LLM
SERVING
AND
ALIGNMENT

Team 6
Fengyu Gao, Shungiang Feng, Wei Shen, Zihan Zhao

G

&~/

SGLang: Efficient
Execution of

Structured Language
Model Programs

Zihan Zhao (rxyécc)

VvLLM

In this script, we demonstrate how to pass input to the chat method:

conversation = [

{
"role": "system",
"content": "You are a helpful assistant" Format the inpUtS by hand
H
{
"role": "user",
;, comtents Tetto Run the LLM with the inputs
{
"role": "assistant",
"content": "Hello! How can I assist you today?"
H
{
"role": "user",
"content": Just like how you regularly code
"Write an essay about the importance of higher edufation.",
H

]

outputs = 1llm.chat(conversation, sampling_params, use_tqdm=False1

print_outputs(outputs)

SGLang

import sglang as sgl

. Define the interaction flow
@sgl.function
def multi_turn_question(s, question_1, question_2):

s +=]sgl.user|question_1)
+=] sgl.assistantfsgl.gen("answer_1", max_tokens=256))

3
s += sgl.user(question_2)
s += sgl.assistantfsgl.gen(J'answer_2", max_tokens=256))

def single(): L Run the LLM direct|y
state 4 multi_turn_guestion. run(- from the flow!
question_1="What is the capital of the United States?",

question_2="List two local attractions.",

A much better programming paradigm
for m in state.messages():

print(m["role"], ":", m["content"])

print("\n—- answer_1 —--\n", state["answer_1"])

vLLM vs. SGLang

e vLLM « SGlLang
« A framework focusing on « A framework focusing on
system efficiency system efficiency and

programming efficiency

Motivations

 Lack of efficient systems

« vLLM was not built yet

« Redundant computations

* Redundant memory usage
 Lack of programming efficiency

« Convoluted code to start a server, expose an APl, and run LLMs

* LLM applications !== Any other applications (e.g. webapp)

Frontend Language

« Challenges
 String manipulations
« Prompt construction (e.g. roles, message, attachments, etc.)
* Multimodality supports
* Multimodal token placement (e.g. audio tokens, video tokens, image tokens, etc.)
* Qutput parsing
* Yes-or-no selection

e Code extraction

Frontend Language

* Language primitives

Roles

e system / user / assistant

Multimodal files

 image / video

Control flow

e fork / select / gen

dimensions = ["Clarity"”, "Originality"”, "Evidence"]

@function
def multi_dimensional_judge(s, path, essay):

s += system("Evaluate an essay about an image.")
user(image(path) + "Essay:
assistant("Sure!™)

+
+

n un HF unn

+ essay)

Return directly if it is not related
+= user("Is the essay related to the image?")

+= assistant(select("related”, choices=["yes", "no"]))
if s["related”] == "no": return

Judge multiple dimensions in parallel

forks = s.fork(len(dimensions))

for f, dim in zip(forks, dimensions):

f += user("Evaluate based on the following dimension:" +
. End your judgment with the word 'END'")
f += assistant("Judgment:" + gen("judgment", stop="END"))

dim +

Merge the judgments

judgment = "\n".join(f["judgment"] for ¥ in forks)

Generate a summary and a grade. Return in the JSON format.

s += user("Provide the judgment, summary, and a letter grade")

s += assistant(judgment + "In summary,
+ "The grade of it is" + gen("grade"))

schema = r'\{"summary": "[\w\d\s]+\.", "grade": "[ABCD][+-]?"\}'

s += user("Return in the JSON format.")

s += assistant(gen("output", regex=schema))

state = multi_dimensional_judge.run(...)

print(state["output"])

+ gen("summary", stop=

Handle chat template
and multi-modal inputs

Select an option with
the highest probability

Fetch result; Use Python
control flow

Runtime optimization:
KV Cache Reuse (Sec. 3)

Multiple generation
calls run in parallel

Fetch generation results

Runtime optimization: API
speculative execution (Sec. 5)

