
Model Interpretibility for FM

- Open Problems in Mechanistic Interpretability
- Position-aware Automatic Circuit Discovery

1

Open Problems in Mechanistic
Interpretability

2

Matthew Nguyen (ttn5cv)

3

● Introduction
● Open problems in mechanistic interpretability

methods and foundations
● Open problems in applications of mechanistic

interpretability
● Open socio-technical problems in mechanistic

interpretability
● Conclusion

Contents

4

Introduction

5

● Emergent AI Capabilities: Modern AI systems achieve impressive capabilities through deep

neural networks that learn autonomously from training data, meaning their internal

mechanisms are not explicitly designed or fully understood by developers.

Introduction

6

● Enhanced Control and Trust: Gaining insight into these neural mechanisms could improve

human control, monitoring, and trust in AI systems, which is critical for deploying them

safely in high-stakes and ethically-sensitive settings.

● Scientific and Engineering Opportunities: The field of mechanistic interpretability seeks to

understand how neural networks make decisions, offering the potential to uncover new

scientific principles and enhance practical applications in various domains.

● Although several recent reviews of mechanistic interpretability research and related

topics exist this paper takes a more forward-looking stance.

Motivation

7

● They discuss not only where the frontier is today, but also which directions we might

benefit most from prioritizing in the future.

● Interpretability by design: This thread focuses on constructing AI models to be transparent from

the outset, often using inherently interpretable architectures such as decision trees, linear models,

or additive models alongside classical attribution techniques to explain sensitivity to inputs and

training data.

Types of Interpretability

8

● Local attribution methods: This thread targets understanding individual decisions made by

large-scale neural networks by leveraging scalable attribution techniques that highlight the

influence of specific inputs on model outputs.

● Mechanistic interpretability: This thread investigates the internal computational structures and

shared mechanisms that enable neural networks to generalize across diverse tasks, aiming to

reveal how circuits, representation subspaces, and information flow patterns contribute to broad

model performance.

● Monitor AI systems for signs of dangerous or emergent cognition

Goals

9

● Enable targeted modifications to internal mechanisms and parameters to adjust
model behavior.

● Predict how models will act in unforeseen situations or acquire new capabilities.

● Enhance inference, training, and overall model performance to meet specific
preferences.

● Extract latent knowledge from models to improve our understanding of the world.

Methods and Foundations of Open
Problems

10

● Neural networks learn parameters that enable them to implement algorithms, which

process input data through a series of transformational steps to produce an output.

Mech Interp Approaches

11

● There are two primary strategies for mechanistic interpretability: reverse

engineering and concept-based interpretability

● Mechanistic interpretability is the study of understanding how different network

components contribute to these step-by-step processes.

12

● Although large language models produce human-like text, they use fundamentally different

cognitive processes and problem-solving methods. For instance, a small model can outperform

humans in next-token prediction yet struggle with tasks that even a young child can manage.

Reverse Engineering

13

● To understand these "alien" mechanisms, developing reverse-engineering methods is essential for

uncovering and interpreting the internal strategies these models employ.

● Reverse engineering generally involves three steps: decomposition, description of components,

and validation of descriptions

14

● Early approaches sought to interpret neural networks by breaking them down into

individual neurons, attention heads, or layers—mirroring the neuron doctrine in

neuroscience

Step 1: Neural Network Decomposition

15

● Research revealed that both neurons and attention heads are polysemantic, meaning they

respond to multiple features, which complicates their interpretation as distinct units

● Finally, observations indicate that network representations often span multiple layers,

suggesting that relying solely on natural architectural components can be misleading for

understanding neural network behavior

● Since single neurons fall short in capturing neural network computations, researchers are

exploring groups or patterns of neurons as the fundamental computational units.

Decomposition by dimensionality reduction

16

● Methods involve feeding models with diverse unlabeled inputs, gathering hidden

activations, and searching for structured activation vectors that might reflect the

underlying computation.

● Techniques such as PCA, SVD, and non-negative matrix factorization have been employed

to reveal these patterns, although they are no longer the dominant approaches in

mechanistic language model analysis.

