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§ Prognosis [T_::

1 Report generation

1 Treatment planning |z

> 1 Medical Chatbot ﬂ
1 Medical education E

l Surgery assistance '3
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Drug discovery t;

Data from healthcare (Sec. lll) Foundation models (Sec. Il) Applications (Sec. IV)

Fig. 1. The pipeline of the healthcare foundation models (HFMs) including the methods (Sec.II), datasets (Sec.III), and applications (Sec.IV).



The base models used to develop medical foundation models.
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Development of medical foundation models for multiple healthcare applications (2018-2024)



Scientific Large Language Models: A Survey on Biological & Chemical Domains

Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension, representing
a significant stride toward artificial general intelligence. The application of LLMs extends beyond conventional linguistic boundaries,
encompassing specialized linguistic systems developed within various scientific disciplines. This growing interest has led to the advent
of scientific LLMs, a novel subclass specifically engineered for facilitating scientific discovery. As a burgeoning area in the community
of Al for Science, scientific LLMs warrant comprehensive exploration. However, a systematic and up-to-date survey introducing them
is currently lacking. In this paper, we endeavor to methodically delineate the concept of “scientific language”, whilst providing a
thorough review of the latest advancements in scientific LLMs. Given the expansive realm of scientific disciplines, our analysis adopts
a focused lens, concentrating on the biological and chemical domains. This includes an in-depth examination of LLMs for textual
knowledge, small molecules, macromolecular proteins, genomic sequences, and their combinations, analyzing them in terms of model
architectures, capabilities, datasets, and evaluation. Finally, we critically examine the prevailing challenges and point out promising
research directions along with the advances of LLMs. By offering a comprehensive overview of technical developments in this field,

this survey aspires to be an invaluable resource for researchers navigating the intricate landscape of scientific LLMs.
Additional Key Words and Phrases: Scientific domain, large language models, protein, molecule, genome

ACM Reference Format:

Qiang Zhang, Keyan Ding, Tianwen Lyu, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao Wang, Xiaotong Li, Zhuoyi Xiang,
Kehua Feng, Xiang Zhuang, Zeyuan Wang, Ming Qin, Mengyao Zhang, Jinlu Zhang, Jiyu Cui, Tao Huang, Pengju Yan, Renjun Xu,
Hongyang Chen, Xiaolin Li, Xiaohui Fan, Huabin Xing, and Huajun Chen. 2024. Scientific Large Language Models: A Survey on
Biological & Chemical Domains. 1, 1 (July 2024), 90 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn



Language Models: A Survey on Biological & Chemical Domains

Textual LLMs
(Natural language-centric)

» Bio. & Chem. Knowledge
What is the mitochondria?

Molecular LLMs
(Molecular language-centric)

» Molecule Sequence

N=C(N)NCC[C@H](N)C...

Protein LLMs

(Protein language-centric)

Genomic LLMs

(Genomic language-centric)

» Genome Sequence
GAAGTCACGGCGTA...

» Protein Sequence
RASLDVETNSPPQENE...
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Fig. 3. An evolutionary tree of Sci-LLMs, which consists of five main branches corresponding to the research scopes in this survey. Due to the extensive number of
Sci-LLMs, it is not feasible to include all of them in this figure, despite their exceptional quality. For detailed information on the featured models, please refer to Table
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e Textual Tokens e Molecular Tokens

<BOS> | aspirin has ? <EOS> <BOS> C NH2 (=0) <EOS>
e Protein Tokens e Genomic Tokens
<BOS> M E v <EOS> <BOS> AGT CG AA <EQS>
SMILES: OC(=0)C1=CC=CC=C10 i ;
[O][C][=Branch1][C][=O][C] \"/& > ? o®
Molecule  SELFIES: [=CJ[CI[=C][C][-C][Ring!] Ay o2
[=Branch1][O] | J ;‘c,;
o
1S/CTH603/c8-6-4-2-1-3-
InChl: 2D Topology 3D Geometry
5(6)7(9)10/h1-4,8H,(H,9,10) Structure Structure
g N
Protein AN
VDSPQERASLDEN... ‘ a-helix ¢ B-sheet &
Primary Structure Secondary Teritary Quaternary
(Amino acid sequence) Structure Structure Structure

DNA Sequence:  ATCGGTGACTATCG WK SN\

Double-stranded Single-stranded
RNA Sequence: AUCGGUGACUAUCG DNA St RIVA Strocture

Genome

n of molecular, protein and genomic languages. Molecular languages include SMILEs, SELFIES and InChl sequences,



Encoder-only: ClinicalBERT [135] GatorTron [383] _)

