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How to scale LLM services?
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• Scale by vLLM instances

• 1 vLLM instance == 1 LLM == 1 server

vLLM

vLLM vLLM

vLLM vLLM

4x Replicas

"Scale Out"

Ray



However, it is not ideal...
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• Ideal scenario

o Just-right GPU compute utilization

o Just-right GPU memory utilization

o Just-right interconnect utilization (e.g. NVLink, Infiniband)

o ......



The reality is...
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• You have scaled to Nx replicas to satisfy the demand, but each with

o ≪100% GPU compute utilization on average

o ≪100% GPU memory utilization on average

o ≪100% interconnect utilization on average

o ......

Use up ALL OF the available resources before scaling



One Request, Two Phases
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• Prefill

• The process of generating the 
first token

• A compute-intensive phase

• Decode

• The process of generating 
subsequent tokens

• A memory-intensive phase

It

is

rainy.

EOS

How is weather today?the



Imbalanced Memory Usage
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• Prefill (prompt phase)

• Few additional memory used

• Decode (token phase)

• Fast growing memory usage



Resource Contention
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• Prefill, if served independently, 
finishes sooner

• Decode, if served independently, 
finishes sooner

• Prefill + decode is slow



Solution
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• DistServe reduces contention by separating phases on different hardware

• Splitwise chooses the "right" hardware to serve the separated phases



DistServe System
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• Prefill and decode scale 
independently

• KV cache transfers through 
NVLink



Splitwise System
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• Prefill and decode are served 
and scheduled on different 
hardware based on needs

• Computation

• Memory

• Power

• Cost

• KV cache transfers through 
Infiniband

A100s H100s
Infiniband

Decode instance Prefill instance



Evaluation – DistServe
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Evaluation – Splitwise
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Takeaways

14

• DistServe

• Separates prefill and decode 
phases on different GPUs

• Allows different phases to scale 
independently

• Splitwise

• Separates prefill and decode 
phases on different machines

• Maximizes hardware utilization 
based on needs and cluster 
settings

More efficient LLM serving by disaggregation



FlashAttention: Fast and 
Memory-Efficient Exact Attention  
with IO-Awareness

FlashAttention-2:  Faster 
Attention with Better Parallelism 
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FlashAttention: Fast and Memory-Efficient 
Exact Attention  with IO-Awareness
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1. Introduction
Standard Attention Mechanics

1. Input: Queries (Q), Keys (K), Values (V)

2. Compute S = QKᵗ, then P = softmax(S), then O = PV

3. Requires storing N×N matrix in memory

4. Complexity: O(N²) in time and memory

This limits the ability of Transformers to model long contexts!
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1. Introduction
Previous Work

Approximate Attention

• Sparse & low-rank methods reduce FLOPs, not necessarily runtime
• Root cause: ignores memory (I/O) bottlenecks
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1. Introduction
GPU Memory Bottlenecks

• GPU HBM is large but slow, SRAM is fast but small
• Standard attention reads/writes large matrices multiple times
• IO dominates runtime, especially for long sequences
• Empirical: Standard attention often becomes memory-bound
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1. Introduction
GPU Memory Bottlenecks

Memory-Bound
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2. Algorithm
Overview

• Avoid materializing large attention matrix
• Use tiling: load small blocks of Q, K, V into fast SRAM
• Fuse all attention steps into a single kernel
• Output written once to HBM — huge IO savings!

• Modern GPUs: Memory access is 
the bottleneck

• Make attention IO-aware

• Exact attention with fewer memory 
accesses

• Achieves up to 9× speedup over 
standard attention
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2. Algorithm
Inner Loop
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2. Algorithm
Inner Loop

Here, we assume
𝐵𝑟 = 2, 𝐵𝑐 = 3

𝐵𝑟

𝐵𝑐

𝐵𝑐

Softmax
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2. Algorithm
Inner Loop
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2. Algorithm
Inner Loop
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2. Algorithm
Inner Loop
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2. Algorithm
Outer Loop
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2. Algorithm
Outer Loop
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2. Algorithm
Softmax
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2. Algorithm
Safe Softmax

Before introducing the solution, we first introduce the concept of 
safe softmax.

