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What is a foundation model?

➢ Very large deep learning models 
○ Massive broad datasets 

➢ What is the purpose?
○ Acts a foundation to build upon 

○ Can quickly be adapted for a task 

○ Cost effective 
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AI in Healthcare

➢ AI in healthcare can be used for several purposes
○ Diagnosis 

○ Image analysis 

○ Predictive 

○ Personalization 

➢ How do foundation models relate to AI in healthcare?
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Foundation Models (FM)

➢ FMs are large-scale, pre-trained models fine-tuned for various downstream 

tasks, leveraging extensive training datasets.

➢ FMs utilize self-supervised learning to autonomously generate pre-training 

tasks from unlabeled data.

➢ FMs are versatile and can be applied to various fields including text, video, 

speech, and tabular data.
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Introduction and Outline
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Outline
● Introduction (Joseph)

○ Importance of AI in healthcare

○ Brief overview of foundational models and what is being presented

● Overview of foundation models (Mati)

○ What is a foundation model

○ Type of foundation models

● Applications in healthcare (Jing-Ning)

○ Examples of how they are used in healthcare

○ Advancements, include specific examples/ real world uses

● AI challenges in healthcare, include specific examples/ real world cases (Jingyi)

○ Data (getting good data, privacy)

○ Algorithmic

○ Resources cost/infrastructure

● Future work/directions (Sheharyar)

● Conclusion (Sheharyar)

● Discussion(Joseph)





Foundation models driving AI in healthcare 

➢ AI has achieved specialist level performance

➢ Many diverse scenarios and requirements 

➢ What do foundation models add?
○ Cost effective and fast

➢ Efficient at creating models for a variety of healthcare tasks

➢ AI in healthcare is moving away from specific into general purpose
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FMs in Medical Domain 

➢ General-Purpose FMs: Challenging to adopt in healthcare due to specialized 
needs.

➢ Text-Based Models: Word2Vec, ELMo, and BERT perform poorly on biomedical 
texts due to differing word distributions.

➢ Vision-Text Pre-Training: Models like CLIP struggle with nuanced differences in 
medical versus general images.

➢ Segment Anything Model (SAM): Ineffective for 3D medical images with its 2D 
design.

➢ Task-Agnostic Model Development: New models inspired by BERT and GPT 
are tailored for medical data.
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Clinical Large Language Models (CLLM)

➢ BioBERT: Pioneering biomedical NLP model, excelling in NER, RE, and QA tasks 

across 15 datasets.

➢ BioMegatron: Enhanced with up to 1.2 billion parameters; superior performance 

in biomedical benchmarks, trained on extensive PubMed and PMC data.

➢ GatorTron: A clinical NLP powerhouse with 8.9 billion parameters, trained on a 

vast corpus including UF Health clinical texts, achieving top results in five clinical 

NLP tasks.

➢ GatorTronGPT: GPT-3 architecture adaptation with 20 billion parameters, 

generating medically aligned synthetic data and performing comparably to human 

clinicians in NER, QA, RE, NLI, and semantic tasks.
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Medical Image Analysis

➢ Distinct Characteristics: Medical images feature unique patterns and 

characteristics compared to natural images, necessitating specialized models.

➢ Segment Anything Model (SAM): Originally designed for general-purpose 

segmentation, SAM was later adapted for medical imaging tasks.

➢ MedSAM Architecture: Utilizes a vision transformer-based (ViT) image encoder 

and a mask decoder, specifically tailored for medical image segmentation.

➢ Training and Performance: MedSAM was trained on 1,570,263 image-text pairs 

from online medical datasets, demonstrating superior performance compared to 

models like SAM and U-Net.
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CLIP-based FMs

➢ CLIP Architecture: CLIP is a neural network that classifies images using 

natural language, trained on a dataset of 400 million image-text pairs.

➢ Medical Limitations: In medical applications, CLIP struggles with smaller 

datasets, often misclassifying similar images.

➢ MedCLIP Adaptation: MedCLIP modifies CLIP for medical use by separating 

image-text inputs and adding a medical-specific semantic loss, improving 

data efficiency.
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Text-to-Image

➢ Text-to-image models are applied to generate text-conditional MRI scans, 

demonstrating their utility in medical imaging.

➢ MedXChat, a new text-to-image model, excels in synthesizing accurate x-ray 

images and medical reports, surpassing existing models in adaptability and 

precision.

➢ These technologies improve health literacy and comprehension of medical 

texts, enabling more effective diagnosis, reducing the need for repeated 

scans, and minimizing radiation exposure for patients.
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Omics

➢ Traditional FMs fails to generalize across genomics, proteomics, 

metabolomics, and other omics domains.

