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vLLM
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Format the inputs by hand

Run the LLM with the inputs

Just like how you regularly code

43.3k



SGLang
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Define the interaction flow

Run the LLM directly 
from the flow!

A much better programming paradigm

12.7k



vLLM vs. SGLang
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• vLLM

• A framework focusing on 

system efficiency

• SGLang

• A framework focusing on 

system efficiency and 

programming efficiency



Motivations
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• Lack of efficient systems

• vLLM was not built yet

• Redundant computations

• Redundant memory usage

• Lack of programming efficiency

• Convoluted code to start a server, expose an API, and run LLMs

• LLM applications  !==  Any other applications (e.g. webapp) 



Frontend Language
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• Challenges

• String manipulations

• Prompt construction (e.g. roles, message, attachments, etc.)

• Multimodality supports

• Multimodal token placement (e.g. audio tokens, video tokens, image tokens, etc.)

• Output parsing

• Yes-or-no selection

• Code extraction



Frontend Language
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• Language primitives

• Roles

• system / user / assistant

• Multimodal files

• image / video

• Control flow

• fork / select / gen



KV Cache Reuse
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• RadixAttention

• Prefix sharing

• Radix tree + LRU cache

• Prompt deduplication

• Substring repetition discoveries



Accelerated Constrained Decoding
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• Compressed finite state machines (CFSM)

• FSM determines whether generated tokens met the constraints

• It’s token-by-token

• CFSM supports multi-token processing



API Speculative Execution
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• For black-box API endpoints (e.g. GPT-4)

• Intuition: The first a few tokens across responses are often generic

• Imagine an LLM Agent scenario, where ReAct is used



Evaluation
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Takeaways
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• A developer-friendly frontend “language”

• An efficient backend runtime

• RadixAttention to increase KV cache reusability

• Compressed FSM to accelerate constrained decoding

• API speculative execution to reduce E2E latency



Taming Throughput-Latency 
Tradeoff in LLM Inference 
with Sarathi-Serve:

An efficient LLM inference scheduler that 
significantly improves throughput while 
maintaining low latency.
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Decode

Prefill
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1. Background
(a) Prefill & Decode

LLM

Recite the first law of robotics

A robot may <EoS>…

Each LLM serving request goes through two phases:
1. Prefill

To process the entire input prompt and produces the first output token
2. Decode

To generate the rest of output tokens, one-at-a-time.



Decode

Prefill
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1. Background
(a) Prefill & Decode

LLM

Recite the first law of robotics

A robot may <EoS>…

Stage Resource Demand Processing Style
benefit from 

batching?

Prefill Computation-Intensive Processes all input tokens in parallel No

Decode Memory-Intensive Processes one token at a time Yes



Decode

Prefill
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1. Background
(b) LLM Service Metrics: Latency

LLM

Recite the first law of robotics

A robot may <EoS>…

timelineTTFT: time-to-first-token

the latency of generating the first output token from 
the moment a request arrives in the system

TBT: time-between-tokens
the interval between the generation of consecutive output 

tokens of a request, and affects the overall perceived 
fluidity of the response.
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1. Background
(b) LLM Service Metrics: Throughput

Capacity
• Definition:

the maximum request load (queries-per-second) a system can sustain while 
meeting certain latency targets. 

Higher capacity is desirable because it reduces the cost of serving.
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1. Background
(c) Current LLM Schedulers

Current 
LLM 

Schedulers

Decode-Prioritizing
Waits for all decodes to finish 

before new prefills. 
(e.g. FasterTransformer)

Prefill-Prioritizing
Eagerly schedules prefills 

when GPU memory is 
available

(e.g., vLLM, Orca)

Low Latency
(No interference with ongoing decodes)

Low Throughput
(Batch size shrinks as requests finish early)

High Throughput
(Larger batch size for decodes)

High Latency
(Generation stalls pause ongoing decodes)
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1. Background
(c) Current LLM Schedulers

Tradeoff between throughput and latency in current schedulers
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1. Background
(d) Another Challenge for Prefill-Prioritizing

• Background
• Pipeline-parallelism (PP) used for cross-node LLM inference 

• Issue: Pipeline bubbles waste GPU cycles 
• Caused by varying runtimes of prefill and decode micro-batches 

• Impact: Degrades system throughput
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2. Motivation
(a) Cost Analysis of Prefill and Decode

Takeaway-1
Prefill and Decode phase demonstrate contrasting behaviors wherein batching boosts 

decode phase throughput immensely but has little effect on prefill throughput.
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2. Motivation
(a) Cost Analysis of Prefill and Decode

From the figure, we see that linear operators contribute to the majority of the runtime 
cost. Therefore, optimizing linear operators is important for improving LLM inference. 

