
LLM

ALIGNMENT

Team 6
Fengyu Gao, Shunqiang Feng, Wei Shen, Zihan Zhao



A Comprehensive Survey of 
LLM Alignment Techniques: 
RLHF, RLAIF, PPO, DPO and 
More
Additional references: 

[1] https://anukriti-ranjan.medium.com/preference-tuning-llms-
ppo-dpo-grpo-a-simple-guide-135765c87090

[2] https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-

lecture10-prompting-rlhf.pdf

https://anukriti-ranjan.medium.com/preference-tuning-llms-ppo-dpo-grpo-a-simple-guide-135765c87090
https://anukriti-ranjan.medium.com/preference-tuning-llms-ppo-dpo-grpo-a-simple-guide-135765c87090
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture10-prompting-rlhf.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture10-prompting-rlhf.pdf


Fengyu Gao (wan6jj)

3



Aligning Language Models

LMs like GPT-3 are misaligned: they maximize the likelihood of large untrusted datasets.

This leads to:

• Not following the user's instruction

• Making up facts

• Generating harmful/toxic content

• …...

4

Language models are not aligned with user intent.



Aligning LMs with Human Feedback

Suppose we are training a LM for a summarization task.

For a given instruction 𝑥 and a generated summary 𝑦, we assume we can obtain a human reward of that summary: 𝑅(𝑥, 
𝑦) — where higher values indicate better quality.

We want to maximize the expected reward based on this feedback.

5



A (very!) brief introduction to RL

Reinforcement Learning = Learning by Doing and Getting Feedback

• An agent (LLM) interacts with an environment and learns by trial and error.

• Large Rewards (  Correct answer!) encourage desirable outputs.

• Small Rewards (  Incorrect response!) discourage undesirable outputs..

• RL algorithms (e.g., PPO, DPO, GRPO) train LLMs to maximize this reward.

6



How do we get the rewards?

Q1: Human-in-the-loop is expensive!

Solution: Instead of asking humans directly, we train a separate reward model to learn human preferences.

Q2: Human judgments are noisy and miscalibrated!

Solution: Use pairwise comparisons instead of direct ratings.

 

 

7

𝑦𝑤 should score higher than 𝑦𝑙𝑦𝑤: winning sample 𝑦𝑙: losing sample



RLHF: Optimizing the learned reward model

We have the following: 

• A pretrained (possibly instruction-finetuned) LM π𝑟𝑒𝑓(𝑦|𝑥)

• A reward model 𝑟ϕ 𝑥, 𝑦  that produces scalar rewards for LM outputs, trained on a dataset of 

human comparisons

Now to do RLHF:

8

Maximizing rewards Minimizing divergence between current 
policy and reference policy



High-Level Overview: RLHF Pipeline

9

supervised fine-tuning/instruction tuning -> reward modeling -> policy optimization



Can we simplify RLHF? Towards DPO

Direct Preference Optimization (DPO): directly optimizes policy based on human preference data 
using a clever loss function.

Recall our objective in RLHF:

There is a closed form solution to this:

Rearrange the terms:

10
Reward model can be written in terms of policy!



Can we simplify RLHF? Towards DPO

Direct Preference Optimization (DPO): directly optimizes policy based on human preference data 
using a clever loss function.

Recall, how we fit the reward model in RLHF:

Notice that we only need the difference between the rewards. Simplify for rewards:

The final DPO loss function is:

11

We have a classification loss function that connects preference data to LM parameters directly!



Summary (RLHF and DPO)

• Our goal is to optimize for Human Preferences

o Instead of humans writing the answers or giving uncalibrated scores, we get humans to rank different LM 
generated answers.

• RLHF

o Step 1: Supervise fine-tuning on a labeled dataset 

o Step 2: Train an explicit reward model on comparison data to predict a score for a completion 

o Step 3: Optimize the LM to maximize the predicted score (under KL-constraint) 

o Very effective when tuned well, computationally expensive

• DPO

o Optimize LM parameters directly on preference data by solving a binary classification problem

o Simple and effective, similar properties to RLHF

12



Research directions of LLM alignment

• Reward model

• Feedback

• RL policy

• Optimization

13



Reward model

• Explicit Reward Model vs. Implicit Reward Model

o e.g., RLHF vs. DPO

• Pointwise Reward Model vs. Preferencewise Model

o 𝑅(𝑥, 𝑦) vs. prob. that the desired response is preferred over the undesired one

• Response-Level Reward vs. Token-Level Reward

o Assign a single score to the entire response vs. provide feedback at each token

• Negative Preference Optimization

o Use only prompts and undesired responses from RLHF datasets, generating desired responses with LLMs 
instead of relying on human-labeled preferred responses

14



Feedback

• Preference Feedback vs. Binary Feedback

o Rank responses vs. simple positive or negative signal without ranking

• Pairwise Feedback vs. Listwise Feedback

o Compare two responses vs. rank multiple responses together

• Human Feedback vs. AI Feedback

o Real user preferences vs. LLM-generated evaluations

15



RL

• Reference-Based RL vs. Reference-Free RL

o Minimize divergence from a reference policy vs. remove reference policy (e.g. SimPO)

• Length-Control RL

o Standard RL ignores response length. Length-control RL adjusts rewards to prevent verbosity bias in LLM-
generated responses. E.g., R-DPO and SimPO.