Decoder-only: BioMedLM [331] GatorTronGPT [258] MEDITRON [52] Meerkat-7B [159]
ClinicalGPT [332] Qilin-Med [385] ChatDoctor [188] BenTsao [333] HuatuoGPT [398]
edic Baize-healthcare [368] zhongjing [382] PMC-LLaMA [356] CPLLM [295] Clinical Camel [318]
Med-PalM 2 [299] Me-LLaMA[363] BiMediX[261]

Encoder-decoder: DoctorGLM [367] BianQue [50] Medica.l—mTS[]ﬂT])

Encoder-only: BioBERT [174] BlueBERT [259] PubMedBERT [111] BioMegatron [294] BioLinkBERT [384])
Models olosi
Biological
(Sec. 3.1)

Decoder-only: BioGPT [215] BioMedGPT-LM [217] BioELMo [291] BioinspiredL.LM [218] BioMistral [169] BioMed-RoBERTa [11?])

Chemical  }—{ Encoder-only: ChemBERT [113] MatSciBERT [116] MaterialsBERT [293] PharmGPT [47] )

Encoder-only: SciBERT [18] ScholarBERT [129] INDUS [25]]

Comprehen. Decoder-only: DARWIN-Base [365] )

Encoder-decoder: SciGLM [395])

< Sl Datasets Pre-training }—{ PubMed PubChem bioRxiv arXiv WIPO etc.)
(Text-Sci-LLMs (Sec. 3.2)

B k PubMedQA [148] MMLU [125] C-Ewal [136] AGIEval [422] ScienceQA [211]
T Bioinfo-Bench-QA [48] SciQ [149] Xiezhi [112] ARC [63] SciEval [309] SciKnowEval [97] GAOKAO-Bench [405] SciAssess [36]

Pre-college level: Understand basic knowledge)

Capabilities College level: Master specialized knnwledge)
Post-college level: Propose innovative knowledge]
(Sec. 3.3) Discriminative tasks: Accuracy Precision Recall F1 —Scnrej

Criteria Generative tasks: BLUE [252] ROUGE [191] BERT-Score [404])
(Sec. 3.4)

Human or GPT-4 [246])

Fig. 6. Chapter overview of Text-Sci-LLMs.



Models
(Sec. 4.1)

( BERT-based: SMILES-BERT [337] MTL-BERT [407] MolBERT [89]
L rxnfp-BERT [287] Mol-BERT [181] MolFormer [278] MolRoPE-BERT [203]

E e 1 RoBERTa-based: ChemBERTa [57] MFBERT [1]
ncoder-only | SELFormer [389] Semi-RoBERTa [323]

fIntegraring 2D or 3D graphs: GROVER. [276] MAT [228] MG-BERT [406] R-MAT [229]
EPGT [179] AGBT [44] Molformer [358] Uni-Mol [423] GTMGC [369]

Decoder-only  }—{ GPT-based: MolGPT [13] SMILESGPT [3] cMolGPT [345] Taiga [230] iupacGPT [58] )

Vanilla Transformer-based:

Molecular Transformer [286] SMILES Transformer [128] SCROP [419]
Retrosynthesis Transformer [156] ChemReactNet [316] X-MOL [376]
Two-way Transformer [158] RetroSynth-Diversity [319] GO-PRO [223]
Transmol [430] RetroTRAE [325] Disconnection aware model [317]

Encoder-decoder BART-based: Chemformer [140] BARTSmiles [56] MOLGEN [92] )

Transformer+Graph: GET [225] Graph2SMILES [324] )

Others: GCT [160] )

ZINC [303] PubChem [343] USPTO [285] PCQM4M [133, 386] GEOM [11] ]

Mol-LLMs . MoITLU [17] ChEMBL [108] DrugBank [355] GDB-17 [279] ExCAPE-DB [308]
(Sec. 4.2)

Evaluation |
(Sec. 4.3)

Bencl s MoleculeNet [359] MARCEL [427] GuacaMol [33] I

MOSES [263] ADMETlab 2.0 [366] Molecule3D [375]

Property prediction :}—(LngP Solubility Toxicity ADMET Lipophilicity Stability etc.j

Interaction predictinn)——( Drug-drug interactions j

Reaction prediction H Forward reaction prediction and Retrosynthetic analysisj

Molecule generation )——(Template—ba&ed design and De novo designj

Summary
(Sec. 4.4)

Discriminative tasks: Accuracy Recall Fl-score etc.)

Ewvaluation metric

Generative tasks: Validity Unique Novelty Frag Scaff IntDiv, FCD etc.}

Fig. 7. Chapter overview of Mol-LLMs.