● Exploits Sparse Activation: SDL is built on the superposition hypothesis, leveraging the idea

that neural networks can encode more features than they have activation dimensions by

ensuring each feature activates only sparsely.

Decomposition by sparse dictionary learning (SDL)

17

● Two-Layer Neural Decomposition: It typically employs a simple two-layer network—an

encoder that produces sparse latent activations and a decoder that serves as a dictionary

aligning with the feature directions in the hidden activations (with variants like sparse

autoencoders, transcoders, and crosscoders).

● Key Approach in Mechanistic Interpretability with Limitations: While SDL is currently the

leading unsupervised method for uncovering hidden features in neural networks, it comes

with substantial practical and conceptual challenges despite its innovative approach.

● .

18

● .

● .

19

● Instead of training solely for performance and interpreting models post hoc, intrinsic

interpretability focuses on embedding interpretability directly into the training process to

yield more decomposable models

Intrinsic Interpretability

20

● Proposed methods include forcing network activations to use discrete codes, employing

sparser activation functions (like TopK or SoLU), limiting attention superposition, and

utilizing approaches such as mixture of experts to encourage sparsely activating,

individually interpretable components.

● After decomposing the network, the next reverse engineering step is to hypothesize

and describe the functional role of each component

Step 2: Describing the functional role of components

21

● Descriptions of the functional role of neural network components can either indicate

(1) the cause of a component’s activation or (2) what occurs after that component has

been activated

22

● Highly activating dataset examples: This method identifies inputs that strongly trigger a

neural component to hypothesize its underlying function.

Explanations for what causes components to activate

23

● Attribution methods: These approaches quantify the causal impact of input features on a

component’s activation via gradient, sampling, or perturbation techniques.

● Feature synthesis: This strategy combines exemplar-based insights with gradient-based

attributions to generate synthetic inputs that maximize a component's activation under

regularization constraints.

● Studying the direct effect: This approach employs techniques like the logit lens and tuned

lens to convert intermediate activations into output predictions.

Explanations for the downstream effects of components

24

● Causal interventions: These methods perturb or replace specific neural activations or

connections during the model's forward pass (e.g., via patching, ablation, or path patching)

to isolate and measure their causal contributions.

● Observing the effects on sequential behavior: This strategy involves injecting activated

components into new contexts—through techniques such as steering, patchscopes, or

analyzing chains-of-thought—to interpret the role of these components in generating

sequential outputs.

Zeqiang Ning(avr7qy)

25

Step 3: Validation of description

26

● Initial descriptions of network components’ functional roles should be treated as hypotheses
● However, mixing up hypotheses with conclusions has been commonplace in mechanistic

interpretability research, such as some model interpretations fail sanity checks
● Two ways that can simplify the validation process:

○ Model organism
■ In certain natural sciences, such as neuroscience, researchers study a few

extensively researched species known as model organisms.
■ Knowledge gained from these organisms can be generalized and applied to other

species. Similarly, researchers in interpretability are exploring which neural
networks could serve as “model organisms” in the field of mechanistic
interpretability.

■ Open-source, easy to use, low-cost, representative of a wide range of systems and
behaviors, and have a reproducible training process with publicly available datasets

○ Benchmark
■ Benchmark has proven to be a highly effective evaluation method in other areas of

machine learning. Therefore, designing systematic benchmarking frameworks to
validate interpretability in the field of mechanistic interpretability is also a
promising direction.

Step 3: Validation of description

27

● Criteria: Does the hypothesis make good predictions about the neural network’s behavior?

● Forms of validating:
○ Predicting activations and counterfactuals
○ Predicting and explaining unusual failures or adversarial examples
○ Handcrafting a network that reconstructs a network behavior
○ Testing on ground truth
○ Using the hypothesis to achieve particular engineering goals
○ Using the hypothesis to achieve specific engineering goals competitively

28

Concept-based interpretability

29

Concept-based probes
- When we try to locate a human-understandable concept within a neural network, an intuitive

approach is to "probe" it.

