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Introduction

Shridhar et al, ALFWORLD: Aligning Text and Embodied Environments for Interactive Learning, ICLR, 2021

Align text with real world

LLM based agent in Chemistry applications
LLM agent in the Embodied Environment



Various Type of LLM Based Agents
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Task Environments

• Summary of different types of environments
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Feed-Back Based Environments
Embodied Environments

Gaming Environments

Simulate real world physical interaction.

Deterministic and fully observable strategy games.

Gaming and Embodied environments come 
under feed-back based environments

.



Task Environments

• Summary of different types of environments



Web-Based Environment
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Natural Language Instruction Environment (NLIE)



Natural Language Instruction Environment (NLIE)

Single Step NLIE: No intermediate state (Si).
Single step decision making process.
Examples: Chain of Thought, Tree of Thought. Figure: Single Step NLIE

Muli-step NLIE: Generate intermediate state (Si)

Reformulate QA task as sub-questions where each 
sub-question is an intermediate state

Example: Reasoning via planning (RAP)

.

.

Figure: Multi-step NLIE

.



Single Step NLIE: Chain of Thought
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• Question (prompt) is the initial state, S0

• Answer is the final state, ST

• No state transition



Multi-Step NLIE: RAP
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Multi-Step NLIE: RAP
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• RAP planning with Monte Carlo Tree Search

• Used LLM to generate different actions



LLM Profile Roles
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LLM Policy (Planner)

Browsing internet Empty dishwasher Organize closet Wash face Take off shoes
Huang et al., Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents, ICML, 2022



LLM Policy (Planner)
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• An LLM planner under NLIE-QA, implemented by 
zero-shot Chain-of-Thought (CoT).

• Each step is considered as an action.



LLM Policy (Actor)

17



LLM Policy (Actor)

Directly maps a state 
to a single action

.

Early prompting frameworks for 
language generation tasks such as 
Chain-of-Thought

.

For embodied tasks, ReAct 
employ actor

.



LLM Policy (Actor): ReAct

19
Yao et al, ReACT: Synergizing Reasoning and Acting in Language Models, ICLR, 2023 (top 5%)

• CoT Prone to hallucination

• Act-Only model unable to reason

• ReAct uses both reasoning and interaction 
    with the world model



LLM Policy (Actor)
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LLM Policy (Actor)
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LLM as Evaluator
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LLM as Evaluator

General Flow diagram of LLM with feedback loop



LLM as Evaluator
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LLM as Dynamic Model

27



LLM as Dynamic Model
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• Part of a world model that predict next state from 
current state and action.

• Describe changes to the environment.



LLM as Dynamic Model
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A Review of Prominent Paradigms for 
LLM-Based Agents: Tool Use (Including 
RAG), Planning, and Feedback Learning

2nd Half Presented By: Md. Mahir Ashhab (ftm2nu)
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Overview of LLM-Profiled Roles (LMPRs)

The LMPR concept abstracts the internal mechanisms of LLM agents into three roles:
• glmpolicy – the decision-making component, generating actions or plans
• glmeval – an evaluator role, providing feedback or scoring candidate actions/states
• glmdynamic – a world model, predicting state transitions

These roles serve as 
• primitives for designing universal workflows that are agnostic to specific tasks or 

domains
• suitable across NLIEs (natural language interaction environments), decision-making 

tasks, and embodied simulations.
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Base Workflows
Base workflows  - simplest LLM-agent designs, involving direct execution of policy 
outputs:
• Planners (glmplanner): Generate full plans upfront (e.g., Plan-and-Solve, DEPS, 

OPEx)
• Actors (glmactor): Produce immediate next-step actions (e.g., Chain-of-Thought, 

ReAct)

These workflows are particularly prominent in 
• NLIEs where interaction is often a single-step decision (e.g., QA tasks)
• sequential interactions with environments like ALFWorld. 
• Chain-of-Thought prompting (Wei et al., 2022) is considered a base workflow

o because the action space is static 
o no explicit feedback loop exists.
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Example 
Prompt for 
Planner 
workflows
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Example 
Prompt for 
LLM Actor 
workflows
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Tool-Use Workflows

Tool-use workflows 
• expand the agent's capabilities by 

o incorporating external systems (retrievers, validators, calculators, etc.) 
into the decision loop. 

