
LLM based agents + Math-
small LLM rStar

1

A Review of Prominent Paradigms for LLM-
Based Agents: Tool Use (Including RAG),

Planning, and Feedback Learning

First Half
Name: Swakshar Deb (swd9tc)

2

Introduction

Shridhar et al, ALFWORLD: Aligning Text and Embodied Environments for Interactive Learning, ICLR, 2021

Align text with real world

LLM based agent in Chemistry applications
LLM agent in the Embodied Environment

Various Type of LLM Based Agents

4

Task Environments

• Summary of different types of environments

Fe
ed

 B
ac

k
Ba

se
d

En
vi

ro
nm

en
t

Feed-Back Based Environments
Embodied Environments

Gaming Environments

Simulate real world physical interaction.

Deterministic and fully observable strategy games.

Gaming and Embodied environments come
under feed-back based environments

.

Task Environments

• Summary of different types of environments

Web-Based Environment

8

Natural Language Instruction Environment (NLIE)

Natural Language Instruction Environment (NLIE)

Single Step NLIE: No intermediate state (Si).
Single step decision making process.
Examples: Chain of Thought, Tree of Thought. Figure: Single Step NLIE

Muli-step NLIE: Generate intermediate state (Si)

Reformulate QA task as sub-questions where each
sub-question is an intermediate state

Example: Reasoning via planning (RAP)

.

.

Figure: Multi-step NLIE

.

Single Step NLIE: Chain of Thought

11

• Question (prompt) is the initial state, S0

• Answer is the final state, ST

• No state transition

Multi-Step NLIE: RAP

12

Multi-Step NLIE: RAP

13

• RAP planning with Monte Carlo Tree Search

• Used LLM to generate different actions

LLM Profile Roles

14

LLM Policy (Planner)

Browsing internet Empty dishwasher Organize closet Wash face Take off shoes
Huang et al., Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents, ICML, 2022

LLM Policy (Planner)

16

• An LLM planner under NLIE-QA, implemented by
zero-shot Chain-of-Thought (CoT).

• Each step is considered as an action.

LLM Policy (Actor)

17

LLM Policy (Actor)

Directly maps a state
to a single action

.

Early prompting frameworks for
language generation tasks such as
Chain-of-Thought

.

For embodied tasks, ReAct
employ actor

.

LLM Policy (Actor): ReAct

19
Yao et al, ReACT: Synergizing Reasoning and Acting in Language Models, ICLR, 2023 (top 5%)

• CoT Prone to hallucination

• Act-Only model unable to reason

• ReAct uses both reasoning and interaction
 with the world model

LLM Policy (Actor)

22

LLM Policy (Actor)

23

LLM as Evaluator

24

LLM as Evaluator

General Flow diagram of LLM with feedback loop

LLM as Evaluator

26

LLM as Dynamic Model

27

LLM as Dynamic Model

29

• Part of a world model that predict next state from
current state and action.

• Describe changes to the environment.

LLM as Dynamic Model

30

A Review of Prominent Paradigms for
LLM-Based Agents: Tool Use (Including
RAG), Planning, and Feedback Learning

2nd Half Presented By: Md. Mahir Ashhab (ftm2nu)

33

Overview of LLM-Profiled Roles (LMPRs)

The LMPR concept abstracts the internal mechanisms of LLM agents into three roles:
• glmpolicy – the decision-making component, generating actions or plans
• glmeval – an evaluator role, providing feedback or scoring candidate actions/states
• glmdynamic – a world model, predicting state transitions

These roles serve as
• primitives for designing universal workflows that are agnostic to specific tasks or

domains
• suitable across NLIEs (natural language interaction environments), decision-making

tasks, and embodied simulations.

34

35

Base Workflows
Base workflows - simplest LLM-agent designs, involving direct execution of policy
outputs:
• Planners (glmplanner): Generate full plans upfront (e.g., Plan-and-Solve, DEPS,

OPEx)
• Actors (glmactor): Produce immediate next-step actions (e.g., Chain-of-Thought,

ReAct)

These workflows are particularly prominent in
• NLIEs where interaction is often a single-step decision (e.g., QA tasks)
• sequential interactions with environments like ALFWorld.
• Chain-of-Thought prompting (Wei et al., 2022) is considered a base workflow

o because the action space is static
o no explicit feedback loop exists.

