
LLM
SERVING
AND
ALIGNMENT

Team 6
Fengyu Gao, Shunqiang Feng, Wei Shen, Zihan Zhao

SGLang: Efficient
Execution of
Structured Language
Model Programs

Zihan Zhao (rxy6cc)

3

vLLM

4

Format the inputs by hand

Run the LLM with the inputs

Just like how you regularly code

43.3k

SGLang

5

Define the interaction flow

Run the LLM directly
from the flow!

A much better programming paradigm

12.7k

vLLM vs. SGLang

6

• vLLM

• A framework focusing on

system efficiency

• SGLang

• A framework focusing on

system efficiency and

programming efficiency

Motivations

7

• Lack of efficient systems

• vLLM was not built yet

• Redundant computations

• Redundant memory usage

• Lack of programming efficiency

• Convoluted code to start a server, expose an API, and run LLMs

• LLM applications !== Any other applications (e.g. webapp)

Frontend Language

8

• Challenges

• String manipulations

• Prompt construction (e.g. roles, message, attachments, etc.)

• Multimodality supports

• Multimodal token placement (e.g. audio tokens, video tokens, image tokens, etc.)

• Output parsing

• Yes-or-no selection

• Code extraction

Frontend Language

9

• Language primitives

• Roles

• system / user / assistant

• Multimodal files

• image / video

• Control flow

• fork / select / gen

KV Cache Reuse

10

• RadixAttention

• Prefix sharing

• Radix tree + LRU cache

• Prompt deduplication

• Substring repetition discoveries

Accelerated Constrained Decoding

11

• Compressed finite state machines (CFSM)

• FSM determines whether generated tokens met the constraints

• It’s token-by-token

• CFSM supports multi-token processing

API Speculative Execution

12

• For black-box API endpoints (e.g. GPT-4)

• Intuition: The first a few tokens across responses are often generic

• Imagine an LLM Agent scenario, where ReAct is used

Evaluation

13

Takeaways

14

• A developer-friendly frontend “language”

• An efficient backend runtime

• RadixAttention to increase KV cache reusability

• Compressed FSM to accelerate constrained decoding

• API speculative execution to reduce E2E latency

Taming Throughput-Latency
Tradeoff in LLM Inference
with Sarathi-Serve:

An efficient LLM inference scheduler that
significantly improves throughput while
maintaining low latency.

Shunqiang Feng (mpp7ez)

16

Decode

Prefill

17

1. Background
(a) Prefill & Decode

LLM

Recite the first law of robotics

A robot may <EoS>…

Each LLM serving request goes through two phases:
1. Prefill

To process the entire input prompt and produces the first output token
2. Decode

To generate the rest of output tokens, one-at-a-time.

Decode

Prefill

18

1. Background
(a) Prefill & Decode

LLM

Recite the first law of robotics

A robot may <EoS>…

Stage Resource Demand Processing Style
benefit from

batching?

Prefill Computation-Intensive Processes all input tokens in parallel No

Decode Memory-Intensive Processes one token at a time Yes

Decode

Prefill

19

1. Background
(b) LLM Service Metrics: Latency

LLM

Recite the first law of robotics

A robot may <EoS>…

timelineTTFT: time-to-first-token

the latency of generating the first output token from
the moment a request arrives in the system

TBT: time-between-tokens
the interval between the generation of consecutive output

tokens of a request, and affects the overall perceived
fluidity of the response.

20

1. Background
(b) LLM Service Metrics: Throughput

Capacity
• Definition:

the maximum request load (queries-per-second) a system can sustain while
meeting certain latency targets.

Higher capacity is desirable because it reduces the cost of serving.

