
Agent – Multiagent Collaboration
TEAM 5:

DANIEL SLYEPICHEV, ANANYA ANANDA, AADITYA GHOSALKAR ,
AKIRA DURHAM, SAHLAR SALEHI

1

Daniel Slyepichev
dos8nw

2

Multi-Agent
Collaboration

Mechanisms: A
Survey of LLMs

1. Introduction

2. Background

3. Multi-Agent Collaboration Concept

4. Methodology (4.1-4.3) (4.4-4.6)

5. Application

6. Open Problems & Discussion

3

Introduction
• LLMs have transformed AI

o Have lots of benefits, but still suffer from problems

• Multi Agentic Systems
o Simulate human society by having agents specialize and collaborate!

o Allows diverse information without overload on LLM

o Pooling experts means better generalization

• How do we apply and take advantage of this collaboration?
o Survey aims to understand the mechanisms, the framework, the applications

and the limitations

4

Background: Multi Agent Systems (MAS)
• Key Components:

o Agents

o Environment

o Interaction

o Organization

• Salient features:
o Flexible

▪ Modify agent amount

o Robust
▪ Decentralization -> Fail tolerance up

o Self-Organized
▪ If failure, can reorganize to fix problem

o Real-Time Operations
▪ Responses possible without human oversight

5

Background: LLMs & Collaborative AI
• LLMS

o Trained on vast corpus of knowledge with billions of parameters

o Emergent and generalizable

o Problems with having up-to-date information, adversarial actors, and hallucination

o Are the common "brain" for single agent tasks, but are overwhelmed by multi-agent
settings due to coordination problems and cascading hallucinations

• Collaborative AI
o Comes from the realization that AI systems need collaboration (human or other AI)

to enhance effectiveness and efficiently

o Collaboration can look like negotiation or even competition

o MASs are interested in how agents can work together in emergent settings, with
LLMs as the brain of each of the agents

6

Multi Agent Collaboration Concept
• An agent can be represented by the model 𝑎 = {𝑚,𝑜,𝑒,𝑥,𝑦}

o Model (𝑚)
▪ The architecture of the model itself, the memory, and adaptors

◦ speculative decoding and parameter-efficient adapter

▪ Typically, an LLM and the system prompts memory "r"

o Objective (𝑜)

o Environment (𝑒)
▪ Context of the state that the agent operates

o Input (𝑥)

o Output (𝑦)
▪ 𝑦 =𝑚(𝑜,𝑒,𝑥) , uses its model to act on Input (x). Some sort of action

• Agents are trained in diverse data, but each have specialized external tools
o Python Interpreter, Calculator, etc.

7

Multi Agent Collaboration Concept
• A MAS can be modeled after a system S:

o The number of Agents (A)

o The set of goals partitioned for each agent (O_collab)

o Environment (E)
▪ Vector based databases or common messaging interfaces

o Collaboration channels (C)
▪ Facilitate interactions between agents

▪ Distinguished by agents, structure, and strategy

• Cooperation vs. Competition

▪ Similar Interface

o System Input (x_collab)

o System Output (y_collab)

8

Multi Agent Collaboration Concept

9

Multi Agent Collaboration Concept:
Example

10Yubo Dong et al. 2024. VillagerAgent: A Graph-Based Multi-Agent Framework for Coordinating Complex Task Dependencies in Minecraft. In Findings of the Association for Computational Linguistics: ACL 2024,
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics, Bangkok, Thailand, 16290 –16314.

Methodology: Collaboration Types
• Cooperation

o Happens when individual objectives have a shared goal and work together

o Focus on specific subtasks, reducing completion times

• Cooperation Structures
o Feedback Loops

▪ Actor does work, then an Evaluator and Self-Reflection model rates the output and results, producing verbal guidance for the Actor to improve

o Theory of the Mind
▪ Shared belief state representation within the environment, helping them track each other’s goals and actions.