• Categorized into 
o Passive
o Autonomous 
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Passive Tool Use
• RAG-Style (Retrieval-Augmented Generation):

• Tools are used to retrieve information before generation.
• glmpolicy remains unaware of tools during generation.
• Example: classic RAG, RePlug, Multi-Task Embedder.

• Passive Validation:
• Tools validate outputs from glmpolicy after generation.
• Does not affect the generation process in real time (e.g., Guan 

et al., 2023).
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Autonomous Tool Use
Autonomous Tool Use
• The LLM itself decides 

o When and how to invoke tools
o Necessitating tool-awareness in the prompt or memory.

Three types of usage
• In-Generation Triggers: Tools are invoked based on detected token patterns 

during generation (e.g., MultiTool-CoT; see Appendix Table 7).
• Reasoning-Acting Strategy: Inspired by ReAct (Yao et al., 2023b), each reasoning-

action loop prompts the agent explicitly, enabling tighter integration.
• Confidence-Based Invocation: Tools are used if the LLM's generation confidence 

(e.g., token probability) falls below a threshold (e.g., Active RAG). 
o However, this method lacks tool specificity.
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LLM actor 
within Tool-
Use 
Workflow: In-
generation 
Triggers
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LLM actor 
within Tool-
Use 
Workflow: 
Reasoning 
Acting 
Strategy
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Autonomous Validation

• A hybrid workflow 
• glmpolicy generates output 
• glmeval autonomously decides whether to invoke tools for 

validation (e.g., CRITIC). 
• This setup overlaps with feedback learning, revealing workflow 

entanglement.

• Remark: These validation workflows are often feedback-learning 
in disguise—reinforcing the broader claim that paradigms are not 
mutually exclusive but structurally linked.
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Search Workflows

Search workflows provide 
• exploration capabilities for complex or long-horizon 

tasks
• addressing the limitations of greedy planning.
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Traversal and Heuristic-Based Search

Traversal and Heuristic-Based Search
• Nodes are generated by glmpolicy and stored in a tree or graph (e.g., 

Tree-of-Thoughts, Tree-Beam Search).
• glmeval selects nodes to expand using scoring or classification
• This setup supports
o depth-first, breadth-first, or beam search.
o Beam search retains top-N paths based on glmeval scores, enabling 

broader exploration with limited compute.
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LLM 
evaluator:
Traversal 
and 
Heuristic-
Based 
Search
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LLM 
evaluator:
Traversal 
and 
Heuristic-
Based 
Search

49



Simulation-Based Search (MCTS)

Monte Carlo Tree Search (MCTS) introduces probabilistic 
simulation into the planning process:
• Nodes are expanded based on accumulated statistics (e.g., 

average rewards).
• The simulation phase involves glmpolicy (action proposal), glmeval 

(evaluation), and glmdynamic (state transition).
• Only the root action is executed, minimizing risk from 

speculative branches.
• Key examples include RAP, LLM-MCTS, and AgentQ. 

50



LLM actor:
Simulation
-Based 
Search
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LLM-
Profiled 
Dynamic 
Model
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Feedback-Learning Workflows

Feedback-learning workflows close the loop by allowing agents to 
refine their decisions using feedback. Three main feedback sources 
exist:
• Internal (glmeval)

o Provides reflection (e.g., Self-Refine, Reflexion). 
o Often produces free-form textual feedback 

• Task Environment: 
o Rewards or state changes inform learning (e.g., Reflexion, where failures 

induce “self-reflection”).
• External Tools or Humans: 

o Either used directly or mediated via glmeval (e.g., CRITIC, Guan et al.).
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LLM evaluator 
within 
Feedback-
Learning 
Workflow

54



Comparative Discussions
Plan Generation Approaches
• glmplanner (Base Workflow): Greedy, static planning. Prone to failures in long-horizon tasks 

due to lack of exploration.
• Search Workflows: Explore alternatives, backtrack, and improve robustness. MCTS offers 

dynamic adaptability by discarding invalid subtrees.
glmactor Usage Variants
• Task Actions (Base/Feedback): Immediate execution
• Planning Actions (Search): Tree expansion
• Tool Actions (Tool-Use): Trigger or execute tools autonomously
glmeval Functional Differences
• In feedback learning, outputs are free-form and reused to regenerate decisions.
• In search, outputs are numerical or classification scores for node selection.
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Types of LLM-Profiled Evaluators According to 
Task Formulation and Feedback Types
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Limitations and Future Directions