Sequence-only: ProteinBert [32] ProtTrans [86] ESM-1b [275] ESM-2 [192]
PMLM [120] ProtFlash [334] ProteinNPT [243]

MSA-combined: ESM-MSA-1b [272] ESM-1v [233] RSA [220] )

Encoder-only

Mansoor et al. [224] ESM3 [119]

Add 3D structure: ESM-GearNet [413] SaProt [307] LM-GVP [346] ]

Integrating multi-level structure: PromptProtein [349] :]

Add extra knowledge: OntoFProtein [400] ESM All-Atom [418] KeAP [424]
KnowRLM [344] Outeiral et al. [249]

Decoder—onl GPT-based: ProGen [221] ProGen2 [240] RITA [126] ProtGPT2 [98]
ecoder-only PoET [9] IgLM [296] ZymCTRL [236] ProteinRL [304] C. Frey et al. [103]

T5-based: ProstT5 [123] pAbTS5 [61] )

Transformer-based: SS-pLM [288] ESM-GearNet-INR-MC [176] J

Encoder-decoder GLM-based: xTrimoPGLM [43] )

MSA-combined: MSA2Prot [268] MSA-Augmenter [399] EvoOpt [377] Sgarbossa et al. [289] j

Others: Fold25eq [40] Lee et al. [175] LM-Design [420] j

Prot-LLMs

UniRef100 UniRef90 UniRef50 [310, 311] Swiss-Prot [29] TrEMBL [235]
UniParc [68] Pfam [99] BFD [154, 301, 302] PDB [360] AlphaFoldDB [154, 329]

Datasets
(Sec. 5.2)

CASP [168] EC [231] GO [8] CATH [247] HIPPIE [282] SCOP [209]
ProteinGym [242] FLIP [74] PEER [374] TAPE [271] ]

Structure Prediction H Secondary tertiary and quaternary structure predictions:]

Subcellular localization; Binary localization; Remote homology detection;
Fluorescence; Stability; S-Lactamase activity; Solubility; Mutation effect prediction

Protein classification; Protein-protein interaction; Protein-ligand interaction;
Function Prediction

Evaluation
(Sec. 5.3)

Summary
(Sec. 5.4)

Sequence Generation )—(De novo protein design; Protein sequence opti_tnizatinn)

Structure prediction tasks: RMSD GDT TM-Score LDDT etc. j

Evaluation metric Function prediction tasks: Accuracy Recall F1-score etc.;]

Sequence generation tasks: PPL Novelty FPD Diversity Foldability Recovery)

Fig. 8. Chapter overview of Prot-LLMs.



Many more
details in the
paper!

Table 5. Summary of Prot-LLMs

Model Time #Parameters Base model Pretraining Dataset Capability S)I:S:t;
ESM-1b [275] 202002 650M RoBERTa UniRef50 Sefgndary struct. pred., v
ontact pred., etc.
ESM-MSA-1b [272]  2021.02  100M ESM-1b UniRef50 Seccnndary struct. pred., v
ontact pred., etc.
ESM-1v [233] 2021.02 650M ESM-1b UniRef90 Mutation effect pred. e
ProftTrans [86] 2021.07 B BERT, Albert, UniRef, BED Secondary struct. pred., Y
Electra Func. pred., etc
PMLM [120] 2021.07 87M-731M Trans. enc. Uniref50/Pfam Contact pred. X
Mansoor et al. [224] 2021.09 100M ESM-1b - Mutation effect pred. x
ProteinBERT [32] 2022.02 16M BERT UniRef90 Func. pred. Ve
Encoder-onl LM-GVP [346] 2022.04 - Trans. enc - Func. pred. e
Y RSA [220) 2022.05 - ESM-1b - Func. pred. v
OntoProtein [400] 2022.06 - BERT ProteinKG25 Func. pred. e
ESM-2 [192] 202207 8M-15B RoBERTa UniRef50 Funec. pred., Struct. pred. v
PromptProtein [349]  2023.02 650M RoBERTa UniRef50, PDB Func. pred. v
KeAP [424] 2023.02 - RoBERTa ProteinKG25 Func. pred. e
ProtFlash [334] 2023.10 79M/174M Trans. enc UniRef50 Func. pred. e
ESM-GearNet [413] 2023.10 - ESM-1b, GearNet - Func. pred. e
SaProt [307] 2023.10 650M BERT - Mutation effect pred. v
ProteinNPT [243] 2023.12 - Trans. enc. - Fitness pred., Redesign X
Outeiral et al. [249] 202402 10M-5B Trans. enc. Eurnpe};a:cﬁ;{;leotlde Protein represent learning v
ESM All-Atom [418]  2024.06 35M RoBERTa AlphaFold DB Unified Molecular Modeling X
KnowRLM [344] 2024.06 - Trans. enc. - Protein Directed Evolution X
ESM3 [119] 2024.06 98B RoBERTa PDB Seq. pred., Func. pred,, Struct. pred.
Uniparc .
ProGen [221] 2020.03 1.2B GPT SWISS-Prot Functional prot. gen. v
ProtGPT? [98] 2021.01 738M GPT Uniref50 De novo protein design v
and engineering
ZymCTRL [236] 2022.01 738M GPT BRENDA Functional enzymes gen. v
Decoder-only RITA [126] 2022.05 1.2B GPT UniRef100 Functional prot. gen. X
IglM [296] 2022.12 13M GPT - Antibody design e
Uniref90, .
ProGen2 [240] 2023.10 151M - 6.4B GPT BFD30, PDB Functional prot. gen. v
ProteinRL [304] 2023.10 764M GPT - Prot. design X
PoET [9] 2023.11 201M GPT - Prot. family. gen. X
C. Frey et al. [103] 2024.03 9.87M/1.03M GPT hu4D5 antibody Functional prot. gen. X
mutant
Fold2Seq [40] 2021.01 - Transformer - Prot. design v
MSA2Prot [268] 2022.04 - Transformer - Prot. gen., Variant func. pred. X
Searbossa et al. [2891  2023.02 - MSA Transformer - Prot. gen. v