36

Example
Prompt for
Planner
workflows

37

Example
Prompt for
LLM Actor
workflows

38

Tool-Use Workflows

Tool-use workflows
• expand the agent's capabilities by

o incorporating external systems (retrievers, validators, calculators, etc.)
into the decision loop.

• Categorized into
o Passive
o Autonomous

39

Passive Tool Use
• RAG-Style (Retrieval-Augmented Generation):

• Tools are used to retrieve information before generation.
• glmpolicy remains unaware of tools during generation.
• Example: classic RAG, RePlug, Multi-Task Embedder.

• Passive Validation:
• Tools validate outputs from glmpolicy after generation.
• Does not affect the generation process in real time (e.g., Guan

et al., 2023).

40

Autonomous Tool Use
Autonomous Tool Use
• The LLM itself decides

o When and how to invoke tools
o Necessitating tool-awareness in the prompt or memory.

Three types of usage
• In-Generation Triggers: Tools are invoked based on detected token patterns

during generation (e.g., MultiTool-CoT; see Appendix Table 7).
• Reasoning-Acting Strategy: Inspired by ReAct (Yao et al., 2023b), each reasoning-

action loop prompts the agent explicitly, enabling tighter integration.
• Confidence-Based Invocation: Tools are used if the LLM's generation confidence

(e.g., token probability) falls below a threshold (e.g., Active RAG).
o However, this method lacks tool specificity.

41

LLM actor
within Tool-
Use
Workflow: In-
generation
Triggers

42

LLM actor
within Tool-
Use
Workflow:
Reasoning
Acting
Strategy

43

Autonomous Validation

• A hybrid workflow
• glmpolicy generates output
• glmeval autonomously decides whether to invoke tools for

validation (e.g., CRITIC).
• This setup overlaps with feedback learning, revealing workflow

entanglement.

• Remark: These validation workflows are often feedback-learning
in disguise—reinforcing the broader claim that paradigms are not
mutually exclusive but structurally linked.

44

45

Search Workflows

Search workflows provide
• exploration capabilities for complex or long-horizon

tasks
• addressing the limitations of greedy planning.

46

Traversal and Heuristic-Based Search

Traversal and Heuristic-Based Search
• Nodes are generated by glmpolicy and stored in a tree or graph (e.g.,

Tree-of-Thoughts, Tree-Beam Search).
• glmeval selects nodes to expand using scoring or classification
• This setup supports
o depth-first, breadth-first, or beam search.
o Beam search retains top-N paths based on glmeval scores, enabling

broader exploration with limited compute.

47

LLM
evaluator:
Traversal
and
Heuristic-
Based
Search

48

LLM
evaluator:
Traversal
and
Heuristic-
Based
Search

49

Simulation-Based Search (MCTS)

Monte Carlo Tree Search (MCTS) introduces probabilistic
simulation into the planning process:
• Nodes are expanded based on accumulated statistics (e.g.,

average rewards).
• The simulation phase involves glmpolicy (action proposal), glmeval

(evaluation), and glmdynamic (state transition).
• Only the root action is executed, minimizing risk from

speculative branches.
• Key examples include RAP, LLM-MCTS, and AgentQ.

50

LLM actor:
Simulation
-Based
Search

51

LLM-
Profiled
Dynamic
Model

52

Feedback-Learning Workflows

Feedback-learning workflows close the loop by allowing agents to
refine their decisions using feedback. Three main feedback sources
exist:
• Internal (glmeval)

o Provides reflection (e.g., Self-Refine, Reflexion).
o Often produces free-form textual feedback

• Task Environment:
o Rewards or state changes inform learning (e.g., Reflexion, where failures

induce “self-reflection”).
• External Tools or Humans:

o Either used directly or mediated via glmeval (e.g., CRITIC, Guan et al.).