- A probe is a classifier that is trained to predict a concept from the hidden representations of
another mode

- For example, if we have an image classification model and want to know whether the model uses
the concept of "ears" when recognizing a cat, we can use a trained probe to detect the concept of
"ears."You extract image patches from a dataset that either contain or do not contain "ears", label
them as 1 or 0 respectively, and train a simple linear classifier.

- If I erase the ear region in the input image and observe the model’s prediction for "cat", and it still
classifies the image as a cat, then it suggests that the model does not rely on the concept of "ears"
to recognize a cat.

Concept-based interpretability

30

Challenge 1: Probes need carefully chosen data for well-defined concepts

- We should know in advance what concept we are looking for

- We should be able to construct a high-quality dataset for that concept

- So you can only probe concepts that you have already clearly defined and labeled, but you cannot
discover concepts in the hidden layers that you have not yet thought of

- It is time-costing and impractical

- Solution: Contrastive Consistency Search (CCS)
- It does not probe a specific individual concept but instead explores a general "direction" in

the activation space, similar to unsupervised learning.

Concept-based interpretability

31

Challenge 2: Probes detect correlations, rather than causal variables

- Even if a probe can accurately predict the presence of a concept, it does not necessarily mean that
"the model is actually using this concept to make decisions."

- A major risk faced by probing methods is that, in addition to finding truly relevant features, they
may also uncover spurious correlations caused by the high dimensionality of hidden activations.

- To improve the causal relevance of probe directions, we can use counterfactual data — that is, we
intervene on the concept of interest (for example, observe what happens to the model's output if
a dog in the image is replaced with a cat).

Proceduralizing mechanistic interpretability into circuit
discovery pipelines

32

- Task Definition
- Choose a task that the model performs and the corresponding dataset

- Decomposition
- Represent the model as a DAG(directed acyclic graph)
- Nodes: Represent activations in the network, such as the output of a specific layer or an

individual neuron (architectural components,like attention heads）
- Edges: Represent the connections between different activations, i.e., "abstract weights."

These may correspond to actual neural network weights or more conceptual forms of
dependency.

- An initial description step: Identify task-relevant vs. -irrelevant subgraphs
- Identify task-relevant nodes/edges by casual interventions
- For example, in the task of recognizing a cat in an image, we can intervene on certain nodes

(e.g., by masking out the region corresponding to the cat's ears) and observe the model's
response to see whether it can still successfully recognize the cat.

Proceduralizing mechanistic interpretability into circuit
discovery pipelines

33

- An iterative description-validation loop
- After recognize the related subgraph, we need to know the functions of nodes/edges
- Design experiments to test hypotheses
- Loop until confident understanding of the functions of all the edges and nodes

- Final Validation
- Evaluate based on three attributes
- Faithfulness (the extent to which the circuit approximates the behavior of the entire

neural network)
- Minimality (are all parts necessary?)
- Completeness (did we miss anything important?)

Limitations of Circuit Discovery Pipelines

34

● Concept-based tasks → only capture average behavior, not individual cases.

● Imperfect decompositions → architectural & latent bases are flawed.

● Low faithfulness → causal metrics may mislead, contributing to circuits often unfaithful.

● Scalability issues → interventions are costly.

● Backup/negative behavior → important but will inhibit task performance.

● Streetlight effect → tasks chosen are too simple; hard tasks remain unsolved.

Axes of mechanistic interpretability progress

35

Decomposition vs. Description
 - Decomposition = how we split the network.

- Description = how deeply we understand each part.
- For description, deep = causal relationship, shallow = surface-level

Extent of Understanding Needed

- Some goals need single neuron but some needs whole model

Task Distribution Scope

- For some model, we can based on narrow tasks (e.g. behavior monitoring).

- Understand full task coverage (e.g. verification).

When Understanding Happens

- For some goals, understanding the mechanisms of a trained model is sufficient; but for more

ambitious goals, it is necessary to understand both the model’s mechanisms and how these

mechanisms evolve during the learning process.