Runtime optimization: fast
constrained decoding (Sec. 4)

Run an SGLang program

KV Cache Reuse

romane
romanus
romulus o

rubens Z \
ruber l/om | ub\|
rubicon

@ @

rubicundus /
. \

) 1 / a lic
e Radix tree + LRU cache E / :

/e
. 5 @ /. /.
* Prompt deduplication E D:JEI E |ir_\-| T indus
® 6

» Substring repetition discoveries @ ©@

e RadixAttention

~NNoouoks Wb R

* Prefix sharing

10

Accelerated Constrained Decoding

« Compressed finite state machines (CFSM)
« FSM determines whether generated tokens met the constraints
e [t's token-by-token
* CFSM supports multi-token processing

DFSM state |j Token D LLM decode
@{ " @5 E]“ @mm@a r v @" : |E]_" @ @ {"summary": "

(a) Normal FSM for regex { " summary”: " (b) Compressed FSM for regex {"summary": "
@ { LLM summary { LM @ { LLM) @ @ @ summary | @ @ @

(c) Decoding process with normal FSM (d) Decoding process with compressed FSM

11

APl Speculative Execution

 For black-box Al

e |ntuition: The fii

* Imagine an LLNV

/' { (1d) ReAct (Reason + Act) } ‘\

Thought 1: I need to search Apple Remote and find the
program it was originally designed to interact with.

Act 1: Search[ZApple Remote]

Obs 1: The Apple Remote is a remote control introduced in
October 2005 by Apple .. originally designed to control the
Front Row media center| program ..

Thought 2: Apple Remote was originally designed to control
the Front Row media center program. I need to search Erqnﬁ
Row next and find what other device can control it.

Act 2: Search[Front Row]

Obs 2: Could not find [Front Row]. Similar: ['Front Row
Seat to Earth', 'Front Row Motorsports’,' Front Row
(software) ', ..

Thought 3: Front Row is not found. I need to search Eront
Row (software)

Act 3: Search[Eront Row (software)]

Obs 3: Front Row is a discontinued media center software ..

Thought 4: Front Row (software) is controlled by an Apple
Remote or the keyboard function keys. So the answer is
keyboard function keys.

Act 4: Finish[Keyboard function keys] \/
. Y,

ric

12

Evaluation

[SGLang s vLLM Bm Guidance s LMQL

= 1.0
3

@ .

m -
E E 0.5
= 2 0.2

0.0- : : :
MMLU ReAct Generative Tree of Skeleton LLM Judge HellaSwag JSON Multi-Turn Multi-Turn DSPy RAG

Agents Agents Thought of Thought Decoding Chat(short) Chat(long) Pipeline

Figure 5: Normalized throughput on Llama-7B models. Higher is better.

13

Takeaways

« A developer-friendly frontend “language”

 An efficient backend runtime

« RadixAttention to increase KV cache reusability
« Compressed FSM to accelerate constrained decoding

« API speculative execution to reduce E2E latency

14

(

&~/

Taming Throughput-Latency
Tradeoff in LLM Inference
with Sarathi-Serve:

Shungiang Feng (mpp7ez)

1. Background ‘
(a) Prefill & Decode

Decode

LLM

Prefill

Each LLM serving request goes through two phases:

1. Prefill
To process the entire input prompt and produces the first output token
2. Decode

To generate the rest of output tokens, one-at-a-time. .

1. Background
(a) Prefill & Decode

Decode

LLM
Prefill
Stage Resource Demand Processing Style SETGILEhT
J 9 batching?
Prefill Computation-Intensive Processes all input tokens in parallel No
Decode Memory-Intensive Processes one token at a time Yes

18

1. Background
(b) LLM Service Metrics: Latency

Decode

-

LLM
Prefill
TTFT: time-to-first-token >t — timeline
TBT: time-between-tokens
the latency of generating the first output token from the interval between the generation of consecutive output
the moment a request arrives in the system tokens of a request, and affects the overall perceived

fluidity of the response.

