
LLM MODEL
SERVING

Team 6
Fengyu Gao, Shunqiang Feng, Wei Shen, Zihan Zhao

Splitwise (ISCA '24)
&
DistServe (OSDI '24)

How to scale LLM services?

3

• Scale by vLLM instances

• 1 vLLM instance == 1 LLM == 1 server

vLLM

vLLM vLLM

vLLM vLLM

4x Replicas

"Scale Out"

Ray

However, it is not ideal...

4

• Ideal scenario

o Just-right GPU compute utilization

o Just-right GPU memory utilization

o Just-right interconnect utilization (e.g. NVLink, Infiniband)

o

The reality is...

5

• You have scaled to Nx replicas to satisfy the demand, but each with

o ≪100% GPU compute utilization on average

o ≪100% GPU memory utilization on average

o ≪100% interconnect utilization on average

o

Use up ALL OF the available resources before scaling

One Request, Two Phases

6

• Prefill

• The process of generating the
first token

• A compute-intensive phase

• Decode

• The process of generating
subsequent tokens

• A memory-intensive phase

It

is

rainy.

EOS

How is weather today?the

Imbalanced Memory Usage

7

• Prefill (prompt phase)

• Few additional memory used

• Decode (token phase)

• Fast growing memory usage

Resource Contention

8

• Prefill, if served independently,
finishes sooner

• Decode, if served independently,
finishes sooner

• Prefill + decode is slow

Solution

9

• DistServe reduces contention by separating phases on different hardware

• Splitwise chooses the "right" hardware to serve the separated phases

DistServe System

10

• Prefill and decode scale
independently

• KV cache transfers through
NVLink

Splitwise System

11

• Prefill and decode are served
and scheduled on different
hardware based on needs

• Computation

• Memory

• Power

• Cost

• KV cache transfers through
Infiniband

A100s H100s
Infiniband

Decode instance Prefill instance

Evaluation – DistServe

12

Evaluation – Splitwise

13

Takeaways

14

• DistServe

• Separates prefill and decode
phases on different GPUs

• Allows different phases to scale
independently

• Splitwise

• Separates prefill and decode
phases on different machines

• Maximizes hardware utilization
based on needs and cluster
settings

More efficient LLM serving by disaggregation

FlashAttention: Fast and
Memory-Efficient Exact Attention
with IO-Awareness

FlashAttention-2: Faster
Attention with Better Parallelism
and Work Partitioning

 Shunqiang Feng (mpp7ez)

17k+

FlashAttention: Fast and Memory-Efficient
Exact Attention with IO-Awareness

16

17

1. Introduction
Standard Attention Mechanics

1. Input: Queries (Q), Keys (K), Values (V)

2. Compute S = QKᵗ, then P = softmax(S), then O = PV

3. Requires storing N×N matrix in memory

4. Complexity: O(N²) in time and memory

This limits the ability of Transformers to model long contexts!

18

1. Introduction
Previous Work

Approximate Attention

• Sparse & low-rank methods reduce FLOPs, not necessarily runtime
• Root cause: ignores memory (I/O) bottlenecks

19

1. Introduction
GPU Memory Bottlenecks

• GPU HBM is large but slow, SRAM is fast but small
• Standard attention reads/writes large matrices multiple times
• IO dominates runtime, especially for long sequences
• Empirical: Standard attention often becomes memory-bound

20

1. Introduction
GPU Memory Bottlenecks

Memory-Bound

21

2. Algorithm
Overview

• Avoid materializing large attention matrix
• Use tiling: load small blocks of Q, K, V into fast SRAM
• Fuse all attention steps into a single kernel
• Output written once to HBM — huge IO savings!

• Modern GPUs: Memory access is
the bottleneck

• Make attention IO-aware

• Exact attention with fewer memory
accesses

• Achieves up to 9× speedup over
standard attention

22

2. Algorithm
Inner Loop

23

2. Algorithm
Inner Loop

Here, we assume
𝐵𝑟 = 2, 𝐵𝑐 = 3

𝐵𝑟

𝐵𝑐

𝐵𝑐

Softmax

24

2. Algorithm
Inner Loop

25

2. Algorithm
Inner Loop

26

2. Algorithm
Inner Loop

27

2. Algorithm
Outer Loop

28

2. Algorithm
Outer Loop

29

2. Algorithm
Softmax

30

2. Algorithm
Safe Softmax

Before introducing the solution, we first introduce the concept of
safe softmax.

For FP16, max number is 66536 < 𝑒12

So, Safe Softmax is proposed to avoid overflow.

31

2. Algorithm
Online Softmax

32

2. Algorithm
Pseudocode

33

2. Algorithm
Pseudocode

34

2. Algorithm
Extension: Block-Sparse FlashAttention

“skip-if-zero” logic:
• Built on top of FlashAttention by adding a block-level sparsity mask
• Attention is only computed for blocks where the mask is 1
• Zero blocks are skipped, saving computation and memory access

35

3. Result
Faster

BERT

GPT-2

36

3. Result
Less Memory

37

FlashAttention-2: Faster Attention with
Better Parallelism and Work Partitioning

38

1. Recap of V1
Problem

• As context length increases, FlashAttention's efficiency lags behind primitives like GEMM:

• Flash Attention
o Forward pass: 30-50% of theoretical max FLOPs/s on A100 GPU.
o Backward pass: 25-35% of theoretical max FLOPs/s on A100 GPU.

