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Backup: 

A few classic deep learning 
papers on Protein 
Representation Learning 



Selected Papers

• ESMfold: 
• Evolutionary-scale prediction of atomic level protein structure with a language model 

• Alphafold2: 
• Highly Accurate Protein Structure Prediction  with AlphaFold

• RoseTTAfold: 
• Accurate prediction of protein structures and interactions using a three-track neural network 

• Related: 
• TRANSFORMER PROTEIN LANGUAGE MODELS ARE UNSUPERVISED STRUCTURE LEARNERS 
• Evfold: Protein 3D structure computed from evolutionary sequence variation 
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Biology in a Slide:

DNA RNA PROTEIN ORGANISMCELL

Transcription Translation

Disease
CATGACTG
CATGCCTG

Genetic Variant
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Protein Sequence form and Protein Structure



Protein Structure landscape

~200k experimental determined
https://www.rcsb.org/

ESM Metagenomic Atlas 
(https://esmatlas.com): 617M 
proteins. We are able to complete 
this characterization in 2 weeks on a 
heterogeneous cluster of 2,000 
GPUs, demonstrating scalability to 
far larger databases. High 
confidence predictions are made for 
over 225M structures 
 

AlphaFold DB 200 million structures in 
AlphaFold DB, 35% are considered to 
be highly accurate. Another 45% have 
reasonable accuracy enough for many 
studies 

https://www.rcsb.org/
https://www.rcsb.org/
https://esmatlas.com/


Why predicting protein structures? 

• If a designed amino acid sequence could fold into the 
reliable structure that we desired? 

Design of entirely new 
proteins: 

• Proteins work in teams .. what is the interacting 
team’s structure, affinity, function? Team with drug? 
Ligand? RNA? … 

To predict the complex 
structure of multiple 
interacting parterns  

• AlphaFold2 is not specifically designed and is unable 
to predict how amino acid mutations alter a protein's 
natural structure 

To illustrate the effect of 
mutations that contribute 
to rare genetic diseases. 

Structure Prediction 
Speed does matter! 
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Artificial intelligence revolution in structure prediction for entire proteomes

MedComm – Future Medicine, Volume: 1, Issue: 2, First published: 04 October 2022, DOI: (10.1002/mef2.19) 

ESMfold 



Protein sequence to structure

MHFTEDKATILWGKVNVEGETLGRVYPWQ
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Primary Sequence

3D Structure



Protein sequence to structure

MHFTEDKATILWGKVNVEGETLGRVYPWQ
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Primary Sequence

3D Structure
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Alphafold2*

Templatespdb
DB

Sequence MSA

PSSM

seq
DB

XYZ

* Past researchers used raw Templates as input and/or did End2End
Analysis of distance‐based protein structure prediction by deep learning in CASP13 - Jinbo Xu et al.
End-to-End Differentiable Learning of Protein Structure - Mohammed AlQuraishi
Learning Protein Structure with a Differentiable Simulator - John Ingraham et al.

Structure 
Module

Evoformer
Module
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Alphafold2 - New Critical detail Recycling
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Structure Prediction relies on the input MSA

Templatespdb
DB

Sequence MSA

PSSM

seq
DB

XYZ

Recycle

Structure 
Module

MSA Evoformer
Module



Database of 
sequences

What is a Multiple Sequence Alignment (MSA)?
 Search against a database of sequences



Generate a multiple sequence alignment

Database of 
sequences



Analyze the MSA for coevolution

Coevolution



Coevolution

Structure

EVfold

Related Task: 
Contact prediction 



Input feature generation for AlphaFold2

UniRef90
Mgnify

BFD

jackhmmer HHblits

PDB70

Input MSA features

HHsearch

Input Templates 
featuresIterative

search

Generation of input features can take hours for a single protein on 
multiple cores

SLOW



Sequence MSA

PSSM

2ndary 
Structure

MRF

Contacts

XYZ

Fragments

Typical pipeline before Alphafold

seq
DB

Templates XYZpdb
DB Hybridize

Folding

Free Modeling 
(FM)

Template-based Modeling 
(TBM)

MSA = multiple sequence alignment
PSSM = Position-specific-scoring matrix
MRF = Markov Random Field (or Potts model)

frag
DB



Sequence MSA

PSSM

MRF

Alphafold1*

seq
DB

CNN
ResNet

XYZMinimizeDistance
s

Fragmentsfrag
DB

VAE

XYZFolding

Dihedrals

* Past researchers used raw MRF features, and ResNets:
- Golkov, V., Skwark, M.J., Golkov, A., Dosovitskiy, A., Brox, T., Meiler, J. and Cremers, D., 2016, December. Protein contact prediction from amino acid co-
evolution using convolutional networks for graph-valued images. In NIPS (pp. 4215-4223).
- Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J., 2017. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS computational 
biology, 13(1), p.e1005324.



initial
XYZ

Alphafold2: 

Templatespdb
DB

Sequence MSA

PSSM

seq
DB

XYZ

Recycle

Structure 
Module

Evoformer
Module

integrate the multiple sequence alignment into the neural 
network architecture through an attention mechanism 
operating across the rows and columns of the MSA 







From Language 
model to contact 
(==> no MSA!!!)