19

1. Background
(b) LLM Service Metrics: Throughput

Capacity

« Definition:
the maximum request load (queries-per-second) a system can sustain while
meeting certain latency targets.

Higher capacity is desirable because it reduces the cost of serving.

20

1. Background
(c) Current LLM Schedulers

Decode-Prioritizing Low Latency
Wiaits for all decodes to finish (No interference with ongoing decodes)
/ before new prefills. Low Throughput
(e.g. FasterTranstormer) (Batch size shrinks as requests finish early)
Current
LLM
Schedulers

Prefill-Prioritizing

\ Eagerly schedules prefills High Thl.'oughput
when GPU memory is . (Larger batch size for decodes)

available High Latency
(e.g., vVLLM, Orca) (Generation stalls pause ongoing decodes)

21

1. Background
(c) Current LLM Schedulers

Sarathi-Serve ® vLLm

- Stall-free Prefill prioritizing
g_ batching / Page g
= ' Atiention
=] p
g Orca
Pl Iteration-level T <& Prefill prioritizing
P batching .-~
— et

Fasi:érTransformer

Decode prioritizing

- >
| v TBT Latency

Tradeoff between throughput and latency in current schedulers

22

1. Background
(d) Another Challenge for Prefill-Prioritizing

* Background
« Pipeline-parallelism (PP) used for cross-node LLM inference
Issue: Pipeline bubbles waste GPU cycles
« Caused by varying runtimes of prefill and decode micro-batches
* Impact: Degrades system throughput

23

2. Motivation
(a) Cost Analysis of Prefill and Decode

Prefill Decode
- 2 800-
o 0
9 4k @ 600-
W U
0 o
o a 400
w 2K+ W
c o
200 -
g :
= 0- = 0-
~ N oy ~ ® f.? N3
Batch Size Batch Size
Takeaway-1

Prefill and Decode phase demonstrate contrasting behaviors wherein batching boosts
decode phase throughput immensely but has little effect on prefill throughput.

24

2. Motivation
(a) Cost Analysis of Prefill and Decode

150 Prefill 150 Decode
EFE linear
£ 100 ERUTIERS peiviig
@ @
£ 50 £ 501
- —
0. N1

~ @O W ™y =
~ M O

Batch Size

From the figure, we see that linear operators contribute to the majority of the runtime
cost. Therefore, optimizing linear operators is important for improving LLM inference.
(Let's focus on linear operators later)

25

2. Motivation
(a) Cost Analysis of Prefill and Decode

For an operation, Total Runing Time = max(Tmath, Tmem)
If Tmem > Tmath: Operation is Memory-Bound
If Tmath > Tmem: Operation is Compute-Bound
if Tmath = Tmem, both compute and memory bandwidth utilization are maximized.

26

2. Motivation
(a) Cost Analysis of Prefill and Decode

w
8 1400 Compute Bound Region - Low MBU
F3 1000+
W 1200
5
2001
o 1000 4 _
= n
>
£ 500 Prefill E 600
S Q
= 600 - E 4001
= =
Y a0 Balanced - Sarathi-5erve
= 2001
E 200
et i _
g ou/fDecode remory Bound feoon Tow M T 256 512 1024 2048 4096
0 250 500 750 1000 1250 1500 1750 2000 Numb f tok
Number of Tokens umber of tokens
Arithmetic intensity trend for LLaMA2-70B linear Linear layer execution time as function of number of
running on four A100s. different tensor parallel degrees.
Takeaway-2

Decode batches operate in memory-bound regime leaving compute underutilized. This
implies that more tokens can be processed along with a decode batch without
significantly increasing its latency. .