Conv series: GPN [22] GPN-MSA [20] LOGO [381] )

BERT variant:
iEnhancerBERT [213] iEnhancer-ELM [186] miProBERT [339] TFBert [214] Enformer [10]
BioSeq-BLM [180] DNABERT [143] DNABERT-2 [426] iDNA-ABF [146] EpiGePT [106]
. Nucleotide-Transformer [73] SA DNA-LM [104] GENA-LM [100] PLPMpro [189] Uni-RNA [340]
, | FGBERT [82] Geneformer [72] RNAErnie [335] gLM [137] RiNALMo [260]
GenomicLLM [193]

S5M series: Caduceus [283] :]

iodels Other series: MoDNA [7] |
| (Sec. 6.1) LongConv series: HyenaDNA [239] Evo [238] )

Decoder-only GPT series: DNAGPT [397] )

Diffusion+Transformer series: GenSLMs [432] )

Encoder-Decoder )—(ENBED [222] )

NCBI-Genome UCSC-Genome [155] GRCh38 [114] EPDnew [79] TAIR [171]

Pre-training Mammalian-Gene [305] ENCODE [70] DeepSEA [425] VGDB [127] Ensembl [171] 690 ChIP-seq [392]
1000 Genomes Project [66] Panglao [102] ExPecto [280] BV-BRC [244] RNAcmap [280]
(Sec. 6.2)
Gene-LLMs Benchmark }—( CAGI5 [157] Protein-RNA [130] NT-Bench [73] GenBench [204] BEACON [274] )

Promoter prediction :)

Function Prediction Enhancer prediction )

Binding site predictinnj

Chromatin profile prediction )

Evaluation Structure Prediction
(Sec. 6.3) |} DNA/BNA-protein interaction prediction )
Sequence Generation )

Summary }

(Sec. 6.4) Sequence Variation and Evolution Analysis]

Evaluation Metric  }—{ Fl-score Sensitivity Specificity MCC AUROC )

Fig. 9. Chapter overview of Gene-LLMs.



Encoder-only: Text2Mol [84] KV-PLM [393] MoMu [393] MolFM [216] GPT-MolBERTa [16] }

Decoder-only: DrugChat [190] MolReGPT [183] MolXPT [207] DrugLLM [200] MolecularGPT [201])

Encoder-Decoder: MolT5 [83] Text+Chem T5 [83] ChatMol [394] GIT-Mol [195]
MoleculeSTM [196] GIMLET [414] Atomas [411] 3D-MolT5 [256]

Encoder-only: ProTranslator [370] ProtST-ProtBert [3?3])

Decoder-only: InstructProtein [348] ProLLaMA [219] ProtLLM [431]]

Encoder-Decoder: ProteinDT [199] Prot2Text [2] ProtST-ESM-1B [373] ProtST-ESM-2 [373]
PAAG [388] ProtT3 [206]

Models Encoder-only: DrugCLIP [105])
{Sec. 7.1) |

Protein-Molecule Decoder-only: DrugGPT [187])

Encoder-Decoder: ChemBERTaLM [326] DeepTarget [49] }

Decoder-only: Cell2Sentence [177] GenePT [51] ChatCell [255] GPTCelltype [131])

Gene/Cell-Text

Encoder-Decoder: CellPLM [42] CellWhisperer [281] LangCell [4 15]_}

Encoder-only:BioTranslator [371] BioBridge [347] :]

C hensi Decoder-only: Galactica [314] ChatDrug [198] DARWIN-MDP [365]
BioMedGPT-10B [217] Mol-Instructions [91] ChemDFM [417] ChemLLM [395]