Protein Structure landscape

190k experimental determined
https://www.rcsb.org/

ESM Metagenomic Atlas 
(https://esmatlas.com): 617M 
proteins. We are able to complete 
this characterization in 2 weeks on a 
heterogeneous cluster of 2,000 
GPUs, demonstrating scala bility to 
far larger databases. High 
confidence predictions are made for 
over 225M structures 
 

AlphaFold DB 200 million structures in 
AlphaFold DB, 35% are considered to 
be highly accurate. Another 45% have 
reasonable accuracy enough for many 
studies 

https://www.rcsb.org/
https://www.rcsb.org/
https://esmatlas.com/




Protein 
language 

model (largest 
to date)

• ESM-2, at scales from 8 million parameters up 
to 15 billion parameters. 

• Relative to previous generation model ESM-1b, 
ESM-2 introduces improvements in 
architecture, training parameters, and 
increases computational resources and data 

• Enabling the structure prediction from primary 
sequence, 
• On a single NVIDIA V100 GPU, ESMFold makes a 

prediction on a protein with 384 residues in 14.2 
seconds, 6x faster than a single AlphaFold2 model. 
On shorter sequences the improvement increases 
up to ∼60x 



ESM-2

• During training sequences are sampled with 
even weighting across ∼43 million UniRef50 
training clusters from ∼138 million UniRef90 
sequences so that over the course of training 
the model sees ∼65 million unique sequences. 

• Training curves for ESM-2 models from 8M 
(highest curve, light) to 15B parameters (lowest 
curve, dark). Models are trained to 270K 
updates. Validation perplexity is measured on a 
0.5% random-split holdout of UniRef50. After 
270K updates the 8M parameter model has a 
perplexity of 10.45, and the 15B model reaches 
a perplexity of 6.37. 

Here perplexity, ranges from 1 for a perfect model to 20 for a 
model that makes predictions at random. 



ESM-2

• BERT encoder only transformer 

• Rotary Position Embedding (RoPE) to allow the model extrapolate 
beyond the context window it is trained on 

• Absolute plus, Learned positional encodings 



ESM-2 attention patterns 
correspond to the residue- 
residue contact map of a protein 

Predicted contact probabilities (bottom right) and actual contact 
precision (top left) for 3LYW. A contact is a positive prediction if it 
is within the top-L most likely contacts for a sequence of length L. 



ESMfold

• Eliminating the need for external evolutionary databases, multiple sequence alignments, 
and templates. 

• Each folding block alternates between updating a sequence representation and a pairwise 
representation. 

• The output of these blocks is passed to an equivariant transformer structure module, and 
three steps of recycling are performed before outputting a final atomic-level structure and 
predicted confidences 





Alphafold2’s Evoformer
 integrate the multiple sequence alignment into the neural 

network architecture through an attention mechanism 
operating across the rows and columns of the MSA 



ESMfold architecture

• replace the axial attention with a standard attention. All other operations 
are the same as in the Evoformer block. Call this simplified architecture the 
Folding block. 

• the removal of templates. Template information is passed to the Alphafold2 
model as pairwise distances, input to the residue-pairwise embedding. 
ESMFold simply omit this information, passing instead the attention maps 
from the language model, 

• ESMFold uses the Frame Aligned Point Error (FAPE) and distogram losses 
introduced in AlphaFold2, as well as heads for predicting LDDT and the pTM 
score. 



ESMfold more 

• ESMfold  train the folding head on ∼25K clusters covering a total of ∼325K 
experimentally determined structures from the PDB, further augmented with a 
dataset of ∼12M structures we predicted with AlphaFold2 



•ESMFold 
produces accurate 
atomic resolution 
predictions, with 
similar accuracy to 
RosettaFold on 
CAMEO. 
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What is next? 

• If a designed amino acid sequence could fold into the 
reliable structure that we desired? 

Design of entirely new 
proteins: 

• Proteins work in teams .. what is the interacting 
team’s structure, affinity, function? Team with drug? 
Ligand? RNA? … 

To predict the complex 
structure of multiple 
interacting parterns  

• AlphaFold2 is not specifically designed and is unable 
to predict how amino acid mutations alter a protein's 
natural structure 

To illustrate the effect of 
mutations that contribute 
to rare genetic diseases. 