53

LLM evaluator
within
Feedback-
Learning
Workflow

54

Comparative Discussions
Plan Generation Approaches
• glmplanner (Base Workflow): Greedy, static planning. Prone to failures in long-horizon tasks

due to lack of exploration.
• Search Workflows: Explore alternatives, backtrack, and improve robustness. MCTS offers

dynamic adaptability by discarding invalid subtrees.
glmactor Usage Variants
• Task Actions (Base/Feedback): Immediate execution
• Planning Actions (Search): Tree expansion
• Tool Actions (Tool-Use): Trigger or execute tools autonomously
glmeval Functional Differences
• In feedback learning, outputs are free-form and reused to regenerate decisions.
• In search, outputs are numerical or classification scores for node selection.

57

Types of LLM-Profiled Evaluators According to
Task Formulation and Feedback Types

58

Limitations and Future Directions

Limitation 1: Unified Workflows for Base + Tool Use
• While ReAct unifies base and tool workflows using alternating

reasoning-acting steps, task-specific dependencies persist.
• In QA, prompt templates are fixed.
• In embodied tasks, decision sequencing is dynamic.
Thus, a fully general unified workflow remains elusive.

60

Limitations and Future Directions

Limitation 2: No Universal Tool Use Framework
• Despite the theoretical appeal, tool use today remains highly

specialized (e.g., calculators for math, retrievers for QA).
• Developing declarative tool interfaces and profiling strategies

will be essential for general-purpose tool integration.

61

Conclusion

This work is especially valuable for researchers aiming to:
• Compare frameworks in a task-agnostic manner
• Combine paradigms to create more powerful hybrid agents
• Understand design trade-offs based on the interaction of

glmpolicy, glmeval, and glmdynamic

64

rStar-Math: Small LLMs Can Master
Math Reasoning with Self-Evolved Deep
Thinking

Presenters-
Rishov Paul (vst2hb)
Radowan Mahmud Redoy (snf4za)

Rishov Paul (vst2hb)

Problem Statement

• LLMs struggle with complex multi-step reasoning tasks (e.g., Olympiad-level
problems).

• System 1 vs System 2 Reasoning:
• System 1: Generating complete solutions in a single inference. Fast, error-prone

reasoning.
• System 2: Deliberate, slower, deeper reasoning (human-like reasoning).

• Problem: Single-step reasoning results in errors, requiring more robust models to
handle step-by-step thinking.

Motivation

• High-quality math reasoning data is scarce.
• Synthesizing math data faces challenges in distinguishing correct and erroneous

reasoning steps.
• Eliminating low-quality data is difficult without accurate feedback.
• Human labeling for step-by-step feedback is resource-intensive and hard to scale.
• Distill-based data synthesis, like GPT-4-distilled CoT data, has diminishing returns

and cannot surpass teacher model capabilities.

Key Contributions
of rStar-Math

• rStar-Math is a self-evolvable System 2-
style reasoning approach.

• Achieves state-of-the-art math
reasoning, outperforming OpenAI o1 on
challenging benchmarks with a 7B
parameter model.

• Utilizes smaller language models (SLMs)
with Monte Carlo Tree Search (MCTS) for
self-evolutionary data generation.

Math Data Synthesis Challenges and Limitations

• Current Advancements: Math reasoning largely relies on curating high-quality CoT
data using GPT-distilled models like GPT-4.

• Limitations:
• Reasoning capabilities limited by the teacher LLM.
• Problems unsolvable by the teacher LLM are excluded from training.
• Error-prone intermediate steps in solvable problems are hard to detect.

• Scaling Issues:
• Rejection sampling improves quality but doesn't guarantee correct reasoning

steps.
• Scaling CoT data results in diminishing returns (e.g., OpenMathInstruct-2 with

only a 3.9% boost despite 8x dataset increase).

Scaling Test-time Compute for Math
Reasoning

Scaling Laws:
New scaling methods allow LLMs to
improve by generating multiple samples
and selecting the best solution using
reward models.

Challenges:

Open-source methods for scaling test-
time computation show limited math
reasoning gains.