▪ Leads to emergent behaviors

o Agent Verse (distinct roles for each agent)

o MetaGPT
▪ Assembly line model, assigning roles and encoding Standardized Operating Procedures (SOPs)

• Good for question answering, recommendation systems, and collaborative programming

• Open-Source Frameworks: CAMEL & AutoGen

• Issues include: frequent messaging leading to increased cost, hallucination stacking, goal misalignment

11

Methodology: Collaboration Types
• Competition

o Occurs with conflicting goals or scenarios of limited resources, causing rivalry
▪ Can still lead objective in a form of a debate

o Enable deeper reasoning and more creative solution

• Competition Examples
o Gaming environments like TicTacToe (LLMARENA)

o Competing restaurant managers

o Critic based systems (LEGO)

• Competition Challenges
o Ensuring constructive criticism, alignment overtaken

oWays to resolve conflicts

o Single agents overtaking the conversation

12

Methodology: Collaboration Types
• Coopetition

o A blend of competition and cooperation, relatively new

o Negotiations, trying to reach a compromise rather than stand their ground

oMixture of Experts (MoE)

• Coordination of different Collaboration Channel Types (see LEGO)

13

Methodology: Collaboration Types
Example

14
ZhitaoHeetal.2023.LEGO:AMulti-agentCollaborativeFrameworkwithRole-playingandIterativeFeedbackfor Causality Explanation Generation. In Findings of the Association for Computational
Linguistics: EMNLP 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore, 9142–9163.

Methodology: Collaboration Strategies
• Rule Based Protocols

o Constraints on inputs based on strict rules that agents follow

o Examples
▪ Majority Voting Rule

▪ Event Triggered Dynamics with rules reducing communication

o Efficient and Predictable, easy to debug
▪ Good for consensus seeking or navigation tasks

o Lacks Adaptability, hard to maintain if outside of rules (thus, more rules being made)

• Role Based Protocols
o Agents' role define the division of work (AgentVerse)

▪ Can cause automation of work and parallelization

o Creates modularity, good for simulating real life jobs

o Can show rigidity with ill-defined roles, as well as disputes between agents
▪ (leading to ineffective system performance)

15

Methodology: Collaboration Strategies
• Model Based Protocols

o Based on the probabilistic nature of outcomes in the environment

o Theory of Mind framework infers other agents' ideas, enhancing collaborative adjustments in
agent channels. Can be used to infer what humans are thinking, adjusting based on behaviors

◦ High robustness and flexibility, good for constantly changing environments (games, robotics)

o Require high complex models of environment and agent interactions

o Computationally costly

16

Ananya Ananda
jaf5rp

17

Multi-Agent
Collaboration

Mechanisms: A
Survey of LLMs

1. Introduction

2. Background

3. Multi-Agent Collaboration Concept

4. Methodology (4.1-4.3) (4.4-4.6)

5. Application

6. Open Problems & Discussion

18

Methodology: Communication
Structures

19

• Centralized: collaboration decision is concentrated in central agent
o Type 1: Distributed LLMs w/ Central Aggregator
o Type 2: Centralized LLM w/ Distributed Agents

Methodology: Communication
Structures

20

• Decentralized –
collaboration decision is
distributed among
multiple agents

• Advantages
o High scalability
o Robust

• Disadvantages
o Inefficient resource

allocation
o High communication

overheads

Methodology: Communication
Structures

21

• Hierarchical – agents
arranged in layered system
w/ distinct roles and levels of
authority

• Advantages
o Low bottleneck
o Efficient resource allocation

• Disadvantages
o High complexity
o Latency

Methodology: Coordination &
Orchestration

Static Architecture

• Rely on domain knowledge and
predefined rules to establish
collaboration channels

• Advantages
o Based on domain knowledge

o Ensures consistent task execution

• Disadvantages
o Relies on accurate initial design and

domain knowledge

22

VS

Dynamic Architecture

• Adapts channels/roles based on task context

• Advantages
o Adaptable roles and channels based on task needs

o Handles complex and evolving tasks dynamically
▪ Ex. DAG based orchestration

• Disadvantages
o Higher resource usage due to real time adjustments

o Potential failure in dynamic adjustments

Applications: 56/6G & Industry 5.0 (IOT)