➢ Specialized BERT models like scBERT were developed for gene-level 

analysis, RNABERT for RNA sequence alignment, and DNABERT for 

decoding non-coding DNA, enhancing scalability and accuracy.

➢ Ongoing issues include the necessity for curated datasets, high 

computational costs, and model limitations in capturing comprehensive 

genomic information, pointing to areas for future enhancement.
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Applications in Healthcare
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Applications in Healthcare

17

References:

[1] A Comprehensive Survey of Foundation Models in Medicine



Applications in Healthcare

➢ Clinical Natural Language Processing (NLP)

○ Virtual Assistants: Answer patient queries, provide health advice

○ Report Generation: Automate medical report creation

○ Information Extraction: Extract key insights from EHRs

➢ Medical Imaging

○ Disease Detection: Identify tumors from medical images

○ Image Generation: Create images from text descriptions

○ Educational Tools: Visual aids for patient education
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Applications in Healthcare

➢ Electronic Health Records (EHR)

○ Risk Prediction: Predict patient risks like readmission

○ Summarization: Summarize patient histories

○ Decision Support: Aid in treatment decisions

➢ Bioinformatics and Genomics

○ Genetic Analysis: Identify disease markers in genetic sequences

○ Drug Discovery: Design new drugs, predict protein structures

○ Personalized Medicine: Tailor treatments based on genetic profiles
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Applications in Healthcare

➢ Multimodal Integration

○ Data Fusion: Combine text, images, and genetic data

○ Enhanced Diagnostics: Provide a comprehensive understanding of 

conditions

○ Personalized Treatment: Develop more effective treatment plans

➢ Healthcare Service Optimization

○ Patient Prioritization: Triage patients based on urgency

○ Automated Reporting: Streamline healthcare processes

○ Efficiency Improvement: Reduce administrative burden
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Overview of Model Training and Evaluation
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Examples of Foundation Models in Healthcare

➢ Clinical Prediction Tasks: In-hospital mortality, long length of stay, 30-day 

readmission, abnormal lab results.

➢ Structured EHR Data: Summarize patient medical history for diagnostics.

➢ Model Architecture: FMSM, 141M parameter Transformer model, pretrained 

on 2.57M patient records.

➢ Data Mapping: OMOP CDM for compatibility.
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In-Depth Study of Clinical Prediction Tasks

➢ Methodology:

○ Data Sources: SickKids, MIMIC-IV.

○ Evaluation Metrics: AUROC, ECE.

➢ Results:

○ In-hospital mortality: AUROC 0.957.

○ Long length of stay: AUROC 0.839.

○ Hypoglycemia, anemia: Improved prediction accuracy.

➢ Technical Insights:

○ Feature Representations: Dense vectors for patient timelines.

○ Continued Pretraining: +3% performance improvement.
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Impact on Healthcare Processes

➢ Efficiency:

○ Few-shot learning: 128 examples match GBM performance.

○ Reduced label acquisition costs.

➢ Robustness:

○ Cross-site adaptability: SickKids and MIMIC-IV.

○ Continued pretraining: Enhanced local adaptation.

➢ Technical Insights:

○ Hyperparameter tuning.

○ Hierarchical bootstrapping for evaluation.
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Advancements

➢ Adaptability:

○ Strong performance across datasets.

○ Continued pretraining: +3% performance.

➢ Efficiency:

○ 60-90% fewer training examples needed.

○ Faster deployment.

➢ Accuracy:

○ High AUROC scores.

○ Improved calibration (lower ECE).

➢ Technical Insights:

○ Decoder-only Transformer architecture.

○ Next-code prediction task for pretraining.
25

References:

[1] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records



Multi-Center Applicability and Scalability

➢ Real-World Use Cases:

○ SickKids: Pediatric healthcare.

○ MIMIC-IV: Adult ICU settings.

➢ Technical Insights:

○ OMOP CDM for data consistency.

○ Hierarchical bootstrapping for robust evaluation.

➢ Cohort Characteristics:

○ Detailed patient demographics.

○ Few-shot learning experiments.
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AI challenges in healthcare
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AI challenges in healthcare

➢ Healthcare Data Is Unique:

○ Highly sensitive and personalized (e.g., patient medical records).

○ Diverse formats: EHRs, medical imaging, genomic data, etc.

➢ Challenges:

○ Data quality issues.

○ Privacy and security concerns.

○ Limited access to diverse datasets.
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Data Quality Issues

➢ Inconsistencies in Data

○ Hospitals adopt different EHR standards, leading to compatibility issues.