MM-Sci-LLM Encoder-Decoder: BioT5 [257] BioT5+ [254]_)

SwissProtCLAP [199] ProtDescribe [373] InstructProtein [348] Scientific Knowledge Dataset [365]
BioLip [380] ChEBL dia [394] PubChemQA [217] Prot2Text [2] ProteinLMDataset [292] PCdes [393] PubChemSTM [196]

, Aralning MoMu [393] ChEBI-20 [84] Mol-Instructions [91] GEO [64] HCA [273] ARCHS4 [170]
| NCBI [352] cellxgene [232] SRT [121] CellTypist [78] scLibrary [415]
{Sec. 7.2)
Benchmark }—{ MoleculeNet [359] BindingDB [110] DUD-E [237] ProteinLMBench [292] )
Cross-modal PredictiunH Text-based Function prediction across different mudalities}
Evaluation Cross-modal Retrieval HMutml retrieval across different mudalitiesjl
(Sec. 7.3)

Cross-modal Genemtiorg—{_Mutual generation across different mﬂdz.l.itiesj

Summary Evaluation Metric }—{ Refer to Sec. 3.3;4.3;5.3; 6.3 )
(Sec. 7.4)

Fig. 10. Chapter overview of MM-Sci-LLMs.
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A few classic deep learning
papers on Protein
Representation Learning



Selected Papers

ESMfold:

* Evolutionary-scale prediction of atomic level protein structure with a language model

Alphafold?2:
* Highly Accurate Protein Structure Prediction with AlphaFold

RoseTTAfold:

* Accurate prediction of protein structures and interactions using a three-track neural network

Related:
* TRANSFORMER PROTEIN LANGUAGE MODELS ARE UNSUPERVISED STRUCTURE LEARNERS
* Evfold: Protein 3D structure computed from evolutionary sequence variation
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Biology in a Slide:
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Protein Sequence form and Protein Structure

Every protein is made up These amino acids interact These shapes fold up on Proteins can interact with

of a sequence of amino locally to form shapes like larger scales to form the other proteins, performing

acids bonded together helices and sheets full three-dimensional functions such as signalling
protein structure and transcribing DNA

Alpha Pleated Pleated Alpha
helix sheet sheet helix




Protein Structure landscape

~200k experimental determined
https://www.rcsb.org/

ESM Metagenomic Atlas
(https://esmatlas.com): 617M
proteins. We are able to complete
this characterization in 2 weeks on a
heterogeneous cluster of 2,000
GPUs, demonstrating scalability to
far larger databases. High
confidence predictions are made for
over 225M structures

AlphaFold DB 200 million structures in
AlphaFold DB, 35% are considered to
be highly accurate. Another 45% have
reasonable accuracy enough for many
studies


https://www.rcsb.org/
https://www.rcsb.org/
https://esmatlas.com/

Why predicting protein structures?

Structure Prediction
Speed does matter!

Design of entirely new e |f a designed amino acid sequence could fold into the
proteins: reliable structure that we desired?

(el elg=le (oM [Heelppl el S8 o Proteins work in teams .. what is the interacting
structure of multiple team’s structure, affinity, function? Team with drug?

interacting parterns Ligand? RNA? ...

1Nl P el =R [=XCiii=le e} o AlphaFold2 is not specifically designed and is unable
mutations that contribute to predict how amino acid mutations alter a protein's

to rare genetic diseases. natural structure
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Artificial intelligence revolution in structure prediction for entire proteomes

(A)

/ \ © AlphaFold
Alpha Fold2’s Protein Structure Database

structure prediction Searchable
\_ ) AlphaFold DB

s el

AlphaFold DB provides open access 1o«
structure predictions to accelerate scientific research

(B) FLDNMFGPRDSRVRG

1 ESMfold

a ) & )

ESM-2 ESMPFold’s
Pretained protein language model folding trunk

15 billi t
\_ ( illion parameters) > \ / ‘
T Predicted

........................
........................

FLD. MFGP. DSR RG . mask token structure

MedComm - Future Medicine, Volume: 1, Issue: 2, First published: 04 October 2022, DOI: (10.1002/mef2.19)



Protein sequence to structure

3D Structure

!

MHFTEDKATILWGKVNVEGETLGRVYPWQ
Primary Sequence
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Protein sequence to structure

3D Structure

!