Position-aware Automatic Circuit
Discovery

36

Wenhao Xu (wx8mcm)

37

● A circuit is a minimal subgraph of the model's computation

graph that performs a specific function.

● Nodes: components like attention heads, neurons, or layers.

● Edges: connections that pass activations (e.g., attention

patterns).

● Used to explain how models compute.

 Introduction

38

What is Circuit

● A circuit is a minimal subgraph of the model's computation

graph that performs a specific function.

● Nodes: components like attention heads, neurons, or layers.

● Edges: connections that pass activations (e.g., attention

patterns).

● Used to explain how models compute.

 Introduction

39

What is Circuit

● Manual methods (e.g., IOI circuit): precise but not scalable, prone to

bias, and hard to generalize.

● Automatic methods: use patching, gradients, or heuristics to

identify relevant components.

● However, they mostly assume position-invariance.

 Introduction

40

Why Automate Circuit Discovery?

● Many automatic methods treat

components as equally important across

all token positions.

● This position-agnostic assumption misses

cross-positional mechanisms.

● Leads to imprecise and bloated circuits.

41

 The Limitation of Position-Invariant Circuits

● Cancellation Across Positions:

○ Positive and negative effects from the same component cancel each other out.

○ Leads to low recall.

● Overestimation:

○ Small effects across many positions are summed up.

○ Leads to low precision.
42

Failure Modes in Non-Positional Circuit Discovery

● Evaluation done using the IOI task on

GPT2-small.

● Edge importance rankings differ

significantly depending on aggregation

method.

● Cancellation: positive/negative effects

cancel across positions.

● Overestimation: frequent but weak

contributions dominate rankings.

43

Quantifying the Problems

● Estimates indirect effect (IE) of edge e=(u,v) on metric M

● Based on counterfactual activation zu∗z_u^*zu∗ and gradient at v.

44

EAP Formula Recap

● Approximation avoids expensive full-patching.

● Still position-agnostic in Syed et al. (2023).

● PEAP focuses on attention heads, where each head at each token position is a

separate node.

● Output of head h is:

45

Modeling Attention Head Outputs in PEAP

● : output projection for head i
● q,k,v: standard attention vectors at position t

● PEAP computes effects of patching:

● Value vector:

● Key vector:

● Query vector:

46

Approximating Edge Effects Across Positions

● Once all position-aware edge scores are computed:

○ Use a greedy algorithm (adapted from Hanna et al., 2024b).

○ Select top edges to form a minimal faithful circuit.

● Can measure:

○ Soft Faithfulness

○ Hard Faithfulness

47

Constructing the Final Circuit

● Transformers are position-sensitive by design (via positional embeddings &

attention).

● Position-agnostic circuit discovery:

○ Misses causal interactions between positions.

○ Produces noisy and bloated circuits.

● Calls for a position-aware method of attribution and circuit discovery.

48

Why Position Matters in Circuits

● PEAP works best on templated inputs (fixed length, consistent token

positions).

● In real datasets, examples vary:

● “The war lasted from 1741 to...” vs. “The Black Plague ended in...”

● Same semantic role (e.g., subject) might appear at different positions.

● Positional analysis breaks when token roles shift.

● Goal: Align semantic meaning, not absolute position.

49

The Challenge of Variable-length Inputs

● A schema defines semantic spans (like “Subject”, “Time”, “Verb”) for each example.

● These spans:

○ Have consistent meanings across examples.

○ Can contain multiple tokens.

○ Enables semantic alignment across variable-length inputs.

50

Introducing Dataset Schemas

● Each example’s computation graph is

transformed into an abstract graph, where

nodes represent schema spans.

● Edges between schema spans correspond

to groups of edges between individual

tokens assigned to those spans.

● This transformation enables

computation-level abstraction, allowing

model behavior to be generalized across

examples with differing lengths and token

orderings.

51

 Abstracting Computation with Schemas

● The contribution of a schema-level edge is estimated by aggregating PEAP scores of

all corresponding token-level edges across the dataset.

● This provides a single importance score for each span-to-span connection that

captures its typical influence across examples.