➢ Example:

○ SickKids (Canada): Pediatric-focused data.

○ MIMIC-IV (USA): Primarily adult ICU data.

○ The lack of a unified standard complicates training and testing across 

institutions.
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Data Quality Issues

➢ Incomplete Data

○ Missing values in EHR datasets (e.g., unrecorded lab results, treatment 

histories).

○ Fragmented patient data across departments limits its utility for AI 

models.

➢ Bias in Data

○ Underrepresentation of certain populations in training datasets.

○ SickKids data is leaned towards children, reducing generalizability to 

adult healthcare systems.
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Privacy and Security

➢ Strict Privacy Laws:

○ GDPR (Europe): Restricts data sharing across borders.

○ HIPAA (USA): Ensures protection of patient health information (PHI).

○ Institutions face legal and financial risks if they fail to comply.

➢ Data Anonymization Issues

○ De-identification techniques remove personal identifiers but can lead to: 

Loss of contextual richness in medical text. And reduced performance for 

AI models in tasks like prediction and diagnosis.

○ GatorTronGPT: Used de-identified text for training but experienced 

limitations in tasks requiring nuanced clinical context
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Privacy and Security

➢ Challenges of Cross-Institutional Collaboration

○ Hospitals and institutions lack standardized frameworks for secure data 

sharing.

○ SickKids and MIMIC-IV data were used separately due to privacy 

concerns, despite their complementary nature

➢ Emerging Security Risks

○ AI models are vulnerable to: Data breaches and cyber-attacks.

○ Unauthorized use of AI models trained on sensitive medical datasets 

could lead to privacy violations and ethical dilemmas
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Algorithmic Challenges in Healthcare AI

➢ Why Algorithms Matter in Healthcare AI

○ Algorithms drive decision-making: From diagnosis to treatment 

recommendations.

➢ Challenges arise from model complexity and healthcare's dynamic 

nature.

○ Explainability and interpretability.

○ Handling bias and fairness.

○ Reliability in clinical settings.
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Responsibility in Algorithmic Decision-Making

➢ Explainability Challenges:

○ Neural networks often function as "black boxes." GPT-4 in medical 

contexts provides no clear rationale for its conclusions.

➢ Fairness Issues:

○ Models trained on biased datasets produce unfair outcomes.

○ Found inherent biases in GPT-based medical systems when diagnosing 

rare diseases
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Ensuring Reliability in AI Models

➢ Model Hallucinations:

○ Generating plausible but incorrect outputs.

○ A model suggested non-existent drug interactions during a clinical query.

➢ Outdated Knowledge:

○ Healthcare evolves rapidly; static models can't keep up.

○ FMs trained on outdated datasets missed new treatment guidelines.

○ EHR Systems and Reliability: CLMBR-T-base model showed limitations 

in handling rare conditions due to static pretraining .
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Resource and Infrastructure Challenges in Healthcare AI

➢ AI models require significant resources:

○ Training foundation models (FMs) demands high-end hardware.

○ Deployment in real-world healthcare settings adds further constraints.

➢ Core Challenges:

○ High computational and financial costs.

○ Limited scalability for resource-constrained environments.
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Computational Demands in AI Model Training

➢ Training Foundation Models:

○ Training LLaMA with 65B parameters took 21 days on 2048 A100 GPUs 

with 80GB RAM per GPU.

○ Estimated energy costs for similar models run into millions

➢ Expensive Hardware Requirements:

○ Models like MedSAM require 20 Nvidia A100 GPUs (1600 GB memory).

○ Limited availability of GPUs globally affects researchers and smaller 

hospitals
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Scalability in Real-World Settings

➢ Adaptation for Resource-Limited Settings:

○ Many models cannot run efficiently on smaller devices or low-resource 

environments (e.g., rural clinics).

○ Scaling MedSAM for smaller hospitals remains impractical without 

significant modifications.

➢ Balancing Cost and Efficiency:

○ Methods like model compression and pruning can reduce resource 

needs but may compromise accuracy.

○ We need some ongoing research into lightweight architectures.
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Future Directions
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➢ Scaling FMs:
○ Addressing specialized medical domains by leveraging task-specific fine-tuning and domain 

adaptation techniques.

➢ Interoperability: 
○ Achieving seamless integration and collaboration across multi-institutional datasets through 

federated learning and standardized data-sharing protocols.

➢ Personalized Medicine: 
○ Enabling real-time adaptive models capable of understanding patient-specific data, such as 

genomics, lifestyle, and historical medical records.