MHFTEDKATILWGKVNVEGETLGRVYPWQ

Primary Sequence
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nature

hittps://doi.org/101038/541586-021-03819-2

Accelerated Article Preview

Highly accurate proteinstructure prediction
with AlphaFold
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Cite this article as: Jumper, J. et al. Highly
accurate protein structure prediction with
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s41586-021-03819-2 (2021).
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Analysis of distance-based protein structure prediction by deep learning in CASP13 - Jinbo Xu et al.
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Learning Protein Structure with a Differentiable Simulator - John Ingraham et al.
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Structure Prediction relies on the input MSA
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What is a Multiple Sequence Alignment (MSA)?
Search against a database of sequences

Database of
sequences



Generate a multiple sequence alignment
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Analyze the MSA for coevolution
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Input feature generation for AlphaFold2

Input MSA features Input Templates

I[terative — features
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Generation of input features can take hours for a single protein on
multiple cores



Typical pipeline before Alphafold
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- Golkov, V., Skwark, M.J., Golkov, A., Dosovitskiy, A., Brox, T., Meiler, J. and Cremers, D., 2016, December. Protein contact prediction from amino acid co-
evolution using convolutional networks for graph-valued images. In NIPS (pp. 4215-4223).

- Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J., 2017. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS computational
biology, 13(1), p.e1005324.
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TRANSFORMER PROTEIN LANGUAGE MODELS ARE
UNSUPERVISED STRUCTURE LEARNERS

Roshan Rao” Joshua Meier Tom Sercu
UC Berkeley Facebook Al Research Facebook Al Research
rmrac@berkeley.edu jmeier@fb.com tsercu@fb.com
Sergey Ovchinnikov Alexander Rives
Harvard University Facebook Al Research & New York University
so@g.harvard.edu arives@cs.nyu.edu

ABSTRACT

Unsupervised contact prediction is central to uncovering physical, structural, and
functional constraints for protein structure determination and design. For decades,
the predominant approach has been to infer evolutionary constraints from a set of
related sequences. In the past year, protein language models have emerged as a po-
tential alternative, but performance has fallen short of state-of-the-art approaches
in bioinformatics. In this paper we demonstrate that Transformer attention maps
learn contacts from the unsupervised language modeling objective. We find the
highest capacity models that have been trained to date already outperform a state-
of-the-art unsupervised contact prediction pipeline, suggesting these pipelines can
be replaced with a single forward pass of an end-to-end model/'
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Figure 1: Contact prediction pipeline. The Transformer 1s first pretrained on sequences from a large
database (Uniref50) via Masked Language Modeling. Once finished training, the attention maps
are extracted, passed through symmetrization and average product correction, then into a regression.
The regression is trained on a small number (n < 20) of proteins to determine which attention heads
are informative. At test time, contact prediction from an input sequence can be done entirely on
GPU 1n a single forward pass.



From Language
model to contact

==>no MSAI!!I

Structure prediction from contacts While we do not perform structure prediction in this work,
many methods have been proposed to extend contact prediction to structure prediction. For example,
EVFold (Marks et al., 2011) and DCAFold (Sulkowska et al., 2012) predict co-evolving couplings
using a Potts Model and then generate 3D conformations by directly folding an initial conformation
with simulated annealing, using the predicted residue-residue contacts as constraints. Similarly,
FragFold (Kosciolek & Jones, 2014) and Rosetta (Ovchinnikov et al., 2016) incorporate constraints
from a Potts Model into a fragment assembly based pipeline. Senior et al. (2019), use features
from a Potts model fit with pseudolikelihood maximization to predict pairwise distances with a deep
residual network and optimize the final structure using Rosetta. All of these works build directly

upon the unsupervised contact prediction pipeline.

Supervised contact prediction Recently, supervised methods using deep learning have resulted in
breakthrough results in supervised contact prediction (Wang et al., 2017; Jones & Kandathil, 2018;
Yang et al., 2019; Senior et al., 2020; Adhikari & Elofsson, 2020). State-of-the art methods use
deep residual networks trained with supervision from many protein structures. Inputs are typically
covariance statistics (Jones & Kandathil, 2018; Adhikari & Elofsson, 2020), or inferred coevolu-
tionary parameters (Wang et al., 2017; Liu et al., 2018; Senior et al., 2020; Yang et al., 2019). Other
recent work with deep learning uses sequences or evolutionary features as inputs (AlQuraishi, 2018;
Ingraham et al., 2019). Xu et al. (2020) demonstrates the incorporation of coevolutionary features
is critical to performance of current state-of-the-art methods.

Unsupervised contact prediction In contrast to supervised methods, unsupervised contact pre-
diction models are trained on sequences without information from protein structures. In principle
this allows them to take advantage of large sequence databases that include information from many
sequences where no structural knowledge is available. The main approach has been to learn evolu-
tionary constraints among a set of similar sequences by fitting a Markov Random Field (Potts model)
to the underlying MSA, a technique known as Direct Coupling Analysis (DCA). This was proposed
by Lapedes et al. (1999) and reintroduced by Thomas et al. (2008) and Weigt et al. (2009).