(Let’s focus on linear operators later)
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2. Motivation
(a) Cost Analysis of Prefill and Decode

For an operation, Total Runing Time = max(Tmath, Tmem)
If Tmem > Tmath: Operation is Memory-Bound

If Tmath > Tmem: Operation is Compute-Bound
if Tmath = Tmem, both compute and memory bandwidth utilization are maximized.
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2. Motivation
(a) Cost Analysis of Prefill and Decode

Takeaway-2
Decode batches operate in memory-bound regime leaving compute underutilized. This 

implies that more tokens can be processed along with a decode batch without 
significantly increasing its latency.

Arithmetic intensity trend for LLaMA2-70B linear 
operations with different number of token 

running on four A100s.

Linear layer execution time as function of number of 
tokens in a batch for LLaMA2-70B on A100(s) with 

different tensor parallel degrees.
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2. Motivation
(b) Throughput-Latency Trade-off

vLLM & Orca (Prefill-Prioritizing):
• Eagerly schedule prefills (C, D), pausing decodes (A, B) 
• Result: Generation stalls (high TBT latency)

A, B: existing requests in decode
C, D: new requests

Processing Timeline
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2. Motivation
(b) Throughput-Latency Trade-off

FasterTransformer (Decode-Prioritizing): 
• Waits for decodes (A, B) to finish before prefills (C, D)
• Result: No stalls, but low throughput (small decode batch size)

A, B: existing requests in decode
C, D: new requests

Processing Timeline
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2. Motivation
(b) Throughput-Latency Trade-off

Proposed work Sarathi-Serve
• Stall-free scheduling: No pauses, high throughput

A, B: existing requests in decode
C, D: new requests

Processing Timeline
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2. Motivation
(b) Throughput-Latency Trade-off

Takeaway-3
The interleaving of prefills and decodes involves a trade-off between 

throughput and latency for current LLM inference schedulers. 
State-of-the-art systems today use prefill-prioritizing schedules that 

trade TBT latency for high throughput.

TBT Latency

Throughput

worse

better
Current
SOTA
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2. Motivation
(c) Pipeline Bubbles waste GPU Cycles

Takeaway-4
There can be a large variance in compute time of LLM 

iterations depending on composition of prefill- and decode-
tokens in the batch. This can lead to significant bubbles when 

using pipeline-parallelism.

• A 2-way pipeline parallel 
iteration-level schedule in Orca 
across 4 requests (A,B,C,D) shows 
the existence of pipeline 
bubbles due to non-uniform 
batch execution times. 

Bubble due to varying prefill token counts 
between micro-batches

Sarathi-Serve is able to 
minimize these stalls by 

creating uniform-compute 
batches.

1

2 3
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3. Method
(a) Chunked-prefills

Insight
A prefill request with modest sequence 

length can effectively saturate GPU compute

Fact
Prompts are often very long, and long prefills 
with decode iterations increase TBT latency.

Solution: split large prefills to small chunks
Break large prefill requests into smaller units of compute 

which are still large enough to saturate GPU compute.
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3. Method
(b) Stall-free batching

Prefill:
Computation-Bounded

Decode:
Memory-Bounded

Naïve Method in Orca & vLLM
• stall existing decodes to execute prefills
Sarathi-Serve: stall-free batching
• leverages the arithmetic intensity  slack in decode iterations to execute 

prefills without delaying the execution of decode requests in the system.

Combine prefills and decodes to 
improve throughput while 

minimizing latency
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3. Method
(b) Stall-free batching - Algorithm

1. Calculates token budget based on user-specified SLO 
[Service Level Objective] (we will introduce later)

2. the batch is filled with ongoing decode tokens

3. include any partially completed prefill

4. Admit new requests within leftover token budget
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3. Method
(c) Determining Token Budget

TBT SLO requirement

a smaller token budget is preferable: 
• iterations with fewer prefill tokens have 

lower latency.

chunked-prefills overhead

smaller token budget causes:
1. lower GPU utilization
2. repeated KV-cache access in 

the attention operation

Trade off

Solution
Profile batches to set token 

budget: Max tokens per batch 
before violating TBT SLO.
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4. Evaluation
(a) Capacity

Note:
• SLO: Service Level Objective 
• SLO-S: Strict SLO
• SLO-R: Relaxed SLO

Capacity 
(in queries per second) 

improves up to 6x

Capacity evaluation across different models and datasets
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4. Evaluation
(b) Latency

Note:
• Decode + Full Prefill
the hybrid batching of Orca
• Decode + Chunked Prefill
Proposed work

Sarathi-Serve processes 
prefill tokens with much 

lower impact on the latency 
of decodes.

Sarathi-Serve Orca
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4. Evaluation
(c) Making Pipeline Parallel Viable

Sarathi-Serve optimizes pipeline parallelism by creating hybrid batches with uniform computational demands. 

Key Benefits: 
• Reduces pipeline bubbles, improving GPU utilization. 
• Enables efficient operation in multi-node deployments over standard Ethernet connections.



Thank you!
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