Limitation 1: Unified Workflows for Base + Tool Use
• While ReAct unifies base and tool workflows using alternating 

reasoning-acting steps, task-specific dependencies persist. 
• In QA, prompt templates are fixed.
• In embodied tasks, decision sequencing is dynamic. 
Thus, a fully general unified workflow remains elusive.
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Limitations and Future Directions

Limitation 2: No Universal Tool Use Framework
• Despite the theoretical appeal, tool use today remains highly 

specialized (e.g., calculators for math, retrievers for QA).
• Developing declarative tool interfaces and profiling strategies 

will be essential for general-purpose tool integration.
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Conclusion

This work is especially valuable for researchers aiming to:
• Compare frameworks in a task-agnostic manner
• Combine paradigms to create more powerful hybrid agents
• Understand design trade-offs based on the interaction of 

glmpolicy, glmeval, and glmdynamic
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rStar-Math: Small LLMs Can Master 
Math Reasoning with Self-Evolved Deep 
Thinking
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Problem Statement

• LLMs struggle with complex multi-step reasoning tasks (e.g., Olympiad-level 
problems).

• System 1 vs System 2 Reasoning:
• System 1: Generating complete solutions in a single inference. Fast, error-prone 

reasoning.
• System 2: Deliberate, slower, deeper reasoning (human-like reasoning).

• Problem: Single-step reasoning results in errors, requiring more robust models to 
handle step-by-step thinking.



Motivation

• High-quality math reasoning data is scarce.
• Synthesizing math data faces challenges in distinguishing correct and erroneous 

reasoning steps.
• Eliminating low-quality data is difficult without accurate feedback.
• Human labeling for step-by-step feedback is resource-intensive and hard to scale.
• Distill-based data synthesis, like GPT-4-distilled CoT data, has diminishing returns 

and cannot surpass teacher model capabilities.



Key Contributions 
of rStar-Math

• rStar-Math is a self-evolvable System 2-
style reasoning approach.

• Achieves state-of-the-art math 
reasoning, outperforming OpenAI o1 on 
challenging benchmarks with a 7B 
parameter model.

• Utilizes smaller language models (SLMs) 
with Monte Carlo Tree Search (MCTS) for 
self-evolutionary data generation.



Math Data Synthesis Challenges and Limitations

• Current Advancements: Math reasoning largely relies on curating high-quality CoT
data using GPT-distilled models like GPT-4.

• Limitations:
• Reasoning capabilities limited by the teacher LLM.
• Problems unsolvable by the teacher LLM are excluded from training.
• Error-prone intermediate steps in solvable problems are hard to detect.

• Scaling Issues:
• Rejection sampling improves quality but doesn't guarantee correct reasoning 

steps.
• Scaling CoT data results in diminishing returns (e.g., OpenMathInstruct-2 with 

only a 3.9% boost despite 8x dataset increase).



Scaling Test-time Compute for Math 
Reasoning

Scaling Laws: 
New scaling methods allow LLMs to 
improve by generating multiple samples 
and selecting the best solution using 
reward models.

Challenges:

Open-source methods for scaling test-
time computation show limited math 
reasoning gains.

Performance often limited by policy 
LLM or reward model issues.

rStar-Math Contribution:
Addresses limitations by iteratively 
evolving the policy LLM and reward 
model.

Achieves System 2-level reasoning 
performance, comparable to OpenAI o1.





Reward Models and the Process Preference Model 
(PPM)

• Reward models are essential but challenging to obtain for complex reasoning tasks.

• Step-Level Annotations:
• Collecting step-level annotations remains a significant obstacle.
• Current approaches like MCTS struggle to generate precise reward scores, limiting 

performance.

• rStar-Math Innovation:
• Introduces the Process Preference Model (PPM), eliminating the need for accurate step-level 

reward score annotations.
• Enhances reasoning quality by leveraging iterative improvements.