2. Motivation
(b) Throughput-Latency Trade-off

A, B: existing requests in decode
C, D: new requests

C, D enter vLLM Decodes for A, B stalled
A,. B, C, D, A,.B,C,D,| ***
¥ N Prefill
TBT without TBT with . Prioritized
prefill interference prefill interference Schedules
C, D enter Orca Decodes for A, B stalled
A,.B, C,. D, A, B, A,.B,.C,D,| **°
A exits >

Processing Timeline

VvLLM & Orca (Prefill-Prioritizing):

« Eagerly schedule prefills (C, D), pausing decodes (A, B)
* Result: Generation stalls (high TBT latency)

28

2. Motivation
(b) Throughput-Latency Trade-off

A, B: existing requests in decode
C, D: new requests

C,Denter FasterTransformer Prefills for C, D stalled Decode
Prioritized
Ad 1 Bd Ad ' Bd Ad ! Bd Bd BEI CP’ DP Schedule
A exits B exits

Processing Timeline

FasterTransformer (Decode-Prioritizing):
« Waits for decodes (A, B) to finish before prefills (C, D)
» Result: No stalls, but low throughput (small decode batch size)

A 4

29

2. Motivation
(b) Throughput-Latency Trade-off

A, B: existing requests in decode
C, D: new requests

C, D enter Sarathi-Serve No stalls
A.B |A.B.C |A.,B.C |B,C,D,|B,C.D, | *ee Stall-free
d’ —d d’ Cd p1 d’ —d p2- d' ~d' “p1 d ~d [:2 Schedule
A exits B exits

Processing Timeline

Proposed work Sarathi-Serve
 Stall-free scheduling: No pauses, high throughput

30

2. Motivation
(b) Throughput-Latency Trade-off

better 7T
(\ Current

' sota

—

Throughput

worse

TBT Latency

Takeaway-3
The interleaving of prefills and decodes involves a trade-off between
throughput and latency for current LLM inference schedulers.
State-of-the-art systems today use prefill-prioritizing schedules that
trade TBT latency for high throughput.

31

2. Motivation
(c) Pipeline Bubbles waste GPU Cycles

Timeline

Bubble due to prefil Bubble due to prefil
length variation decode interference

—

« A2-way pipeline parallel

GPUD AB, c, D, 2 |A,.B, 3 |c,.0, iteration-level schedule in Orca
GPU1 1 A,B, c, D, Ay. By across 4 requests (A,B,C,D) shows
| e ’ Orca the existence of pipeline
Bubble due to varying prefill token counts .
between micro-batches Minimal Bubbles bubbles due to non-uniform
GPUD| A, B,, A, B, Ag.Co | By.D,y | Ag.Cyi| | Bi-Dy | Ag.Ca batch execution times.
GPU1 Jﬂ‘m B|:|1 Apl sz Ag . Cp1 By Dp1 A Cq | By Dy

Sarathi-Serve

Takeaway-4
There can be a large variance in compute time of LLM
iterations depending on composition of prefill- and decode-
tokens in the batch. This can lead to significant bubbles when
using pipeline-parallelism.

Sarathi-Serve is able to

:> minimize these stalls by
creating uniform-compute

batches.

32

3. Method
(a) Chunked-prefills

10004
800
E_ 600 1 I“Sight
2 oo A prefill request with modest sequence
= .
oo length can effectively saturate GPU compute
04—
128 256 512 1024 2048 4096
Number of tokens
Prompt Tok Output Tokens
Datasel |y pog Sid | Median P90 S Fact _
openchat_sharegptd | 1730 5696 2088 | 415 834 101 PrOmptS are often very |Oﬂg, and |Ohg prefllls
arxiv_summarization 7059 12985 3638 208 371 265

with decode iterations increase TBT latency.

Solution: split large prefills to small chunks
Break large prefill requests into smaller units of compute
which are still large enough to saturate GPU compute.

33

3. Method
(b) Stall-free batching

Prefill:
Computation-Bounded)
Combine prefills and decodes to

improve throughput while

Decode: minimizing latency

Memory-Bounded _/

Naive Method in Orca & vLLM
« stall existing decodes to execute prefills

Sarathi-Serve: stall-free batching
» leverages the arithmetic intensity slack in decode iterations to execute

prefills without delaying the execution of decode requests in the system.