➢ Rare Diseases:
○ Fine-tune model trained on common data

➢ Artificial General Intelligence (AGI)

Future of FMs in Healthcare

40



Overcoming Current Challenges

➢ Data Scarcity: 
○ Limited annotated datasets for model training can be addressed through synthetic data 

generation, augmentation strategies, and leveraging unstructured data via self-supervised 

learning.

➢ Bias and Fairness: 
○ Disparities in performance across patient demographics necessitate the development of 

fairness-aware algorithms and bias evaluation metrics.

➢ Scalability Issues: 
○ High computational costs for training and deployment require energy-efficient training 

methods, such as sparsity techniques and model compression.

➢ Model Interpretability:
○ Empowering clinicians with tools to intervene in the model’s decision-making process can 

enable personalized and context-aware healthcare solutions.
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Overcoming Current Challenges
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➢ Model Size and Practical Use:
○ Balance between performance and computational cost needs careful consideration.

➢ Privacy Preserving:
○ Ensuring data security and confidentiality while collaborative model training across multiple 

institutions.

➢ Security:
○ Incorporate robust FMs before deploying them into clinical settings.



Multimodal Learning

➢ Integration of Multimodal Data: 
○ Combining EHRs, medical images, genomic data, and wearable device signals to create 

comprehensive patient profiles.

➢ Real-Time Decision-Making: 
○ Combining text, image, and bio-signal inputs through end-to-end multimodal frameworks such 

as transformers and cross-modal embeddings.

➢ Artificial General Intelligence (AGI):
○ Has the potential to revolutionize patient care by integrating advanced models that can 

understand and analyze complex clinical.
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Explainability and Trustworthiness

➢ Explainability: 
○ Moving beyond black-box models by using techniques like SHAP values, saliency maps, and 

attention visualization.

➢ Validation Frameworks: 
○ Ensuring safety and reliability in real-world applications through clinical trials and regulatory 

compliance.

➢ Security:
○ Incorporate robust FMs before deploying them into clinical settings so models are prone to 

adversarial attacks.

➢ Ethical AI: 
○ Embed fairness and accountability mechanisms to build clinician and patient trust in AI systems.
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Ethical and Legal Considerations

➢ Privacy-Preserving Models: 
○ Implementing secure federated learning to maintain patient confidentiality while enabling 

collaborative research.

➢ Liability Concerns: 
○ Defining clear accountability frameworks and error-handling protocols for AI-assisted 

healthcare decisions.

➢ Sustainability:
○ Reducing the costs of data collection and processing, model training, and inference will 

stimulate the commercial advantages of HFMs and improve sustainability.
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➢ Efficient Training: 
○ Explore sparsity and pruning techniques to reduce computational costs without sacrificing 

accuracy.

➢ Edge Computing: 
○ Deploy lightweight FMs in resource-limited environments, such as rural clinics.

➢ Sustainability: 
○ Reduce environmental impact through energy-efficient training methods and reusable models.

Infrastructure Challenges
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Collaborating for the Future
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➢ Industry-Academia Partnerships: 
○ Innovate by combining cutting-edge research with practical healthcare applications.

➢ Open-Source Initiatives: 
○ Democratize AI development by sharing pre-trained models and datasets while ensuring 

privacy.

➢ Interdisciplinary Teams: 
○ Build bridges between data scientists, clinicians, and ethicists for comprehensive AI solutions.



➢ Transformative Potential: 
○ Foundation models are revolutionizing healthcare, enabling improved diagnostics, and efficient 

resource use.

➢ Overcoming Challenges: 
○ Addressing data scarcity, bias, interpretability, and computational demands is critical for 

widespread adoption.

➢ Collaborative Future: 
○ Interdisciplinary efforts between researchers, clinicians, and policymakers are essential for 

sustainable progress.

➢ Vision Forward: 
○ The integration of advanced AI technologies promises a future of equitable, accessible, and 

impactful healthcare solutions for simple and complex scenarios.

Conclusion
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Discussion
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Discussion

➢ In what situation would using foundation models not always be ideal in 

healthcare?
○ Highly specific tasks, lack of data

○ Task is very sensitive to bias 

○ Extreme accuracy is needed

○ Deployment resource limitations
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Discussion

➢ How can privacy be ensured with foundation models in healthcare?
○ Data modification with the goal of privacy 

○ Differential privacy to prevent inference attacks

○ LLM privacy agent for verification
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Discussion

➢ How will the adoption of AI in healthcare affect the workforce?
○ Training may be needed to use AI properly

○ Importance of knowing the AI’s limitations and verifying

○ More productive
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Discussion

➢ Do you think AGI will help solve limitations of FMs?

53
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