Methodology Design Choices



Monte Carlo Tree Search for System 2 Reasoning

Goal: Train a math policy SLM and a process reward model (PRM) integrated with Monte 
Carlo Tree Search (MCTS) for System 2 reasoning.
• Why MCTS?
1.Simplifies Complex Problems: Breaks down complex math problems into multiple 

single-step tasks, easing the difficulty for the policy SLM.
• Compared to methods like Best-of-N or self-consistency, which require full 

solution generation in one inference.
2.Step-by-Step Training Data:

• MCTS naturally provides step-level training data for both the policy SLM and PRM.
• Standard MCTS rollout assigns Q-values to each step, avoiding the need for human 

annotations.



Key Challenges

Limited Capability 
of 7 B SLMs

• Smaller models 
struggle to solve 
complex tasks 
compared with 
GPT-4–class 
models.

Error-Prone 
Self-Generated 

Data

• Incorrect final 
answers are 
common; 
intermediate 
reasoning steps are 
often flawed or 
low-quality.

Sparse Success on 
Hard Problems

• Baseline SLMs 
solve relatively few 
challenging 
examples, reducing 
the diversity of 
useful training 
examples.

Cost-Quality 
Trade-off

• Exhaustive search 
or manual 
annotation is 
impractical; naive 
self-training risks 
amplifying model 
mistakes.



Proposed Approach

• Dual 7 B SLMs: policy model + process reward model (PRM)
• Code-augmented CoT + MCTS: verified, Q-valued reasoning traces
• Four-Round Self-Evolution: Iteratively upgrade both the policy SLM 

and the reward model, enabling the system to tackle progressively 
harder problems and yield higher-quality data.

• Process Preference Model (PPM) scores whole trajectories, no 
per-step labels

• Compute-Efficient: fits on 4 × 40 GB A100 GPUs — practical for most 
labs



Step-by-Step Verified 
Reasoning Trajectory
• Objective: Generate step-by-step solution trajectories 

annotated with per-step Q-values to evaluate reasoning quality.

• Input: Problem x and policy model M.

• Search: Run Monte Carlo Tree Search to build a reasoning tree.

• Tree: Root is question x; children are intermediate steps; each 
step gets Q(sᵢ); a root-to-leaf path forms trajectory 
t = x⊕ s₁⊕…⊕ s_d.

• Extraction: Collect all root-to-leaf paths as set T = {t₁, t₂, …, tₙ}.

• Filtering: Use code-augmented Chain-of-Thought synthesis 
to remove low-quality trajectories and extensive rollouts to 
refine Q-values.

• Outcome: Curated training set of high-quality, Q-valued 
reasoning trajectories for supervised or RL fine-tuning.



Code-Augmented Chain-of-Thought (CoT) 
Generation
• Input & Root Node

Begin with the original problem statement x. Treat x as the root node of the Monte-Carlo 
Tree Search (MCTS).

• Initialize Search Parameters
• Choose the exploration constant c.
• Decide the total iteration / rollout budget R (how many MCTS cycles you will run).

• Selection Phase (tree policy)
• From the root, repeatedly pick the child node s that maximizes the UCT score



continued

• Expansion Phase
• Collect the current reasoning trajectory

x⊕s1⊕s2⊕⋯⊕si−1
• Prompt the policy model with this trajectory to 

produce n candidate next steps
si,0,…,si,n−1

• Each candidate consists of:
• an NL sub-step (as a Python comment), 

and
• a Python code snippet meant to carry out 

that sub-step.

• Code-Execution Filtering
• Concatenate the Python code from all prior 

accepted steps with each new candidate’s 
code.

• Execute the resulting script.
• Discard any candidate whose code raises an 

error; keep only those that run to completion.



Prompt examples



continued

• Scoring with the PPM 
• For every surviving candidate node, ask the PPM to predict its reward q(s)
• Update the node’s running average

• Back-Propagation
• Walk back up the tree from the expanded node to the root.
• Increment visit counts N(⋅) and update cumulative value estimates with 

the obtained reward.



continued

• Iterate
Repeat Selection → Expansion → Execution → Back-Propagation until the rollout 
budget R is exhausted (or another stopping criterion is met).