Structure Prediction 
Speed does matter! 
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Highly accurate protein structure prediction with AlphaFold
•John Jumper, et al 
•Demis Hassabis
Show authorsNature volume 596, pages583–589 (2021)Cite this article

Abstract
Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. 
Through an enormous experimental effort1,2,3,4, the structures of around 100,000 unique proteins have been determined5, 
but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the 
months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches 
are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional 
structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the 
‘protein folding problem’8—has been an important open research problem for more than 50 years9. Despite recent 
progress10,11,12,13,14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. 
Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in 
cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based 
model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating 
accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. 
Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological 
knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm

https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2


Structure module including Invariant point 
attention (IPA) module.



RoseTTAFold 



RoseTTAFold 



PLoS One
. 2011;6(12):e28766.
doi: 10.1371/journal.pone.0028766. Epub 2011 Dec 7.
Protein 3D structure computed from evolutionary sequence variation
Debora S Marks 1, Lucy J Colwell, Robert Sheridan, Thomas A Hopf, Andrea Pagnani, Riccardo Zecchina, Chris Sander
Affiliations expand
Abstract
The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence 
homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these 
constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering 
purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of 
inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a 
set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of 
observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by 
the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of 
these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring 
residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We 
quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different 
fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de 
novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution 
signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the 
observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery 
provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the 
universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic variants 
in normal and disease genomes.

EVFold 

https://pubmed.ncbi.nlm.nih.gov/?term=Marks+DS&cauthor_id=22163331
https://pubmed.ncbi.nlm.nih.gov/22163331/
https://pubmed.ncbi.nlm.nih.gov/?term=Colwell+LJ&cauthor_id=22163331
https://pubmed.ncbi.nlm.nih.gov/?term=Sheridan+R&cauthor_id=22163331
https://pubmed.ncbi.nlm.nih.gov/?term=Hopf+TA&cauthor_id=22163331
https://pubmed.ncbi.nlm.nih.gov/?term=Pagnani+A&cauthor_id=22163331
https://pubmed.ncbi.nlm.nih.gov/?term=Zecchina+R&cauthor_id=22163331
https://pubmed.ncbi.nlm.nih.gov/?term=Sander+C&cauthor_id=22163331


Correlated mutations carry information about 
distance relationships in protein structure.



Biological structure and function emerge from scaling unsupervised learning to 250 million 
protein sequences (ESM)
Alexander Rives https://orcid.org/0000-0003-2208-
0796 arives@cs.nyu.edu, Joshua Meier, Tom Sercu https://orcid.org/0000-0003-2947-6064, +7, 
and Rob FergusAuthors 

Edited by David T. Jones, University College London, London, United Kingdom, and accepted by Editorial 
Board Member William H. Press December 16, 2020 (received for review August 6, 2020)

April 5, 2021
118 (15) e2016239118
https://doi.org/10.1073/pnas.2016239118

Significance
Learning biological properties from sequence data is a logical step toward generative and predictive artificial intelligence 
for biology. Here, we propose scaling a deep contextual language model with unsupervised learning to sequences 
spanning evolutionary diversity. We find that without prior knowledge, information emerges in the learned 
representations on fundamental properties of proteins such as secondary structure, contacts, and biological activity. We 
show the learned representations are useful across benchmarks for remote homology detection, prediction of secondary 
structure, long-range residue–residue contacts, and mutational effect. Unsupervised representation learning enables 
state-of-the-art supervised prediction of mutational effect and secondary structure and improves state-of-the-art 
features for long-range contact prediction.

https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://orcid.org/0000-0003-2208-0796
https://orcid.org/0000-0003-2208-0796
mailto:arives@cs.nyu.edu
https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://orcid.org/0000-0003-2947-6064
https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://www.pnas.org/doi/abs/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118


Abstract
In the field of artificial intelligence, a combination of scale in data and model capacity 
enabled by unsupervised learning has led to major advances in representation learning 
and statistical generation. In the life sciences, the anticipated growth of sequencing 
promises unprecedented data on natural sequence diversity. Protein language 
modeling at the scale of evolution is a logical step toward predictive and generative 
artificial intelligence for biology. To this end, we use unsupervised learning to train a 
deep contextual language model on 86 billion amino acids across 250 million protein 
sequences spanning evolutionary diversity. The resulting model contains information 
about biological properties in its representations. The representations are learned from 
sequence data alone. The learned representation space has a multiscale organization 
reflecting structure from the level of biochemical properties of amino acids to remote 
homology of proteins. Information about secondary and tertiary structure is encoded 
in the representations and can be identified by linear projections. Representation 
learning produces features that generalize across a range of applications, enabling 
state-of-the-art supervised prediction of mutational effect and secondary structure and 
improving state-of-the-art features for long-range contact prediction.



Also works in RoseTTAFold

Accurate prediction of protein structures and interactions using a three-track 
neural network
https://science.sciencemag.org/content/early/2021/07/19/science.abj8754
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