● The result is a generalized attribution graph that represents consistent

computational patterns tied to semantic structure.

52

Aggregating Edge Importance Across Inputs

● Once a schema-level circuit is discovered, it can be applied to new examples

by mapping schema edges back to token-level edges.

● This produces instance-specific circuits that are consistent with the

generalized abstraction.

● These circuits are then used for faithfulness evaluation, measuring how

well the circuit captures the model’s behavior for that input.

53

Projecting Schema Circuits to Instance-specific Circuits

● Manual schema creation is impractical for large datasets or diverse tasks.

○ The authors design a pipeline using LLMs to:

○ Generate schema definitions from representative examples.

○ Assign span labels to all inputs.

● The pipeline ensures that token spans are:

○ Complete (all tokens labeled),

○ Consistently ordered, and

○ Aligned across the dataset.

54

Scalable Schema Generation via Large Language Models

● Token saliency scores are computed to identify which tokens most strongly influence

the model’s output.

● These scores are provided to the LLM as highlighted tokens during schema

generation.

● The LLM is instructed to assign highly salient tokens to separate, distinct schema

spans.

● This results in schema definitions that are more aligned with model behavior and

produce circuits with higher faithfulness.

55

Incorporating Saliency into Schema Discovery

● Schema assumes consistent span ordering across examples:

○ Cannot capture tasks with variable logical structure or non-linear inputs.

● No formal theory on what makes a schema optimal:

○ Current approaches are heuristic and data-driven.

● Saliency scores, while useful, are gradient-based and can be noisy:

○ Could be replaced with more principled attribution methods in future work.

56

Limitations of the Current Approach

● Objective: Evaluate the faithfulness and efficiency of PEAP-discovered circuits.

● Faithfulness measures:

○ Soft faithfulness: How closely does the circuit replicate the model’s output

scores?

○ Hard faithfulness: Does the circuit lead to the same predicted output as the full

model?

● Two model architectures tested:

○ GPT2-small (124M parameters)

○ LLaMA-3–8B (8 billion parameters)

● Three tasks selected to evaluate structure-sensitive reasoning:

○ IOI (Indirect Object Identification): Identify which noun a pronoun refers to.

○ Greater-Than: Determine whether a year is greater than a previous year in

context.

○ Winobias: Gender coreference resolution to test for social bias. 57

Evaluating Position-aware Circuits in Practice

● For each task:

○ PEAP is used to discover circuits (with and without schema abstraction).

○ Circuits are evaluated by measuring output fidelity compared to the full model.

● Circuits are compared based on:

○ Number of edges (smaller = more interpretable)

○ Faithfulness at fixed circuit sizes

58

Evaluation Pipeline

● The following circuit types are compared:

○ Non-positional circuits (baseline)

○ Position-aware token-level circuits (PEAP)

● Schema-level circuits:

○ Human-designed schema

○ LLM-only generated schema

○ LLM + Saliency-enhanced schema

59

Circuits Compared in Each Experiment

●

60

● This paper advances the field of interpretability by showing how:

○ Positionality and semantic abstraction work hand in hand.

● With PEAP and schemas:

○ Faithful and interpretable circuits can be discovered automatically,

○ Even in large models and real-world settings.

● This sets a foundation for future interpretability pipelines that are:

○ Scalable

○ Semantically meaningful

○ Aligned with internal model computations

61

Final Takeaways

Using mechanistic interpretability for better control of AI
system behavior

62

Activation Steering
- Adds a fixed activation vector to the model's intermediate layer based on the Linear

Representation Hypothesis
- Allows steering of the model's behavior with fewer side effects
- Future Direction: Steering entire mechanisms, not just individual features

Machine Unlearning
- Removing undesirable knowledge or sensitive data from models
- Interpretability helps precisely target mechanisms responsible for certain knowledge and

evaluate unlearning through white-box methods
- Current Limitation: Intermediate activation methods are not yet competitive