Contact prediction from protein language models Since the introduction of large scale language
models for natural language processing (Vaswani et al., 2017; Devlin et al., 2019), there has been
considerable interest in developing similar models for proteins (Alley et al., 2019; Rives et al.,
2019; Heinzinger et al., 2019; Rao et al., 2019; Elnaggar et al., 2020; Lu et al., 2020; Madani et al.,
2020; Shen et al., 2021). Rives et al. (2019) were the first to study protein Transformer language
models, demonstrating that information about residue-residue contacts could be recovered from the
learned representations by linear projections supervised with protein structures. Recently Vig et al.
(2020) performed an extensive analysis of Transformer attention, identifying correspondences to
biologically relevant [eatures, and also found that different layers of the model are responsible for
learning different features. In particular Vig et al. (2020) discovered a correlation between self-
attention maps and contact patterns, suggesting they could be used for contact prediction.

Prior work benchmarking contact prediction with protein language models has focused on the su-
pervised problem. Bepler & Berger (2019) were the first to fine-tune an LSTM pretrained on protein
sequences to fit contacts. Rao et al. (2019) and Rives et al. (2020) perform benchmarking of mul-
tiple protein language models using a deep residual network fit with supervised learning on top of
pretrained language modeling features.



Evolutionary-scale prediction of atomic level protein structure
with a language model
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Abstract

Artificial intelligence has the potential to open
insight into the structure of proteins at the scale of
evolution. It has only recently been possible to ex-
tend protein structure prediction to two hundred
million cataloged proteins. Characterizing the
structures of the exponentially growing billions of
protein sequences revealed by large scale gene se-
quencing experiments would necessitate a break-
through in the speed of folding. Here we show

1. Introduction

The sequences of proteins at the scale of evolution contain
an image of biological structure and function. This 1s be-
cause the biological properties of a protein act as constraints
on the mutations to its sequence that are selected through
evolution, recording structure and function into evolutionary
patterns (1-3). Within a protein family, structure and func-
tion can be inferred from the patterns in sequernces (4, 5).
This insight has been central to progress in computational
structure prediction starting from classical methods (6, 7),



Protein Structure landscape

190k experimental determined
https://www.rcsb.org/

ESM Metagenomic Atlas
(https://esmatlas.com): 617M
proteins. We are able to complete
this characterization in 2 weeks on a
heterogeneous cluster of 2,000
GPUs, demonstrating scala bility to
far larger databases. High
confidence predictions are made for
over 225M structures

AlphaFold DB 200 million structures in
AlphaFold DB, 35% are considered to
be highly accurate. Another 45% have
reasonable accuracy enough for many
studies
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* ESM-2, at scales from 8 million parameters up

Protein to 15 billion parameters.
la Ngudge * Relative to previous generation model ESM-1b,
ESM-2 introduces improvements in
mode] (largeSt architecture, training parameters, and
to date) increases computational resources and data

* Enabling the structure prediction from primary
seguence,

* On asingle NVIDIA V100 GPU, ESMFold makes a
prediction on a protein with 384 residues in 14.2
seconds, 6x faster than a single AlphaFold2 model.
On shorter sequences the improvement increases
up to ~60x



ESM-2

* During training sequences are sampled with
even weighting across ~43 million UniRef50
training clusters from ~138 million UniRef90
sequences so that over the course of training
the model sees ~65 million unique sequences.

* Training curves for ESM-2 models from 8M
(highest curve, light) to 15B parameters (lowest
curve, dark). Models are trained to 270K
updates. Validation perplexity is measured on a
0.5% random-split holdout of UniRef50. After
270K updates the 8M parameter model has a
perplexity of 10.45, and the 15B model reaches
a perplexity of 6.37.

Here perplexity, ranges fro@perfect model

model that makes predictions at random.
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ESM-2
* BERT encoder only transformer

* Rotary Position Embedding (RoPE) to allow the model extrapolate
beyond the context window it is trained on

* Absolute plus, Learned positional encodings



A e True Positive » False Positive = Other Contact

ESM-2 attention patterns
correspond to the residue-
residue contact map of a proteinqb(

Unsupervised Contact Map (3LYW)

Predicted contact probabilities (bottom right) and actual contact
precision (top left) for 3LYW. A contact is a positive prediction if it
is within the top-L most likely contacts for a sequence of length L.



* Eliminating the need for external evolutionary databases, multiple sequence alignments,
and templates.

* Each folding block alternates between updating a sequence representation and a pairwise
representation.

* The output of these blocks is passed to an equivariant transformer structure module, and
three steps of recycling are performed before outputting a final atomic-level structure and
predicted confidences
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Alphafold2’s Evoformer

integrate the multiple sequence alignment into the neural
network architecture through an attention mechanism
operating across the rows and columns of the MSA

48 blocks (no shared weights)
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ESMfold architecture

* replace the axial attention with a standard attention. All other operations
are the same as in the Evoformer block. Call this simplified architecture the
Folding block.