For FP16, max number is 66536 < 𝑒12 

So, Safe Softmax is proposed to avoid overflow.
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2. Algorithm
Online Softmax
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2. Algorithm
Pseudocode
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2. Algorithm
Pseudocode
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2. Algorithm
Extension: Block-Sparse FlashAttention

“skip-if-zero” logic:
• Built on top of FlashAttention by adding a block-level sparsity mask
• Attention is only computed for blocks where the mask is 1
• Zero blocks are skipped, saving computation and memory access
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3. Result
Faster

BERT

GPT-2
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3. Result
Less Memory
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FlashAttention-2:  Faster Attention with 
Better Parallelism and Work Partitioning
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1. Recap of V1
Problem

• As context length increases, FlashAttention's efficiency lags behind primitives like GEMM: 

• Flash Attention
o Forward pass: 30-50% of theoretical max FLOPs/s on A100 GPU.
o Backward pass: 25-35% of theoretical max FLOPs/s on A100 GPU.

• GEMM
o achieves 80-90% of theoretical max throughput.
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1. Recap of V1
Root Cause

Suboptimal Work Partitioning on GPU

• Low Occupancy: Limited parallelism over batch size and number of heads, especially for 
long sequences with small batch sizes.

• Unnecessary Shared Memory Access: Inefficient distribution of work between thread 
blocks and warps leads to excessive shared memory reads/writes.
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2. Solution
a) Better Work Partitioning

• GPU Work Partitioning: Each thread block contains multiple warps (e.g., 4 
or 8 warps, 32 threads per warp). 

• Goal: Optimize work distribution to minimize shared memory access and 
synchronization overhead.
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2. Solution
a) Better Work Partitioning

Work Distribution: 𝐾𝑇 and 𝑉are split across 4 warps (Warp 1-4).
• 𝑄𝐾𝑇 is accessed by all warps.

Computation: Each warp computes a slice of 𝑄𝐾𝑇 ("sliced-K").
• Results are written to shared memory, synchronized, and 

accumulated to compute the output.
Drawback: High shared memory reads/writes and synchronization 
overhead.
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2. Solution
a) Better Work Partitioning

Work Distribution: 𝑄 is split across 4 warps (Warp 1-4).
• 𝑄𝐾𝑇 and 𝑉 are accessed by all warps.

Computation: Each warp computes a slice of 𝑄𝐾𝑇 , then 
directly multiplies with 𝑉. Outputs are independent, requiring 
no shared memory communication or synchronization.
Advantage: Reduced shared memory access, lower latency, 
and ~2× speedup over v1.
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2. Solution
b) Reduce Non-matmul Flops
GPU Hardware Insight

• Tensor Cores (A100 GPU): 

• FP16/BF16 matmul: 312 TFLOPs/s.

• FP32 non-matmul: 19.5 TFLOPs/s.

• Cost: Non-matmul FLOP is ~16× more expensive than matmul FLOP.

FlashAttention v1 Issue

• Non-matmul FLOPs (e.g., softmax, rescaling) bottleneck performance.

Optimizing Online Softmax: reduce the number of rescaling operations, boundary checks, 
and causal masking operations, without altering the output.
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2. Solution
c) Better Parallelization 
v1
• Parallelizes over batch size and heads.
• 1 thread block per head (Batch Size × Heads).
• A100 GPU (108 SMs): Efficient if thread blocks ≥ 80.
• Issue: Long sequences → small batch/heads → low occupancy.

v2 Solution
• Adds parallelization along sequence length: 
• Result: Better GPU utilization, up to 2× speedup.
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3. Result
A100

2x Faster than v1;
~9x faster than PyTorch
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3. Result
H100



Thank you!
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