Model Editing
- Aims to precisely modify specific knowledge while preserving other capabilities
- Progress depends on better network decomposition and high-quality knowledge representation

and description methods

Interpretability and Finetuning
- Interpretability methods can improve finetuning efficiency (by modifying local parameters) and

better debug the side effects of finetuning

Chenxu Li (jnr2jp)

63

● Introduction
● Open problems in mechanistic interpretability

methods and foundations
● Open problems in applications of mechanistic

interpretability
● Open socio-technical problems in mechanistic

interpretability
● Conclusion

Contents

64

65

❏ Using mechanistic interpretability for better

❏ Predictions
❏ Improvement
❏ Extensions
❏ Human computer interaction

66

Predictions about AI systems

67

Interpretability helps predict behavior in novel situations

❖ Jailbreaking
By understanding the “jailbreaking” mechanisms within the model, it is
possible to foresee how users might circumvent security protections. (Lee
et al., 2025; Arditi et al., 2024)

❖ Trojans/Backdoors
A backdoor inside the model will trigger unexpected behavior when
encountering certain activations. (Casper et al., 2023)

❖ Other behavioral indicators

Predictions about AI systems

68

Interpretability helps predict capabilities that arise during training or
finetuning

❖ Black box (OpenAI et al., 2024; Anthropic, 2024)
❖ Model scale (Wei et al., 2022; Schaeffer et al., 2023)
❖ Phased capability transition (Michaud et al., 2023; Wang et al.,

2024b; Park et al., 2024a)
❖ Internal structure (Olsson et al., 2022)
❖ Training Data (Berglund et al., 2024; Reddy, 2024)
❖ Finetuning's two-way effect (Prakash et al., 2024; Jain et al., 2024;

Lee et al., 2025)

Using interpretability to improve inference and training

69

❖ Accelerated Reasoning
➢ Optimize computational workflows by understanding internal

generation processes
❖ Improving model distillation

➢ Develop more efficient distillation methods to identify and fill in
neglected functions

❖ Optimizing the training process
➢ Improving the selection of training data through mechanism analysis

❖ Modular design and reconfiguration
➢ Decompose the network into functional modules to facilitate

customization of specific computing structures
❖ Fault Intervention and Optimization

➢ Removing faulty reasoning mechanisms through internal intervention

Using mechanistic interpretability for“microscope AI”

70

Cases

❖ In the AlphaZero study, new chess game concepts were extracted
through microscopic methods and taught to top international
chess players (Schut et al., 2023).

❖ A CNN model was used to analyze defendant photos and judges’
verdicts to reveal the correlation between facial features and
verdicts (Ludwig & Mullainathan, 2023).

❖ Analyze the CNN model and learn previously unknown cell
morphological features to predict immune cell protein expression
(Cooper et al., 2022).

Expanding the applicable model family

71

❖ CNN-based image model
❖ BERT-based text model
❖ GPT-based text model

Current interpretability foucus on three major families of models:

New model families:

❖ Image Field
➢ Diffusion Model
➢ Vision Transformers

❖ Language Field
➢ RWKV
➢ State Space Models（SSMs）

Can the current interpretability
results be extended to other
models and application scenarios?

Human computer interaction with model internals

72

❖ Control is closely related to understanding neural networks →
Promote new human-computer interaction modes

❖ Helps users intuitively control and debug AI systems according
to their needs

Practical application examples
❖ Real-time monitoring dashboard

➢ Display internal features that affect the chatbot’s responses
and provide timely error warnings (Chen et al., 2024; Zou et
al., 2023a; Viégas & Wattenberg, 2023)

❖ Hybrid interface
➢ Combining direct manipulation with text interaction to

provide users with richer control options (Carter & Nielsen,
2017)

Social and philosophical challenges

73

❖ Potential advantages and limitations of interpretive
techniques
➢ Deep insights into AI models are expected to advance

scientific understanding and control
➢ However, most current tools have not yet truly used this

capability to improve actual system security.

❏ Lack of unified paradigm and goals

❏ Consider the development and deployment context

Conclusion

74

Mechanistic interpretation has made significant progress in methods
and applications, but major challenges remain to achieve many
ambitious goals ！

Questions?

75

Thank you!

76