23

Two-phase multi-agent semantic communication framework over wireless 5G/6G networks

Applications: QA

24

OpenAI’s Swarm use case of customer service

Applications: Social and Cultural Domains

25

MAS to simulate communities for diverse social and cultural applications

Challenges
• Governance and Coordination

o How to assign roles, plan tasks, and handle failures across agents

• Decision Making
o Moving beyond simple voting toward fair, coherent decisions

• Hallucination
◦ Inaccuracies from one agent can quickly propagate and compound

• Scalability and Resource Maintenance
o Handling more agents without slowing down or bottlenecking

• Unexpected Generation
o Emergent behaviors are powerful, but hard to predict or control

26

Akira Durham
zup9su

27

GUI Agents: A Survey
Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu, Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie

Chen, Viet Dac Lai, Zhouhang Xie, Sungchul Kim, Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur, Seunghyun Yoon, Lina Yao,
Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou, Ryan A. Rossi, Franck Dernoncourt

•Graphical User Interface (GUI) agents: powered by LLMs
o Automating human-computer interaction

o Autonomously interacting with digital systems and software

o Emulating human actions

•Comprehensive survey
o Perception, reasoning, planning, and acting capabilities

o Challenges and future directions

o Intuitive understanding of current progress

28

Definition
• GUI Agent – An intelligent autonomous agent that
interacts with digital platforms.

• Environment modeled as Partially Observable Markov
Decision Process: (U,A,S,O,T)

o U is task space – A is action space – O is
observation space – S is space state – T is state
transition function

• Given task u, agent proceeds through series of
mapped actions

• May receive reward, at each time step t, agent
predicts next action a, environment transitions to s'

29https://cobusgreyling.medium.com/ai-agents-computer-interface-aci-995a2dc8de03

Benchmarks

30

ENVIRONMENT – INTERACTIVE
SIMULATION THAT REPRESENTS A

REAL-WORLD SCENARIO, ENTIRE GUI

DATASETS – STATIC COLLECTION OF
DATA POINTS, WITH SEVERAL INPUT

FEATURES

CLOSED – ASSUME ALL KNOWLEDGE
NECESSARY TO SOLVE TASK IS

WITHIN BENCHMARK

OPEN – RELEVANT INFORMATION
REQUIRED TO COMPLETE TASK CAN

BE OUTSIDE BENCHMARK

Benchmarks
• Datasets
o Closed: Web-based tasks, multi-turn interactions, common micro tasks, GUI distractions

o Open: Less prevalent, agent integration to diverse modalities, web-navigation

• Environments
o Closed: Synthetic web task with keyboard + mouse interaction, multi-step workflows

o Open: Evolving content and interfaces, visual + text instructions, robust decision-making

• Evaluations
o Task completion rate, complete required subtasks, intent/button/field matching, efficiency and safety

31

32https://github.com/xnancy/russ/blob/master/data/eval-original.json, https://arxiv.org/abs/2401.13919

Environment Dataset

https://github.com/xnancy/russ/blob/master/data/eval-original.json

GUI Agent
Architectures
• Perception – enable agent to interpret

observations

o Accessibility: semantic hierarchy of UI
components, dependent on developer

o HTML/DOM: hierarchy of element
representations, noisy structure

o Screen-visual: parse screen-visual elements,
privacy + computation concerns

o Hybrid: Combine above approaches,
enhances performance + error recovery

• Reasoning – improve cognitive processes of the
agent

o Refining the observation and action space,
utilize LLMs for reasoning, acting, and
planning

33https://arxiv.org/abs/2408.00203

Figure 1: Examples of parsed screenshot image and local semantics by OMNIPARSER. The inputs to OmniParse
are user task and UI screenshot, from which it will produce: 1) parsed screenshot image with bounding boxes
and numeric IDs overlayed, and 2) local semantics contains both text extracted and icon description.