34

3. Method
(b) Stall-free batching - Algorithm

: Input: T, Application TBT SLO.

1. Calculates token budget based on user-specified SLO

[1

: 2: Initialize token_budget, T +— compute_token_buget(7,,,.)

| 3: Initialize barch_num_tokens, n; < 0 [Service Level Objective] (we will introduce later)

| _4:_Initialize currentbatch B«0_ S |

|~ 5. 'while Trunedo |

' 6 forRinBdo s . . |

| % ifis_prefill_complete(R) then 2.the batch is filled with ongoing decode tokens |

|8 memt L :

: T o TforRinBdo T e e e e e |
10: if not is_prefill_complete(R) then . . : I

L ¢ ¢ get_next_chunk_size(R, T, ;) 3.include any partially completed prefill |

| 12 My < 1y 1+ I

14: while can_allocate_request(Rpey) A 1, < T do

15: ¢ < get_next_chunk size(Rpey, T, 1)
16: if ¢ > 0 then

17: < ng+c

18: B+ Ruew

20: break

22: process_hybrid_batch(B)
23: B« filter finished requests(B)
24: n+0

|
|
|
|
;
B else 4. Admit new requests within leftover token budget
|
|
|
|
|
|

35

3. Method
(c) Determining Token Budget

chunked-prefills overhead

TBT SLO requirement Trade off
. smaller token budget causes:
a smaller token budget is preferable: 1] GPU utilizati
iterations with fewer prefill tokens have - OIS A=l .
lower latency. 2. repeated KV-cache access in
@ the attention operation
Solution

Profile batches to set token
budget: Max tokens per batch
before violating TBT SLO.

36

4. Evaluation
(a) Capacity

Orca vLLM [Sarathi-Serve

>
2.15x

s 5 2.78x]
"
o
&8 . ‘ % 4.00x 2 44x
2 W \ Wﬂ @W

. %

SLO-S SLO-R SLO-S SLO-R
Mistral-7B Yi-34B
(a) Datasel: openchat_sharegpt4.

1.0
2 1.97x
Y 1.82x H
Qo
503 | 1.94x
v 1.69x H
L] |
E

0.0

SLO-S SLO-R SLO-S SLO-R
Mistral-7B Yi-34B

(b) Dataset: arxiv_summarization.

Max Capacity
o -
o o

o
o

o
w

Max Capacity
o o
= N

o
o

S Orca vLLM [Sarathi-Serve
6.31x
5.54x 5.62x
4.69x ’_‘
SLO-S SLO-R SLO-S SLO-R
LLaMA2-70B Falcon-180B
(a) Datasel: openchat_sharegpt4.
3.00x
4.60x
4 20x 2.75x
I VJH]
SLO-S SLO-R SLO-S SLO-R
LLaMA2-70B Falcon-180B

(b) Dataset: arxiv_summarization.

Capacity evaluation across different models and datasets

Note:

« SLO: Service Level Objective
« SLO-S: Strict SLO

* SLO-R: Relaxed SLO

Capacity
(in queries per second)
improves up to 6x

37

Batch Time (ms)

Batch Time (ms)