Performance often limited by policy
LLM or reward model issues.

rStar-Math Contribution:
Addresses limitations by iteratively
evolving the policy LLM and reward
model.

Achieves System 2-level reasoning
performance, comparable to OpenAI o1.

Reward Models and the Process Preference Model
(PPM)

• Reward models are essential but challenging to obtain for complex reasoning tasks.

• Step-Level Annotations:
• Collecting step-level annotations remains a significant obstacle.
• Current approaches like MCTS struggle to generate precise reward scores, limiting

performance.

• rStar-Math Innovation:
• Introduces the Process Preference Model (PPM), eliminating the need for accurate step-level

reward score annotations.
• Enhances reasoning quality by leveraging iterative improvements.

Methodology Design Choices

Monte Carlo Tree Search for System 2 Reasoning

Goal: Train a math policy SLM and a process reward model (PRM) integrated with Monte
Carlo Tree Search (MCTS) for System 2 reasoning.
• Why MCTS?
1.Simplifies Complex Problems: Breaks down complex math problems into multiple

single-step tasks, easing the difficulty for the policy SLM.
• Compared to methods like Best-of-N or self-consistency, which require full

solution generation in one inference.
2.Step-by-Step Training Data:

• MCTS naturally provides step-level training data for both the policy SLM and PRM.
• Standard MCTS rollout assigns Q-values to each step, avoiding the need for human

annotations.

Key Challenges

Limited Capability
of 7 B SLMs

• Smaller models
struggle to solve
complex tasks
compared with
GPT-4–class
models.

Error-Prone
Self-Generated

Data

• Incorrect final
answers are
common;
intermediate
reasoning steps are
often flawed or
low-quality.

Sparse Success on
Hard Problems

• Baseline SLMs
solve relatively few
challenging
examples, reducing
the diversity of
useful training
examples.

Cost-Quality
Trade-off

• Exhaustive search
or manual
annotation is
impractical; naive
self-training risks
amplifying model
mistakes.

Proposed Approach

• Dual 7 B SLMs: policy model + process reward model (PRM)
• Code-augmented CoT + MCTS: verified, Q-valued reasoning traces
• Four-Round Self-Evolution: Iteratively upgrade both the policy SLM

and the reward model, enabling the system to tackle progressively
harder problems and yield higher-quality data.

• Process Preference Model (PPM) scores whole trajectories, no
per-step labels

• Compute-Efficient: fits on 4 × 40 GB A100 GPUs — practical for most
labs

Step-by-Step Verified
Reasoning Trajectory
• Objective: Generate step-by-step solution trajectories

annotated with per-step Q-values to evaluate reasoning quality.

• Input: Problem x and policy model M.

• Search: Run Monte Carlo Tree Search to build a reasoning tree.

• Tree: Root is question x; children are intermediate steps; each
step gets Q(sᵢ); a root-to-leaf path forms trajectory
t = x⊕ s₁⊕…⊕ s_d.

• Extraction: Collect all root-to-leaf paths as set T = {t₁, t₂, …, tₙ}.

• Filtering: Use code-augmented Chain-of-Thought synthesis
to remove low-quality trajectories and extensive rollouts to
refine Q-values.

• Outcome: Curated training set of high-quality, Q-valued
reasoning trajectories for supervised or RL fine-tuning.

Code-Augmented Chain-of-Thought (CoT)
Generation
• Input & Root Node

Begin with the original problem statement x. Treat x as the root node of the Monte-Carlo
Tree Search (MCTS).

• Initialize Search Parameters
• Choose the exploration constant c.
• Decide the total iteration / rollout budget R (how many MCTS cycles you will run).

• Selection Phase (tree policy)
• From the root, repeatedly pick the child node s that maximizes the UCT score

continued

• Expansion Phase
• Collect the current reasoning trajectory

x⊕s1⊕s2⊕⋯⊕si−1
• Prompt the policy model with this trajectory to

produce n candidate next steps
si,0,…,si,n−1

• Each candidate consists of:
• an NL sub-step (as a Python comment),

and
• a Python code snippet meant to carry out

that sub-step.