GUI Agent Architectures
• Planning – decomposing a task and
generating a plan
o Internal: leverage inherent knowledge to

reason, depends on the LM

o External: LLM-enabled agents to interact
with outside resources, cost-heavy

• Acting – interactions with the
environment
o Screen to metadata parsing, unify data

source and action schema

34https://arxiv.org/abs/2310.03965

• Prompt-based – detailed
instructions, NOT parameter
training
o Dynamic action and

accumulation

o Self-reflection mechanisms

o Intent discovery

35https://arxiv.org/abs/2411.01747

GUI Agent
Training Methods

GUI Agent
Training Methods

• Training-based – optimize
agent's parameters

• Pre-training
o Vision-LLM on large-scale

datasets, adapt new designs

• Fine-tuning
o Reduce hallucinations,

domain specific reasoning
and functionality, context-
sensitive actions

• Reinforcement learning
o Constrain search space with

workflow, generate tasks
from unsuccessful attempts

36https://arxiv.org/abs/1802.08802

Challenges

37

User Intent Understanding

Struggle to accurately infer user goals

Agent to adapt to new environment
with minimal retraining

Security and Privacy

Risks of agent sharing sensitive data

Privacy-preserving protocols to
ensure safety

Inference Latency

Interaction with diverse applications

Reduce computational overhead and
resource use

Sahlar Salehi
rmh7ce

38

OmniParser for Pure
Vision Based GUI

Agent

1. Introduction

2. Background

3. OmniParser Methodology

4. Benchmarks

5. Ongoing Challenges

39

Introduction
• UI Screenshot -> Action

• GPT-4V understanding UI screens/elements

• Set-of-Marks (SoM) Prompting
o Overlay ID labeled bounding boxes for UI elements on input

screenshot

o Relies on HTML info, can only use for web browser tasks

• Previous UI parsers not as good at understanding as GPT-4V

• Goal: generalizable parsing + GPT-4V understanding

40

41

Background: UI Screen Understanding
•Extract semantics from screen

•Identify ground truth location

•UI-BERT, Screen2Words, ActionBERT
o Rely on view hierarchy

•Curate general web UI understanding dataset
o Icon detection

o Bounding boxes from DOM tree

42

Background: Autonomous GUI Agent
•Agent perform tasks on GUI instead of human

•Predict next action on page
o Pixel2Act, CogAgent, Fuyu

•Use existing LLMs (GPT-4V) to do user tasks
o SeeAct, MindAct

•Use DOM info + SoM bounding boxes to get location

•Problem: DOM/hierarchy info not always available

43

OmniParser: Overview

Understand current UI screen

Predict next action

44

•Produce DOM-like representation of UI overlayed with bounding boxes + semantic
information of icon functions

•Improve GPT-4V/Model GUI task completion

OmniParser: Components

Interactable
Region

Detection

Icon Detection
Model

OCR Module

Local Semantics
of Functionality

Icon Description
Model

45

OmniParser: Interactable Region
Detection
•Uses icon detection model to locate and extract
elements
o No need for DOM/hierarchy, pure image

•SoM to overlay bounding boxes

•GPT-4V labels boxes with ID

•OCR detects text, remove bounding boxes

46

47

OmniParser: Local Semantics of
Functionality
•Only UI screenshot w/ bounding boxes confusing for
GPT-4V

•Solution? Incorporate functionality information

•Fine-tuned icon description model
o Description for each ID labeled bounding box

o Fine-tuned BLIP V2

48

49

Benchmarks: SeeAssign
•Evaluate GPT-4V on label ID prediction given bounding
box description with vs without local semantics

•112 tasks across mobile, desktop and browser

•Ex: "Click on settings", expects bounding box ID
corresponding to correct answer

•GPT-4V improves with OmniParser local semantics
o Provides better descriptions

50

51

Benchmarks: ScreenSpot
•UI screenshots from mobile,
desktop, and browser

•Identify actionable element
corresponding to instruction

•OmniParser outperforms base
GPT-4V
oMore so with local semantics (LS)

and icon detection (ID)