21

1. Background
(c) Current LLM Schedulers

Current
LLM

Schedulers

Decode-Prioritizing
Waits for all decodes to finish

before new prefills.
(e.g. FasterTransformer)

Prefill-Prioritizing
Eagerly schedules prefills

when GPU memory is
available

(e.g., vLLM, Orca)

Low Latency
(No interference with ongoing decodes)

Low Throughput
(Batch size shrinks as requests finish early)

High Throughput
(Larger batch size for decodes)

High Latency
(Generation stalls pause ongoing decodes)

22

1. Background
(c) Current LLM Schedulers

Tradeoff between throughput and latency in current schedulers

23

1. Background
(d) Another Challenge for Prefill-Prioritizing

• Background
• Pipeline-parallelism (PP) used for cross-node LLM inference

• Issue: Pipeline bubbles waste GPU cycles
• Caused by varying runtimes of prefill and decode micro-batches

• Impact: Degrades system throughput

24

2. Motivation
(a) Cost Analysis of Prefill and Decode

Takeaway-1
Prefill and Decode phase demonstrate contrasting behaviors wherein batching boosts

decode phase throughput immensely but has little effect on prefill throughput.

25

2. Motivation
(a) Cost Analysis of Prefill and Decode

From the figure, we see that linear operators contribute to the majority of the runtime
cost. Therefore, optimizing linear operators is important for improving LLM inference.

(Let’s focus on linear operators later)

26

2. Motivation
(a) Cost Analysis of Prefill and Decode

For an operation, Total Runing Time = max(Tmath, Tmem)
If Tmem > Tmath: Operation is Memory-Bound

If Tmath > Tmem: Operation is Compute-Bound
if Tmath = Tmem, both compute and memory bandwidth utilization are maximized.

27

2. Motivation
(a) Cost Analysis of Prefill and Decode

Takeaway-2
Decode batches operate in memory-bound regime leaving compute underutilized. This

implies that more tokens can be processed along with a decode batch without
significantly increasing its latency.

Arithmetic intensity trend for LLaMA2-70B linear
operations with different number of token

running on four A100s.

Linear layer execution time as function of number of
tokens in a batch for LLaMA2-70B on A100(s) with

different tensor parallel degrees.

28

2. Motivation
(b) Throughput-Latency Trade-off

vLLM & Orca (Prefill-Prioritizing):
• Eagerly schedule prefills (C, D), pausing decodes (A, B)
• Result: Generation stalls (high TBT latency)

A, B: existing requests in decode
C, D: new requests

Processing Timeline

29

2. Motivation
(b) Throughput-Latency Trade-off

FasterTransformer (Decode-Prioritizing):
• Waits for decodes (A, B) to finish before prefills (C, D)
• Result: No stalls, but low throughput (small decode batch size)

A, B: existing requests in decode
C, D: new requests

Processing Timeline

30

2. Motivation
(b) Throughput-Latency Trade-off

Proposed work Sarathi-Serve
• Stall-free scheduling: No pauses, high throughput

A, B: existing requests in decode
C, D: new requests

Processing Timeline

31

2. Motivation
(b) Throughput-Latency Trade-off

Takeaway-3
The interleaving of prefills and decodes involves a trade-off between

throughput and latency for current LLM inference schedulers.
State-of-the-art systems today use prefill-prioritizing schedules that

trade TBT latency for high throughput.

TBT Latency

Throughput

worse

better
Current
SOTA

32

2. Motivation
(c) Pipeline Bubbles waste GPU Cycles

Takeaway-4
There can be a large variance in compute time of LLM

iterations depending on composition of prefill- and decode-
tokens in the batch. This can lead to significant bubbles when

using pipeline-parallelism.

• A 2-way pipeline parallel
iteration-level schedule in Orca
across 4 requests (A,B,C,D) shows
the existence of pipeline
bubbles due to non-uniform
batch execution times.

Bubble due to varying prefill token counts
between micro-batches

Sarathi-Serve is able to
minimize these stalls by

creating uniform-compute
batches.

1

2 3

33

3. Method
(a) Chunked-prefills

Insight
A prefill request with modest sequence

length can effectively saturate GPU compute

Fact
Prompts are often very long, and long prefills
with decode iterations increase TBT latency.

Solution: split large prefills to small chunks
Break large prefill requests into smaller units of compute

which are still large enough to saturate GPU compute.

34

3. Method
(b) Stall-free batching

Prefill:
Computation-Bounded

Decode:
Memory-Bounded

Naïve Method in Orca & vLLM
• stall existing decodes to execute prefills
Sarathi-Serve: stall-free batching
• leverages the arithmetic intensity slack in decode iterations to execute

prefills without delaying the execution of decode requests in the system.