• Extract the Final CoT & Answer
• Select the path with the highest value (e.g., greatest visit count or best Q).
• Return:

• the full NL chain-of-thought (comments),
• the executable Python code that produced the result, and
• the final answer generated by that code.



Process Reward Models and Challenges

Process reward models are essential for 
solving challenging math problems by 

providing granular step-level reward 
signals.

Current Methods:

Human annotations and 
MCTS-generated scores 

are used to assign a score 
to each step.

Training uses methods 
like MSE loss or pointwise 
loss to minimize the gap 
between predicted and 

labled scores.

Main Challenge:

Precise per-step scoring 
is difficult.

Ranking and scoring fine-
grained steps (correct or 
incorrect) is particularly 

complex.



Process Preference Model (PPM) - Novel Training 
Method

• New Approach:
• Step-Level Positive-Negative Pairs: We train a Process Preference Model 

(PPM) using preference pairs instead of direct Q-values.

• Generation Process:
• Positive Steps: Two highest Q-value steps that lead to a correct answer.
• Negative Steps: Two lowest Q-value steps that lead to an incorrect answer.

• Final Step Relaxation:
• For the final answer step, positive pairs are selected based on the highest 

average Q-values, while negative pairs are from incorrect trajectories with the 
lowest Q-values.

• Advantages: This method helps overcome challenges related to ranking fine-
grained steps and reduces noise in training data.



Extensive 
Rollouts for 
Q-value 
Annotation

Accurate Q-value Q(s) 
annotation is crucial for 
guiding MCTS node 
selection towards correct 
problem-solving paths and 
identifying high-quality 
steps within trajectories.
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Self-Evolved Deep Thinking

rStar-Math trains small language models (SLMs) to become strong math 
solvers

Uses a 4-round self-evolution process

Progressively improves both the policy model (the model that generates math 
solutions) and the Process Preference Model (PPM) (which scores solution 
steps).



Stages Self-Evolution

Round 1 – Bootstrapping

Round 2 – Training Reliable PPM

Round 3 – PPM-Augmented MCTS

Round 4 – Solving the Hardest Problems



Training with Step-by-Step Verified Reasoning Trajectory

Training the PPM PPM is trained using step-level preference pairs: high-Q steps vs low-Q steps from the same problem.
The PPM predicts reward scores in [-1, 1] range using a scalar head replacing the standard token head.

Fine-Tuning the 
Policy SLM

The model is fine-tuned using high-Q-value trajectories—ensuring each training example has high-quality 
intermediate steps.

Reasoning Trajectory 
Generation

Uses MCTS rollouts to generate verified, step-by-step solution paths with Q-values.
Problems are categorized by difficulty (easy/medium/hard) based on how often models solve them.

Math Problem 
Collection

747,000 math problems are gathered from public datasets like NuminaMath and MetaMath.
Only high-quality problems are used (e.g., Olympiad/AIME level); GPT-4 is used carefully to synthesize more.



Round 1 – Bootstrapping

• Uses a very large model (DeepSeek-Coder-236B) to generate initial 
solutionpaths via MCTS. 

• Trains the first policy SLM (SLM-r1) with these trajectories. 
• No reliable PPM yet, so Q-values come from terminal-guided 

annotation (justbased on whether the final answer is correct). 

What happens?

• Kickstarts the self-training process since small models aren’t yet 
capable ofgenerating useful data on their own.

Why?



Round 2 – Training Reliable PPM

• Now using SLM-r1 for MCTS, they run 16 rollouts per 
problem for more accurate Q-values.

• These help train the first reliable PPM (PPM-r2).

What happens?

• A good reward model is key for guiding better solution search 
in future rounds.

Why?



Round 3 – PPM-Augmented MCTS

• MCTS now uses PPM-r2 to score steps during search.
• This results in much better reasoning trajectories, enabling 

training of even better models (SLM-r3 and PPM-r3).

What happens?

• PPM-guided MCTS generates higher-quality data, expanding 
coverage to harder math problems.

Why?



Round 4 – Solving the Hardest Problems

• Focuses on unsolved hard problems, especially Olympiad-level ones.
• Increases MCTS rollouts (to 64 or even 128) and varies random seeds to 

maximize solution discovery.
• Leads to SLM-r4 and PPM-r4.

What happens?

