confusing for 
GPT-4V

•Solution? Incorporate functionality information

•Fine-tuned icon description model
o Description for each ID labeled bounding box

o Fine-tuned BLIP V2

48
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Benchmarks: SeeAssign
•Evaluate GPT-4V on label ID prediction given bounding 
box description with vs without local semantics

•112 tasks across mobile, desktop and browser

•Ex: "Click on settings", expects bounding box ID 
corresponding to correct answer

•GPT-4V improves with OmniParser local semantics
o Provides better descriptions

50
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Benchmarks: ScreenSpot
•UI screenshots from mobile, 
desktop, and browser

•Identify actionable element 
corresponding to instruction

•OmniParser outperforms base 
GPT-4V
oMore so with local semantics (LS) 

and icon detection (ID)

•GPT-4V good for UI 
understanding
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Benchmarks: Mind2Web
•Test web navigation scenarios
o Cross-domain, cross-website, cross-task

•Give parsed UI screenshot and action text

•Evaluate metrics throughout steps of task 
execution

•GPT-4V +SoM/textual choices

•OmniParser outperforms/performs 
similary to other models
o Similar or better performance without 

DOM/text info, purely visual

53



Benchmarks: AITW
•Mobile navigation tasks

• OmniParser ID model vs GPT-4V +IconNet

•Using ID instead of IconNet + LS outperforms on most 
tasks
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Ongoing Challenges
•Repeated Icons/Text
o Fails on tasks requiring interacting with 

repeated icons

oMake model aware of repetition

•Coarse Prediction of Bounding Boxes
o Clicks center of bounding box, so 

sometimes misses ground truth 
location

o Combine OCR into ID to detect clickable 
text

•Icon Misinterpretation
o Occasionally fails to consider larger 

context
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Agent as a Judge
Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong, Zechun Liu, 

Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi, Vikas Chandra, Jürgen Schmidhuber

•Agentic Systems
oMore complex agentic AI require a higher level of evaluation methods.

▪ It's currently we use human evaluators to evaluate these systems, since their responses are based on how well they can problem 
solve

o The solution proposed by this paper was to use Agentic AI as an evaluator instead of humans for this 
process

o Paper also reported on a detailed test comparing both methods
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Background

59

- Agentic AI
o Refers to systems that act step-by-step to solve tasks
o Defined by their ability to plan and make decisions and 

adapt
- LLM-as-Judge

o This is an existing paper which is used as reference for the 
process of using Agent-as-Judge

o Uses LLMs to judge whether the response of LLMS in 
training is acceptable

- Goals of Agent-as-Judge
o Reduce times of training by using Agents similar to LLM-as-

Judge
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We built DevAI Benchmark: 
automated AI development as our main topic.

61

What is the DevAI Dataset?
oDevAI is a list of 55 tasks defined by 
plain text querty aimed to test an 
agentic system's capabilities. 

o365 total requirements

o125 total preferences

oThese are relatively small scale tasks 

oEach task represents a milestone in the 
progress for the system. 

oThis Dataset is more holistic in that it 
focuses on what an agent is most likely 
to encounter 

o(on the right a distribution of what 
tasks are in DevAI)



Example Task
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Agent as 
Judge
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Experiment Setup

Each of these were selected for having a strong 
community acceptance. 

They were given 1800 seconds to solve each task 
and forecfully halted if they exceeded the time 
limit.

The outputs were captured and generated during 
the automated development process
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The testing process
-The team decided to pit the Agent they had against Human Evaluators

-Decided that they would need their own set of benchmarks

-Tested it against Human Evaluators

-Tested it against Agent and LLM as judge

-Compared 
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Preliminary Statistics 
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Human Evaluation

68

- Three Evaluators: 231a, 38bb, cn90
- Two rounds of evaluations

o Round one: minimal instructions, just requirements along with results. 
o Round two: All Evaluators had to reach a consensus

- The rounds took 58 and 28.5 hours respectively. 



Disagreement Analysis

69

Multiple evaluators are needed to minimize errors, this can lead to disagreements due to each evaluator's 
personal biases following is a chart showing how much each pair and all three of the evaluators disagreed on 
the agent's 



Error AnalysisError rate for each individual evaluators 
and consensus evaluators show why 
the second round of testing is 
important. 

Getting potentially 20% error rate down 
to a consistent 5% for testing all 
models.

This isn't feasible in large scales 
unfortunately. 
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AI Judges with 
Shift & 
Alignment

Brief legend

I = independent tasks

D = tasks with dependencies

Red scores are judge shift in 
comparison to Human-as-a-Judge

Empty box = Used Trajectory Data

Black box = Did not use Trajectory Data
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Cost Analysis and Conclusion

72

- Minimum 15 USD over 86.5 hours for three evaluators means that the human evalutators would cost 
around 1297.50 USD. 

- Agent-as-a-Judge costed 30.58 USD in API calls and took 118.43 minutes
- 2.29% of the cost and 2.36% of the time

Through testing, we can get close to consensus results using Agentic AI systems, and it's noted that these 
results are with an unoptimized Agent-as-a-Judge and further improvements can be made, this paper just 
focused on proof of concept.
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