•GPT-4V good for UI
understanding

52

Benchmarks: Mind2Web
•Test web navigation scenarios
o Cross-domain, cross-website, cross-task

•Give parsed UI screenshot and action text

•Evaluate metrics throughout steps of task
execution

•GPT-4V +SoM/textual choices

•OmniParser outperforms/performs
similary to other models
o Similar or better performance without

DOM/text info, purely visual

53

Benchmarks: AITW
•Mobile navigation tasks

• OmniParser ID model vs GPT-4V +IconNet

•Using ID instead of IconNet + LS outperforms on most
tasks

54

Ongoing Challenges
•Repeated Icons/Text
o Fails on tasks requiring interacting with

repeated icons

oMake model aware of repetition

•Coarse Prediction of Bounding Boxes
o Clicks center of bounding box, so

sometimes misses ground truth
location

o Combine OCR into ID to detect clickable
text

•Icon Misinterpretation
o Occasionally fails to consider larger

context

55

Aaditya Ghosalkar
ag5jk

56

Agent as a Judge

1. Introduction

2. Background

3. DevAI Benchmark

4. Human Testing

5. Agent as a Judge

57

Agent as a Judge
Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong, Zechun Liu,

Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi, Vikas Chandra, Jürgen Schmidhuber

•Agentic Systems
oMore complex agentic AI require a higher level of evaluation methods.

▪ It's currently we use human evaluators to evaluate these systems, since their responses are based on how well they can problem
solve

o The solution proposed by this paper was to use Agentic AI as an evaluator instead of humans for this
process

o Paper also reported on a detailed test comparing both methods

58

Background

59

- Agentic AI
o Refers to systems that act step-by-step to solve tasks
o Defined by their ability to plan and make decisions and

adapt
- LLM-as-Judge

o This is an existing paper which is used as reference for the
process of using Agent-as-Judge

o Uses LLMs to judge whether the response of LLMS in
training is acceptable

- Goals of Agent-as-Judge
o Reduce times of training by using Agents similar to LLM-as-

Judge

60

We built DevAI Benchmark:
automated AI development as our main topic.

61

What is the DevAI Dataset?
oDevAI is a list of 55 tasks defined by
plain text querty aimed to test an
agentic system's capabilities.

o365 total requirements

o125 total preferences

oThese are relatively small scale tasks

oEach task represents a milestone in the
progress for the system.

oThis Dataset is more holistic in that it
focuses on what an agent is most likely
to encounter

o(on the right a distribution of what
tasks are in DevAI)

Example Task

62

Agent as
Judge

63

64

Experiment Setup

Each of these were selected for having a strong
community acceptance.

They were given 1800 seconds to solve each task
and forecfully halted if they exceeded the time
limit.

The outputs were captured and generated during
the automated development process

65

The testing process
-The team decided to pit the Agent they had against Human Evaluators

-Decided that they would need their own set of benchmarks

-Tested it against Human Evaluators

-Tested it against Agent and LLM as judge

-Compared

66

Preliminary Statistics

67

Human Evaluation

68

- Three Evaluators: 231a, 38bb, cn90
- Two rounds of evaluations

o Round one: minimal instructions, just requirements along with results.
o Round two: All Evaluators had to reach a consensus

- The rounds took 58 and 28.5 hours respectively.

Disagreement Analysis

69

Multiple evaluators are needed to minimize errors, this can lead to disagreements due to each evaluator's
personal biases following is a chart showing how much each pair and all three of the evaluators disagreed on
the agent's

Error AnalysisError rate for each individual evaluators
and consensus evaluators show why
the second round of testing is
important.

Getting potentially 20% error rate down
to a consistent 5% for testing all
models.

This isn't feasible in large scales
unfortunately.