Combine prefills and decodes to
improve throughput while

minimizing latency

35

3. Method
(b) Stall-free batching - Algorithm

1. Calculates token budget based on user-specified SLO
[Service Level Objective] (we will introduce later)

2. the batch is filled with ongoing decode tokens

3. include any partially completed prefill

4. Admit new requests within leftover token budget

36

3. Method
(c) Determining Token Budget

TBT SLO requirement

a smaller token budget is preferable:
• iterations with fewer prefill tokens have

lower latency.

chunked-prefills overhead

smaller token budget causes:
1. lower GPU utilization
2. repeated KV-cache access in

the attention operation

Trade off

Solution
Profile batches to set token

budget: Max tokens per batch
before violating TBT SLO.

37

4. Evaluation
(a) Capacity

Note:
• SLO: Service Level Objective
• SLO-S: Strict SLO
• SLO-R: Relaxed SLO

Capacity
(in queries per second)

improves up to 6x

Capacity evaluation across different models and datasets

38

4. Evaluation
(b) Latency

Note:
• Decode + Full Prefill
the hybrid batching of Orca
• Decode + Chunked Prefill
Proposed work

Sarathi-Serve processes
prefill tokens with much

lower impact on the latency
of decodes.

Sarathi-Serve Orca

39

4. Evaluation
(c) Making Pipeline Parallel Viable

Sarathi-Serve optimizes pipeline parallelism by creating hybrid batches with uniform computational demands.

Key Benefits:
• Reduces pipeline bubbles, improving GPU utilization.
• Enables efficient operation in multi-node deployments over standard Ethernet connections.

Thank you!

	Slide 1: LLM Serving and Alignment
	Slide 2: SGLang: Efficient Execution of Structured Language Model Programs
	Slide 3: Zihan Zhao (rxy6cc)
	Slide 4: vLLM
	Slide 5: SGLang
	Slide 6: vLLM vs. SGLang
	Slide 7: Motivations
	Slide 8: Frontend Language
	Slide 9: Frontend Language
	Slide 10: KV Cache Reuse
	Slide 11: Accelerated Constrained Decoding
	Slide 12: API Speculative Execution
	Slide 13: Evaluation
	Slide 14: Takeaways
	Slide 15: Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve: An efficient LLM inference scheduler that significantly improves throughput while maintaining low latency.
	Slide 16: Shunqiang Feng (mpp7ez)
	Slide 17: 1. Background (a) Prefill & Decode
	Slide 18: 1. Background (a) Prefill & Decode
	Slide 19: 1. Background (b) LLM Service Metrics: Latency
	Slide 20: 1. Background (b) LLM Service Metrics: Throughput
	Slide 21: 1. Background (c) Current LLM Schedulers
	Slide 22: 1. Background (c) Current LLM Schedulers
	Slide 23: 1. Background (d) Another Challenge for Prefill-Prioritizing
	Slide 24: 2. Motivation (a) Cost Analysis of Prefill and Decode
	Slide 25: 2. Motivation (a) Cost Analysis of Prefill and Decode
	Slide 26: 2. Motivation (a) Cost Analysis of Prefill and Decode
	Slide 27: 2. Motivation (a) Cost Analysis of Prefill and Decode
	Slide 28: 2. Motivation (b) Throughput-Latency Trade-off
	Slide 29: 2. Motivation (b) Throughput-Latency Trade-off
	Slide 30: 2. Motivation (b) Throughput-Latency Trade-off
	Slide 31: 2. Motivation (b) Throughput-Latency Trade-off
	Slide 32: 2. Motivation (c) Pipeline Bubbles waste GPU Cycles
	Slide 33: 3. Method (a) Chunked-prefills
	Slide 34: 3. Method (b) Stall-free batching
	Slide 35: 3. Method (b) Stall-free batching - Algorithm
	Slide 36: 3. Method (c) Determining Token Budget
	Slide 37: 4. Evaluation (a) Capacity
	Slide 38: 4. Evaluation (b) Latency
	Slide 39: 4. Evaluation (c) Making Pipeline Parallel Viable
	Slide 40: Thank you!