• GEMM
o achieves 80-90% of theoretical max throughput.

39

1. Recap of V1
Root Cause

Suboptimal Work Partitioning on GPU

• Low Occupancy: Limited parallelism over batch size and number of heads, especially for
long sequences with small batch sizes.

• Unnecessary Shared Memory Access: Inefficient distribution of work between thread
blocks and warps leads to excessive shared memory reads/writes.

40

2. Solution
a) Better Work Partitioning

• GPU Work Partitioning: Each thread block contains multiple warps (e.g., 4
or 8 warps, 32 threads per warp).

• Goal: Optimize work distribution to minimize shared memory access and
synchronization overhead.

41

2. Solution
a) Better Work Partitioning

Work Distribution: 𝐾𝑇 and 𝑉are split across 4 warps (Warp 1-4).
• 𝑄𝐾𝑇 is accessed by all warps.

Computation: Each warp computes a slice of 𝑄𝐾𝑇 ("sliced-K").
• Results are written to shared memory, synchronized, and

accumulated to compute the output.
Drawback: High shared memory reads/writes and synchronization
overhead.

42

2. Solution
a) Better Work Partitioning

Work Distribution: 𝑄 is split across 4 warps (Warp 1-4).
• 𝑄𝐾𝑇 and 𝑉 are accessed by all warps.

Computation: Each warp computes a slice of 𝑄𝐾𝑇 , then
directly multiplies with 𝑉. Outputs are independent, requiring
no shared memory communication or synchronization.
Advantage: Reduced shared memory access, lower latency,
and ~2× speedup over v1.

43

2. Solution
b) Reduce Non-matmul Flops
GPU Hardware Insight

• Tensor Cores (A100 GPU):

• FP16/BF16 matmul: 312 TFLOPs/s.

• FP32 non-matmul: 19.5 TFLOPs/s.

• Cost: Non-matmul FLOP is ~16× more expensive than matmul FLOP.

FlashAttention v1 Issue

• Non-matmul FLOPs (e.g., softmax, rescaling) bottleneck performance.

Optimizing Online Softmax: reduce the number of rescaling operations, boundary checks,
and causal masking operations, without altering the output.

44

2. Solution
c) Better Parallelization
v1
• Parallelizes over batch size and heads.
• 1 thread block per head (Batch Size × Heads).
• A100 GPU (108 SMs): Efficient if thread blocks ≥ 80.
• Issue: Long sequences → small batch/heads → low occupancy.

v2 Solution
• Adds parallelization along sequence length:
• Result: Better GPU utilization, up to 2× speedup.

45

3. Result
A100

2x Faster than v1;
~9x faster than PyTorch

46

3. Result
H100

Thank you!

	Slide 1: LLM Model Serving
	Slide 2: Splitwise (ISCA '24) & DistServe (OSDI '24)
	Slide 3: How to scale LLM services?
	Slide 4: However, it is not ideal...
	Slide 5: The reality is...
	Slide 6: One Request, Two Phases
	Slide 7: Imbalanced Memory Usage
	Slide 8: Resource Contention
	Slide 9: Solution
	Slide 10: DistServe System
	Slide 11: Splitwise System
	Slide 12: Evaluation – DistServe
	Slide 13: Evaluation – Splitwise
	Slide 14: Takeaways
	Slide 15: FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning Shunqiang Feng (mpp7ez)
	Slide 16: FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
	Slide 17: 1. Introduction Standard Attention Mechanics
	Slide 18: 1. Introduction Previous Work
	Slide 19: 1. Introduction GPU Memory Bottlenecks
	Slide 20: 1. Introduction GPU Memory Bottlenecks
	Slide 21: 2. Algorithm Overview
	Slide 22: 2. Algorithm Inner Loop
	Slide 23: 2. Algorithm Inner Loop
	Slide 24: 2. Algorithm Inner Loop
	Slide 25: 2. Algorithm Inner Loop
	Slide 26: 2. Algorithm Inner Loop
	Slide 27: 2. Algorithm Outer Loop
	Slide 28: 2. Algorithm Outer Loop
	Slide 29: 2. Algorithm Softmax
	Slide 30: 2. Algorithm Safe Softmax
	Slide 31: 2. Algorithm Online Softmax
	Slide 32: 2. Algorithm Pseudocode
	Slide 33: 2. Algorithm Pseudocode
	Slide 34: 2. Algorithm Extension: Block-Sparse FlashAttention
	Slide 35: 3. Result Faster
	Slide 36: 3. Result Less Memory
	Slide 37
	Slide 38: 1. Recap of V1 Problem
	Slide 39: 1. Recap of V1 Root Cause
	Slide 40: 2. Solution a) Better Work Partitioning
	Slide 41: 2. Solution a) Better Work Partitioning
	Slide 42: 2. Solution a) Better Work Partitioning
	Slide 43: 2. Solution b) Reduce Non-matmul Flops
	Slide 44: 2. Solution c) Better Parallelization
	Slide 45: 3. Result A100
	Slide 46: 3. Result H100
	Slide 47: Thank you!