70

AI Judges with
Shift &
Alignment

Brief legend

I = independent tasks

D = tasks with dependencies

Red scores are judge shift in
comparison to Human-as-a-Judge

Empty box = Used Trajectory Data

Black box = Did not use Trajectory Data

71

Cost Analysis and Conclusion

72

- Minimum 15 USD over 86.5 hours for three evaluators means that the human evalutators would cost
around 1297.50 USD.

- Agent-as-a-Judge costed 30.58 USD in API calls and took 118.43 minutes
- 2.29% of the cost and 2.36% of the time

Through testing, we can get close to consensus results using Agentic AI systems, and it's noted that these
results are with an unoptimized Agent-as-a-Judge and further improvements can be made, this paper just
focused on proof of concept.

	Slide 1: Agent – Multiagent Collaboration
	Slide 2: Daniel Slyepichev dos8nw
	Slide 3: Multi-Agent Collaboration Mechanisms: A Survey of LLMs
	Slide 4: Introduction
	Slide 5: Background: Multi Agent Systems (MAS)
	Slide 6: Background: LLMs & Collaborative AI
	Slide 7: Multi Agent Collaboration Concept
	Slide 8: Multi Agent Collaboration Concept
	Slide 9: Multi Agent Collaboration Concept
	Slide 10: Multi Agent Collaboration Concept: Example
	Slide 11: Methodology: Collaboration Types
	Slide 12: Methodology: Collaboration Types
	Slide 13: Methodology: Collaboration Types
	Slide 14: Methodology: Collaboration Types Example
	Slide 15: Methodology: Collaboration Strategies
	Slide 16: Methodology: Collaboration Strategies
	Slide 17: Ananya Ananda jaf5rp
	Slide 18: Multi-Agent Collaboration Mechanisms: A Survey of LLMs
	Slide 19: Methodology: Communication Structures
	Slide 20: Methodology: Communication Structures
	Slide 21: Methodology: Communication Structures
	Slide 22: Methodology: Coordination & Orchestration
	Slide 23: Applications: 56/6G & Industry 5.0 (IOT)
	Slide 24: Applications: QA
	Slide 25: Applications: Social and Cultural Domains
	Slide 26: Challenges
	Slide 27: Akira Durham zup9su
	Slide 28: GUI Agents: A Survey
	Slide 29: Definition
	Slide 30: Benchmarks
	Slide 31: Benchmarks
	Slide 32
	Slide 33: GUI Agent Architectures
	Slide 34: GUI Agent Architectures
	Slide 35
	Slide 36: GUI Agent Training Methods
	Slide 37: Challenges
	Slide 38: Sahlar Salehi rmh7ce
	Slide 39: OmniParser for Pure Vision Based GUI Agent
	Slide 40: Introduction
	Slide 41
	Slide 42: Background: UI Screen Understanding
	Slide 43: Background: Autonomous GUI Agent
	Slide 44: OmniParser: Overview
	Slide 45: OmniParser: Components
	Slide 46: OmniParser: Interactable Region Detection
	Slide 47
	Slide 48: OmniParser: Local Semantics of Functionality
	Slide 49
	Slide 50: Benchmarks: SeeAssign
	Slide 51
	Slide 52: Benchmarks: ScreenSpot
	Slide 53: Benchmarks: Mind2Web
	Slide 54: Benchmarks: AITW
	Slide 55: Ongoing Challenges
	Slide 56: Aaditya Ghosalkar ag5jk
	Slide 57: Agent as a Judge
	Slide 58: Agent as a Judge
	Slide 59: Background
	Slide 60
	Slide 61: We built DevAI Benchmark: automated AI development as our main topic.
	Slide 62: Example Task
	Slide 63: Agent as Judge
	Slide 64
	Slide 65: Experiment Setup
	Slide 66: The testing process
	Slide 67: Preliminary Statistics
	Slide 68: Human Evaluation
	Slide 69: Disagreement Analysis
	Slide 70: Error Analysis
	Slide 71: AI Judges with Shift & Alignment
	Slide 72: Cost Analysis and Conclusion