• Different Divergences in RL

o KL divergence, f-divergence, …...

• On-policy or Off-policy Learning

o Generate responses using the latest policy vs.  reuse past responses

16



Optimization

• Iterative/Online Preference Optimization vs. Non-Iterative/Offline Preference Optimization

• Continuously update alignment with new data vs. align models using a fixed dataset

• Separating SFT and Alignment vs. Merging SFT and Alignment

o Newer approaches integrate SFT and alignment into a single process, e.g., ORPO, PAFT.

17



InstructGPT: scaling up RLHF to 30k tasks!

Evaluate InstructGPT from three perspectives: Helpful, Honest, and Harms.

18



InstructGPT: scaling up RLHF to 30k tasks!

19



Wei Shen (zyy5hb)

20



OpenRLHF: An Easy-to-use, 
Scalable and High-
performance RLHF 
Framework



PPO

22

https://arxiv.org/pdf/2307.04964

SFT Model: Supervised FineTuning Model; GAE: Generalized Advantage Estimation



Background

23

• Problem: Scaling RLHF training to larger models requires efficiently allocating at 
least four component models (actor (policy model), critic(value model), reward, 
reference) across multiple GPUs due to the memory limit of each accelerator. 

• Existing libraries:

• Ray is a distributed execution framework that provides powerful scheduling and 
scaling capabilities for parallel and distributed computing workloads.

• vLLM is a fast and easy-to-use library for LLM inference and serving. It delivers 
state-of-the-art serving throughput through efficient management of attention key 
and value memory with PagedAttention, continuous batching of incoming 
requests, and fast model execution with CUDA graph.

• DeepSpeed is an optimization library designed to enhance the efficiency of large-
scale deep-learning models. 



Scheduling Optimization

24



Performance Optimization

25

• The primary bottleneck is at the PPO sample 
generation stage which takes up 80% of overall training 
time.

• Figure 4b shows that the larger inference batch size 
can significantly improve the generation throughput.

• OpenRLHF distributes the four models across multiple 
GPUs using Ray, effectively increasing the batch size.

Additional improvements:
• Offloading Adam optimizer states to the CPU frees up 

GPU memory, allowing for larger batch sizes during 
generation

• Employing Flash Attention 2 accelerates Transformer 
model training.

• Remove redundant padding from training samples 
using PyTorch tensor slicing.



• Predict reward only on the end-of-text token of the sequence.

• Use token-level reinforcement learning for language models.

• Use Kullback–Leibler (KL) divergence loss term in PPO.

• Use pre-trained loss term in PPO, tuned based on a relative scale of the policy loss.

• Apply reward normalization for training stability.

• Apply distributed advantage normalization with global statistics.

• Use the Linear Warmup Cosine Annealing learning rate scheduler.

• Initialize the Critic with the weights of the reward model.

• Use a lower learning rate for the Actor while the Critic has a higher learning rate.

• Freeze the weights of the Actor in the initial learning stage for better initialization of the 
Critic.

• Use GAE (Generalized Advantage Estimation).

26

PPO Implementation Tricks



27

Ease of Use
For user-friendliness, OpenRLHF provides one-click trainable scripts for supported algorithms, fully 
compatible with the Hugging Face library for specifying model and dataset names or paths.



• Supervised FineTuning

• Reward Model Training

• Proximal Policy Optimization (PPO)

• Direct Preference Optimization (DPO)

• Kahneman-Tversky Optimization (KTO)

• Iterative Direct Preference Optimization (Iterative DPO)

• Rejection Sampling Finetuning (RS)

• Conditional Supervised Finetuning

28

Supported Algorithms



Group Relative Policy 
Optimization (GRPO)

Ref: https://medium.com/@sahin.samia/the-math-behind-
deepseek-a-deep-dive-into-group-relative-policy-optimization-
grpo-8a75007491ba



What is GRPO?