• Code-Execution Filtering
• Concatenate the Python code from all prior

accepted steps with each new candidate’s
code.

• Execute the resulting script.
• Discard any candidate whose code raises an

error; keep only those that run to completion.

Prompt examples

continued

• Scoring with the PPM
• For every surviving candidate node, ask the PPM to predict its reward q(s)
• Update the node’s running average

• Back-Propagation
• Walk back up the tree from the expanded node to the root.
• Increment visit counts N(⋅) and update cumulative value estimates with

the obtained reward.

continued

• Iterate
Repeat Selection → Expansion → Execution → Back-Propagation until the rollout
budget R is exhausted (or another stopping criterion is met).

• Extract the Final CoT & Answer
• Select the path with the highest value (e.g., greatest visit count or best Q).
• Return:

• the full NL chain-of-thought (comments),
• the executable Python code that produced the result, and
• the final answer generated by that code.

Process Reward Models and Challenges

Process reward models are essential for
solving challenging math problems by

providing granular step-level reward
signals.

Current Methods:

Human annotations and
MCTS-generated scores

are used to assign a score
to each step.

Training uses methods
like MSE loss or pointwise
loss to minimize the gap
between predicted and

labled scores.

Main Challenge:

Precise per-step scoring
is difficult.

Ranking and scoring fine-
grained steps (correct or
incorrect) is particularly

complex.

Process Preference Model (PPM) - Novel Training
Method

• New Approach:
• Step-Level Positive-Negative Pairs: We train a Process Preference Model

(PPM) using preference pairs instead of direct Q-values.

• Generation Process:
• Positive Steps: Two highest Q-value steps that lead to a correct answer.
• Negative Steps: Two lowest Q-value steps that lead to an incorrect answer.

• Final Step Relaxation:
• For the final answer step, positive pairs are selected based on the highest

average Q-values, while negative pairs are from incorrect trajectories with the
lowest Q-values.

• Advantages: This method helps overcome challenges related to ranking fine-
grained steps and reduces noise in training data.

Extensive
Rollouts for
Q-value
Annotation

Accurate Q-value Q(s)
annotation is crucial for
guiding MCTS node
selection towards correct
problem-solving paths and
identifying high-quality
steps within trajectories.

Radowan Mahmud Redoy (snf4za)

Self-Evolved Deep Thinking

rStar-Math trains small language models (SLMs) to become strong math
solvers

Uses a 4-round self-evolution process

Progressively improves both the policy model (the model that generates math
solutions) and the Process Preference Model (PPM) (which scores solution
steps).

Stages Self-Evolution

Round 1 – Bootstrapping

Round 2 – Training Reliable PPM

Round 3 – PPM-Augmented MCTS

Round 4 – Solving the Hardest Problems

Training with Step-by-Step Verified Reasoning Trajectory

Training the PPM PPM is trained using step-level preference pairs: high-Q steps vs low-Q steps from the same problem.
The PPM predicts reward scores in [-1, 1] range using a scalar head replacing the standard token head.

Fine-Tuning the
Policy SLM

The model is fine-tuned using high-Q-value trajectories—ensuring each training example has high-quality
intermediate steps.

Reasoning Trajectory
Generation

Uses MCTS rollouts to generate verified, step-by-step solution paths with Q-values.
Problems are categorized by difficulty (easy/medium/hard) based on how often models solve them.

Math Problem
Collection

747,000 math problems are gathered from public datasets like NuminaMath and MetaMath.
Only high-quality problems are used (e.g., Olympiad/AIME level); GPT-4 is used carefully to synthesize more.

Round 1 – Bootstrapping

• Uses a very large model (DeepSeek-Coder-236B) to generate initial
solutionpaths via MCTS.

• Trains the first policy SLM (SLM-r1) with these trajectories.
• No reliable PPM yet, so Q-values come from terminal-guided

annotation (justbased on whether the final answer is correct).

What happens?

• Kickstarts the self-training process since small models aren’t yet
capable ofgenerating useful data on their own.