4. Evaluation
(b) Latency

"0 Decode-only

Context Length: 1024

Sarathi-Serve

7/ ecade + Chunked Frefi 8

¥
=

120 2.8x E 280 B0l — 5.1x
3.8x N - 55x Lo 20.3x :
=T E— STx B @ 180 10.2x g e T e e e
E
60 B 1-ox = 120 4 B e e B 2 g | B e
1.8x Lox X L S 1.2
Bxl | 1o0xr 22 . 1 e g l2x
] El'ngy/ /1 M §§§2 5 2.0x 1.0x 1-3% &OQV
0]] 2) WS B ¥ A
1 32 64 1 32 64
Batch Size Batch Size Batch Size
(a) Mistral-7B on one A100s with token budget of 256.
"0 Decode-only 7/ Decode + Chunked Prefill % Decode + Full Prefill
Context Length: 1024 Context Length: 2048 Context Length: 4096
4001 7.1x 5.0x =Ea £ 720+ 13.3x 9.7x X | B 1520 283 16.6x 10.6x
300 A @ 540 0 1140
3.1 2.5x% -§ -§
200 /3/-6X ;2 F 360 | = 760
= 2.2x =
3.6% 2.8x]
100 % 1.0 1@ j"_, 1804 e B R // & 380 1.9x%
1.0x D% © \V 1 Oxp4 1.0x] 3.7x 2.3% 1.0x)
0 | | | m 0 kl‘ox J] \//]] 0 1.0x , 1.0%) A, T/ AI
1 32 64 1 32 64 1 32 64
Batch Size Batch Size Batch Size

(b) LLaMA2-70B on four A100s with token budget of 512.

Note:

« Decode + Full Prefill

the hybrid batching of Orca
« Decode + Chunked Prefill
Proposed work

Sarathi-Serve processes
prefill tokens with much
lower impact on the latency
of decodes.

38

4. Evaluation
(c) Making Pipeline Parallel Viable

Sarathi-Serve optimizes pipeline parallelism by creating hybrid batches with uniform computational demands.

Key Benefits:
* Reduces pipeline bubbles, improving GPU utilization.
» Enables efficient operation in multi-node deployments over standard Ethernet connections.

39

=
)
>
=
-
e
-5
—

	Slide 1: LLM Serving and Alignment
	Slide 2: SGLang: Efficient Execution of Structured Language Model Programs
	Slide 3: Zihan Zhao (rxy6cc)
	Slide 4: vLLM
	Slide 5: SGLang
	Slide 6: vLLM vs. SGLang
	Slide 7: Motivations
	Slide 8: Frontend Language
	Slide 9: Frontend Language
	Slide 10: KV Cache Reuse
	Slide 11: Accelerated Constrained Decoding
	Slide 12: API Speculative Execution
	Slide 13: Evaluation
	Slide 14: Takeaways
	Slide 15: Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve: An efficient LLM inference scheduler that significantly improves throughput while maintaining low latency.
	Slide 16: Shunqiang Feng (mpp7ez)
	Slide 17: 1. Background (a) Prefill & Decode
	Slide 18: 1. Background (a) Prefill & Decode
	Slide 19: 1. Background (b) LLM Service Metrics: Latency
	Slide 20: 1. Background (b) LLM Service Metrics: Throughput
	Slide 21: 1. Background (c) Current LLM Schedulers
	Slide 22: 1. Background (c) Current LLM Schedulers
	Slide 23: 1. Background (d) Another Challenge for Prefill-Prioritizing
	Slide 24: 2. Motivation (a) Cost Analysis of Prefill and Decode
	Slide 25: 2. Motivation (a) Cost Analysis of Prefill and Decode
	Slide 26: 2. Motivation (a) Cost Analysis of Prefill and Decode
	Slide 27: 2. Motivation (a) Cost Analysis of Prefill and Decode
	Slide 28: 2. Motivation (b) Throughput-Latency Trade-off
	Slide 29: 2. Motivation (b) Throughput-Latency Trade-off
	Slide 30: 2. Motivation (b) Throughput-Latency Trade-off
	Slide 31: 2. Motivation (b) Throughput-Latency Trade-off
	Slide 32: 2. Motivation (c) Pipeline Bubbles waste GPU Cycles
	Slide 33: 3. Method (a) Chunked-prefills
	Slide 34: 3. Method (b) Stall-free batching
	Slide 35: 3. Method (b) Stall-free batching - Algorithm
	Slide 36: 3. Method (c) Determining Token Budget
	Slide 37: 4. Evaluation (a) Capacity
	Slide 38: 4. Evaluation (b) Latency
	Slide 39: 4. Evaluation (c) Making Pipeline Parallel Viable
	Slide 40: Thank you!