• Pushes the model to solve extremely hard problems that even GPT-4 
fails at.

Why?



Results of Self Evolution



Evaluation



Evaluation Setup

• Datasets:
Evaluates on a broad set of math benchmarks — covering grade-school, competition- level (AIME, 

AMC), Olympiad, college math, and out-of-domain tasks like GaoKao.
• Models Used:

Tests rStar-Math on four small LLMs (1.5B–7B), including both general-purpose and math-specialized 
models.
• Training Setup:

Full 4-round self-evolution done only on Qwen2.5-Math-7B; other models fine-tuned using its final 
outputs.
• Baselines Compared:

Includes top closed-source models (GPT-4o, Claude), open-source systems (e.g., LLaMA3), and Best-
of-N setups.
• Metric:

Uses Pass@1 accuracy; System 2 methods use MCTS-based test-time search with 8–64 trajectories.



Main Results

Model Performance:
rStar-Math significantly boosts math reasoning ability of SLMs across all benchmarks.

System 2 Advantage:
MCTS-based deep reasoning enables small models to match or outperform larger models 
that rely on one-shot or Best-of-N methods.

Generality:
rStar-Math performs well not only on familiar benchmarks (like MATH or GSM8K) but also 
generalizes to new, harder benchmarks (e.g., Olympiad, College Math, GaoKao).



Main 
comparison of 
rStar-Math vs. 

baseline models 
across 

benchmarks



Impact of scaling test-time compute



Ablation Study and Analysis
Self-Evolution Effectiveness

• Performance improves consistently across rounds.
• Round 2 introduces a strong PPM, which unlocks deeper reasoning capability.

Verified Reasoning Trajectories
• Fine-tuning with verified, code-checked trajectories outperforms distillation or 

random/rejection-based sampling.

PPM Effectiveness
• PPM (process-level reward model) outperforms outcome-based reward models.
• Enables more accurate guidance during step-by-step reasoning.



Self-Evolution 
Effectiveness

• Shows performance improvements from Round 1 → Round 4.
• Demonstrates how accuracy improves as policy SLM and PPM 

evolve.



Verified Reasoning 
Trajectories

• Compares fine-tuning on different training datasets.
• Shows verified CoT trajectories outperform GPT-distilled, 

random, and rejection-sampled data.



PPM 
Effectiveness

• Compares three reward models: ORM, PQM, and PPM.
• PPM leads to the best math reasoning performance.



Findings and Discussions
• 🪞  Intrinsic Self-Reflection

• rStar-Math exhibits self-correction during MCTS rollouts.
• The model detects low-quality reasoning paths and backtracks to try better approaches.

•  PPM Recognizes Key Theorem Applications
• PPM assigns higher scores to steps that apply mathematical theorems.
• Helps the model focus on conceptually meaningful moves

•  Generalization Potential
• rStar-Math’s methodology is domain-agnostic.
• Can generalize to:

• Theorem proving
• Code reasoning (via test cases)
• Commonsense reasoning (via LLM mutual verification)



Example of intrinsic self-reflection



Performance comparison across models with 
different RMs



Recognizes 
Key 

Theorem 
Applications



Conclusion
rStar-Math enables small language models (1.5B–7B) to achieve state-of-the-art 
math reasoning.

Uses a self-evolving, System 2-style approach

Achieves performance comparable to or better than GPT-4-level models, without 
distillation.

Introduces key capabilities like self-reflection and theorem-aware reasoning.

Generalizable to other domains like code, logic, and commonsense reasoning.



Questions ?



Limitations and Future Directions

Limitation 3: Agentic Formulation of Language Tasks
• Framing NLP tasks (e.g., QA) as multi-step agentic processes 

(like MDPs) may overcomplicate simple queries.
• Recommendation

o Reconsidering when decomposition is necessary
o Especially for tasks that don’t benefit from subgoal planning.
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Future Direction

• Workflow Composition: 
o Combining feedback sources with tool-use,
o Or embedding MCTS into validation loops.

• Prompt Optimization: 
o Dynamically generating prompt templates via meta-learning or context-

aware sampling.

• Grounded Evaluation: 
o Designing benchmarks with realistic feedback sources (e.g., user reviews, 

external APIs) rather than gold labels.
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