Why?

Round 2 – Training Reliable PPM

• Now using SLM-r1 for MCTS, they run 16 rollouts per
problem for more accurate Q-values.

• These help train the first reliable PPM (PPM-r2).

What happens?

• A good reward model is key for guiding better solution search
in future rounds.

Why?

Round 3 – PPM-Augmented MCTS

• MCTS now uses PPM-r2 to score steps during search.
• This results in much better reasoning trajectories, enabling

training of even better models (SLM-r3 and PPM-r3).

What happens?

• PPM-guided MCTS generates higher-quality data, expanding
coverage to harder math problems.

Why?

Round 4 – Solving the Hardest Problems

• Focuses on unsolved hard problems, especially Olympiad-level ones.
• Increases MCTS rollouts (to 64 or even 128) and varies random seeds to

maximize solution discovery.
• Leads to SLM-r4 and PPM-r4.

What happens?

• Pushes the model to solve extremely hard problems that even GPT-4
fails at.

Why?

Results of Self Evolution

Evaluation

Evaluation Setup

• Datasets:
Evaluates on a broad set of math benchmarks — covering grade-school, competition- level (AIME,

AMC), Olympiad, college math, and out-of-domain tasks like GaoKao.
• Models Used:

Tests rStar-Math on four small LLMs (1.5B–7B), including both general-purpose and math-specialized
models.
• Training Setup:

Full 4-round self-evolution done only on Qwen2.5-Math-7B; other models fine-tuned using its final
outputs.
• Baselines Compared:

Includes top closed-source models (GPT-4o, Claude), open-source systems (e.g., LLaMA3), and Best-
of-N setups.
• Metric:

Uses Pass@1 accuracy; System 2 methods use MCTS-based test-time search with 8–64 trajectories.

Main Results

Model Performance:
rStar-Math significantly boosts math reasoning ability of SLMs across all benchmarks.

System 2 Advantage:
MCTS-based deep reasoning enables small models to match or outperform larger models
that rely on one-shot or Best-of-N methods.

Generality:
rStar-Math performs well not only on familiar benchmarks (like MATH or GSM8K) but also
generalizes to new, harder benchmarks (e.g., Olympiad, College Math, GaoKao).

Main
comparison of
rStar-Math vs.

baseline models
across

benchmarks

Impact of scaling test-time compute

Ablation Study and Analysis
Self-Evolution Effectiveness

• Performance improves consistently across rounds.
• Round 2 introduces a strong PPM, which unlocks deeper reasoning capability.

Verified Reasoning Trajectories
• Fine-tuning with verified, code-checked trajectories outperforms distillation or

random/rejection-based sampling.

PPM Effectiveness
• PPM (process-level reward model) outperforms outcome-based reward models.
• Enables more accurate guidance during step-by-step reasoning.

Self-Evolution
Effectiveness

• Shows performance improvements from Round 1 → Round 4.
• Demonstrates how accuracy improves as policy SLM and PPM

evolve.

Verified Reasoning
Trajectories

• Compares fine-tuning on different training datasets.
• Shows verified CoT trajectories outperform GPT-distilled,

random, and rejection-sampled data.

PPM
Effectiveness

• Compares three reward models: ORM, PQM, and PPM.
• PPM leads to the best math reasoning performance.

Findings and Discussions
• 🪞 Intrinsic Self-Reflection

• rStar-Math exhibits self-correction during MCTS rollouts.
• The model detects low-quality reasoning paths and backtracks to try better approaches.

• PPM Recognizes Key Theorem Applications
• PPM assigns higher scores to steps that apply mathematical theorems.
• Helps the model focus on conceptually meaningful moves

• Generalization Potential
• rStar-Math’s methodology is domain-agnostic.
• Can generalize to:

• Theorem proving
• Code reasoning (via test cases)
• Commonsense reasoning (via LLM mutual verification)

Example of intrinsic self-reflection

Performance comparison across models with
different RMs

Recognizes
Key

Theorem
Applications

Conclusion
rStar-Math enables small language models (1.5B–7B) to achieve state-of-the-art
math reasoning.