* the removal of templates. Template information is passed to the Alphafold2
model as pairwise distances, input to the residue-pairwise embedding.
ESMFold simply omit this information, passing instead the attention maps
from the language model,

 ESMFold uses the Frame Aligned Point Error (FAPE) and distogram losses
introduced in AlphaFold2, as well as heads for predicting LDDT and the pTM
score.



ESMfold more

NN

 ESMfold train the folding head on ~25K clusters covering a totabaf ~325K e
experimentally determined structures from the PDB, further augmented with a
dataset of ~12M structures we predicted with AlphaFold2



ESMFold
produces accurate
atomic resolution
predictions, with
similar accuracy to

RosettaFold on
CAMEDO.
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What is next?

Structure Prediction

Speed does matter!

Design of entirely new e |f a designed amino acid sequence could fold into the
proteins: reliable structure that we desired?

(el elg=le (oM [Heelppl el S8 o Proteins work in teams .. what is the interacting
structure of multiple team’s structure, affinity, function? Team with drug?

interacting parterns Ligand? RNA? ...

1Nl P el =R [=XCiii=le e} o AlphaFold2 is not specifically designed and is unable
mutations that contribute to predict how amino acid mutations alter a protein's

to rare genetic diseases. natural structure
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Highly accurate protein structure prediction with AlphaFold

eJohn Jumper, et al

*Demis Hassabis

Show authorsNature volume 596, pages583—589 (2021)Cite this article

Abstract

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function.
Through an enormous experimental effortt224, the structures of around 100,000 unique proteins have been determined=,
but this represents a small fraction of the billions of known protein sequences®Z. Structural coverage is bottlenecked by the
months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches
are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional
structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the
‘protein folding problem’8—has been an important open research problem for more than 50 years2. Despite recent
progressi®11.12,13,14 "axisting methods fall far short of atomic accuracy, especially when no homologous structure is available.
Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in
cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based
model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14){2, demonstrating
accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods.
Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological
knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm
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doi: 10.1371/journal.pone.0028766. Epub 2011 Dec 7.

Protein 3D structure computed from evolutionary sequence variation

Debora S Marks?, Lucy J Colwell, Robert Sheridan, Thomas A Hopf, Andrea Pagnani, Riccardo Zecchina, Chris Sander
Affiliations expand

Abstract

The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence
homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these
constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering
purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of
inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a
set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of
observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by
the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of
these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring
residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We
qguantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different
fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de
novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution
signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 A C(a)-RMSD error relative to the
observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery
provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the

universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic variants
o e [ N PN -
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Correlated mutations carry information about
distance relationships in protein structure.
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Biological structure and function emerge from scaling unsupervised learning to 250 million
protein sequences (ESM)

Alexander Rives https://orcid.org/0000-0003-2208-
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Significance

Learning biological properties from sequence data is a logical step toward generative and predictive artificial intelligence
for biology. Here, we propose scaling a deep contextual language model with unsupervised learning to sequences
spanning evolutionary diversity. We find that without prior knowledge, information emerges in the learned
representations on fundamental properties of proteins such as secondary structure, contacts, and biological activity. We
show the learned representations are useful across benchmarks for remote homology detection, prediction of secondary
structure, long-range residue—residue contacts, and mutational effect. Unsupervised representation learning enables
state-of-the-art supervised prediction of mutational effect and secondary structure and improves state-of-the-art
features for long-range contact prediction.
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Abstract

In the field of artificial intelligence, a combination of scale in data and model capacity
enabled by unsupervised learning has led to major advances in representation learning
and statistical generation. In the life sciences, the anticipated growth of sequencing
promises unprecedented data on natural sequence diversity. Protein language
modeling at the scale of evolution is a logical step toward predictive and generative
artificial intelligence for biology. To this end, we use unsupervised learning to train a
deep contextual language model on 86 billion amino acids across 250 million protein
sequences spanning evolutionary diversity. The resulting model contains information
about biological properties in its representations. The representations are learned from
sequence data alone. The learned representation space has a multiscale organization
reflecting structure from the level of biochemical properties of amino acids to remote
homology of proteins. Information about secondary and tertiary structure is encoded
in the representations and can be identified by linear projections. Representation
learning produces features that generalize across a range of applications, enabling
state-of-the-art supervised prediction of mutational effect and secondary structure and
improving state-of-the-art features for long-range contact prediction.
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Accurate prediction of protein structures and interactions using a three-track

neural network

https://science.sciencemag.org/content/early/2021/07/19/science.abj8754
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