30

• Group Relative Policy Optimization (GRPO) is a reinforcement learning 

(RL) algorithm specifically designed to enhance reasoning capabilities in 

Large Language Models (LLMs). Unlike traditional RL methods, which rely 

heavily on external evaluators (critics) to guide learning, GRPO optimizes 

the model by evaluating groups of responses relative to one another. This 

approach enables more efficient training, making GRPO ideal for 

reasoning tasks that require complex problem-solving and long chains of 

thought.

• Proposed and used in DeepSeek R1



PPO

31

https://arxiv.org/pdf/2307.04964



Why GRPO

32

• Challenges of Traditional RL methods like Proximal Policy Optimization (PPO)

• Dependency on a Critic Model:

o PPO requires a separate critic model to estimate the value of each response, 
which doubles memory and computational requirements.

• High Computational Cost:

o RL pipelines often demand significant computational resources to evaluate 
and optimize responses iteratively.

• Scalability Issues:

o Absolute reward evaluations struggle with diverse tasks, making it hard to 
generalize across reasoning domains.



Why GRPO

33

• How GRPO Addresses These Challenges of PPO

• Critic-Free Optimization:

o GRPO removes the need for a critic model by comparing responses within a 
group, significantly reducing computational overhead.

• Relative Evaluation:

o Instead of relying on an external evaluator, GRPO uses group dynamics to 
assess how well a response performs relative to others in the same batch.

• Efficient Training:

o By focusing on group-based advantages, GRPO simplifies the reward 
estimation process, making it faster and more scalable for large models.



Key Idea of GRPO: relative evaluation

34

• For each input query, the model generates a group of potential responses.

• These responses are scored based on how they compare to others in the group, 
rather than being evaluated in isolation.

• The advantage of a response reflects how much better or worse it is relative to 
the group’s average performance.



Understanding the GRPO Objective Function

35



Understanding the GRPO Objective Function

36



Understanding the GRPO Objective Function

37



Understanding the GRPO Objective Function

38

Reward Modeling in DeepSeek R1-Zero: rule-based reward system

• Accuracy rewards: The accuracy reward model evaluates whether the response is correct.
• Format rewards: In addition to the accuracy reward model, we employ a format reward model that 

enforces the model to put its thinking process between ‘<think>’ and ‘</think>’ tags.

We do not apply the outcome or process neural reward model in developing DeepSeek-R1-Zero, 
because we find that the neural reward model may suffer from reward hacking in the large-scale 
reinforcement learning process, and retraining the reward model needs additional training resources 
and it complicates the whole training pipeline.

https://arxiv.org/pdf/2501.12948



Understanding the GRPO Objective Function

39



Understanding the GRPO Objective Function

40

1. Generate a group of responses for a query.

2. Calculate rewards for each response based on predefined criteria (e.g., accuracy, format).

3. Compare responses within the group to calculate their relative advantage (AiA_iAi).

4. Update the policy to favor responses with higher advantages, ensuring stability with 

clipping.

5. Regularize the updates to prevent the model from drifting too far from its baseline.



Thank you!


	Slide 1: LLM  Alignment
	Slide 2: A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF, PPO, DPO and More
	Slide 3: Fengyu Gao (wan6jj)
	Slide 4: Aligning Language Models 
	Slide 5: Aligning LMs with Human Feedback
	Slide 6: A (very!) brief introduction to RL
	Slide 7: How do we get the rewards?
	Slide 8: RLHF: Optimizing the learned reward model
	Slide 9: High-Level Overview: RLHF Pipeline
	Slide 10: Can we simplify RLHF? Towards DPO
	Slide 11: Can we simplify RLHF? Towards DPO
	Slide 12: Summary (RLHF and DPO)
	Slide 13: Research directions of LLM alignment
	Slide 14: Reward model
	Slide 15: Feedback
	Slide 16: RL
	Slide 17: Optimization
	Slide 18: InstructGPT: scaling up RLHF to 30k tasks!
	Slide 19: InstructGPT: scaling up RLHF to 30k tasks!
	Slide 20: Wei Shen (zyy5hb)
	Slide 21: OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework 
	Slide 22: PPO
	Slide 23: Background  
	Slide 24: Scheduling Optimization  
	Slide 25: Performance Optimization   
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Group Relative Policy Optimization (GRPO)
	Slide 30: What is GRPO?  
	Slide 31: PPO
	Slide 32: Why GRPO  
	Slide 33: Why GRPO  
	Slide 34: Key Idea of GRPO: relative evaluation  
	Slide 35: Understanding the GRPO Objective Function   
	Slide 36: Understanding the GRPO Objective Function   
	Slide 37: Understanding the GRPO Objective Function   
	Slide 38: Understanding the GRPO Objective Function   
	Slide 39: Understanding the GRPO Objective Function   
	Slide 40: Understanding the GRPO Objective Function   
	Slide 41: Thank you!