Uses a self-evolving, System 2-style approach

Achieves performance comparable to or better than GPT-4-level models, without
distillation.

Introduces key capabilities like self-reflection and theorem-aware reasoning.

Generalizable to other domains like code, logic, and commonsense reasoning.

Questions ?

Limitations and Future Directions

Limitation 3: Agentic Formulation of Language Tasks
• Framing NLP tasks (e.g., QA) as multi-step agentic processes

(like MDPs) may overcomplicate simple queries.
• Recommendation

o Reconsidering when decomposition is necessary
o Especially for tasks that don’t benefit from subgoal planning.

62

Future Direction

• Workflow Composition:
o Combining feedback sources with tool-use,
o Or embedding MCTS into validation loops.

• Prompt Optimization:
o Dynamically generating prompt templates via meta-learning or context-

aware sampling.

• Grounded Evaluation:
o Designing benchmarks with realistic feedback sources (e.g., user reviews,

external APIs) rather than gold labels.

63

	Slide 1: LLM based agents + Math-small LLM rStar
	Slide 2: A Review of Prominent Paradigms for LLM-Based Agents: Tool Use (Including RAG), Planning, and Feedback Learning
	Slide 3: Introduction
	Slide 4: Various Type of LLM Based Agents
	Slide 5: Task Environments
	Slide 6: Feed-Back Based Environments
	Slide 7: Task Environments
	Slide 8: Web-Based Environment
	Slide 9: Natural Language Instruction Environment (NLIE)
	Slide 10: Natural Language Instruction Environment (NLIE)
	Slide 11: Single Step NLIE: Chain of Thought
	Slide 12: Multi-Step NLIE: RAP
	Slide 13: Multi-Step NLIE: RAP
	Slide 14: LLM Profile Roles
	Slide 15: LLM Policy (Planner)
	Slide 16: LLM Policy (Planner)
	Slide 17: LLM Policy (Actor)
	Slide 18: LLM Policy (Actor)
	Slide 19: LLM Policy (Actor): ReAct
	Slide 22: LLM Policy (Actor)
	Slide 23: LLM Policy (Actor)
	Slide 24: LLM as Evaluator
	Slide 25: LLM as Evaluator
	Slide 26: LLM as Evaluator
	Slide 27: LLM as Dynamic Model
	Slide 29: LLM as Dynamic Model
	Slide 30: LLM as Dynamic Model
	Slide 33: A Review of Prominent Paradigms for LLM-Based Agents: Tool Use (Including RAG), Planning, and Feedback Learning
	Slide 34: Overview of LLM-Profiled Roles (LMPRs)
	Slide 35
	Slide 36: Base Workflows
	Slide 37: Example Prompt for Planner workflows
	Slide 38: Example Prompt for LLM Actor workflows
	Slide 39: Tool-Use Workflows
	Slide 40: Passive Tool Use
	Slide 41: Autonomous Tool Use
	Slide 42: LLM actor within Tool-Use Workflow: In-generation Triggers
	Slide 43: LLM actor within Tool-Use Workflow: Reasoning Acting Strategy
	Slide 44: Autonomous Validation
	Slide 45
	Slide 46: Search Workflows
	Slide 47: Traversal and Heuristic-Based Search
	Slide 48: LLM evaluator: Traversal and Heuristic-Based Search
	Slide 49: LLM evaluator: Traversal and Heuristic-Based Search
	Slide 50: Simulation-Based Search (MCTS)
	Slide 51: LLM actor: Simulation-Based Search
	Slide 52: LLM-Profiled Dynamic Model
	Slide 53: Feedback-Learning Workflows
	Slide 54: LLM evaluator within Feedback-Learning Workflow
	Slide 57: Comparative Discussions
	Slide 58: Types of LLM-Profiled Evaluators According to Task Formulation and Feedback Types
	Slide 60: Limitations and Future Directions
	Slide 61: Limitations and Future Directions
	Slide 62: Limitations and Future Directions
	Slide 63: Future Direction
	Slide 64: Conclusion

