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What is a foundation model?
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Al In Healthcare

> Al in healthcare can be used for several purposes
o Diagnosis
o Image analysis
o Predictive
o Personalization

> How do foundation models relate to Al in healthcare?
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Foundation Models (FM)

> FMs are large-scale, pre-trained models fine-tuned for various downstream
tasks, leveraging extensive training datasets.

> FMs utilize self-supervised learning to autonomously generate pre-training
tasks from unlabeled data.

> FMs are versatile and can be applied to various fields including text, video,
speech, and tabular data.
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Outline

e Introduction (Joseph)
o Importance of Al in healthcare
o  Brief overview of foundational models and what is being presented
e  Overview of foundation models (Mati)
o What is a foundation model
o  Type of foundation models
e Applications in healthcare (Jing-Ning)
o Examples of how they are used in healthcare
o Advancements, include specific examples/ real world uses
e Al challenges in healthcare, include specific examples/ real world cases (Jingyi)
o Data (getting good data, privacy)
o Algorithmic
o Resources cost/infrastructure
e Future work/directions (Sheharyar)
Conclusion (Sheharyar)
Discussion(Joseph)
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Foundation models driving Al in healthcare

> Al has achieved specialist level performance
Many diverse scenarios and requirements

> What do foundation models add?
o Cost effective and fast

> Efficient at creating models for a variety of healthcare tasks
> Al in healthcare is moving away from specific into general purpose
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FMs in Medical Domalin

> General-Purpose FMs: Challenging to adopt in healthcare due to specialized
needs.

> Text-Based Models: Word2Vec, ELMo, and BERT perform poorly on biomedical
texts due to differing word distributions.

> Vision-Text Pre-Training: Models like CLIP struggle with nuanced differences in
medical versus general images.

> Segment Anything Model (SAM): Ineffective for 3D medical images with its 2D
design.

> Task-Agnostic Model Development: New models inspired by BERT and GPT
are tailored for medical data.
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Clinical Large Language Models (CLLM)

> BioBERT: Pioneering biomedical NLP model, excelling in NER, RE, and QA tasks
across 15 datasets.

> BioMegatron: Enhanced with up to 1.2 billion parameters; superior performance
in biomedical benchmarks, trained on extensive PubMed and PMC data.

> GatorTron: A clinical NLP powerhouse with 8.9 billion parameters, trained on a
vast corpus including UF Health clinical texts, achieving top results in five clinical
NLP tasks.

> GatorTronGPT: GPT-3 architecture adaptation with 20 billion parameters,
generating medically aligned synthetic data and performing comparably to human
clinicians in NER, QA, RE, NLI, and semantic tasks.
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Medical Image Analysis

> Distinct Characteristics: Medical images feature unique patterns and
characteristics compared to natural images, necessitating specialized models.

> Segment Anything Model (SAM): Originally designed for general-purpose
segmentation, SAM was later adapted for medical imaging tasks.

> MedSAM Architecture: Utilizes a vision transformer-based (ViT) image encoder
and a mask decoder, specifically tailored for medical image segmentation.

> Training and Performance: MedSAM was trained on 1,570,263 image-text pairs
from online medical datasets, demonstrating superior performance compared to
models like SAM and U-Net.
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CLIP-based FMs

> CLIP Architecture: CLIP is a neural network that classifies images using
natural language, trained on a dataset of 400 million image-text pairs.

> Medical Limitations: In medical applications, CLIP struggles with smaller
datasets, often misclassifying similar images.

> MedCLIP Adaptation: MedCLIP modifies CLIP for medical use by separating
iImage-text inputs and adding a medical-specific semantic loss, improving
data efficiency.
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Text-to-Image

> Text-to-image models are applied to generate text-conditional MRI scans,
demonstrating their utility in medical imaging.

> MedXChat, a new text-to-image model, excels in synthesizing accurate x-ray
Images and medical reports, surpassing existing models in adaptability and
precision.

> These technologies improve health literacy and comprehension of medical
texts, enabling more effective diagnosis, reducing the need for repeated
scans, and minimizing radiation exposure for patients.
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omics

> Traditional FMs fails to generalize across genomics, proteomics,
metabolomics, and other omics domains.

> Specialized BERT models like scBERT were developed for gene-level
analysis, RNABERT for RNA sequence alignment, and DNABERT for
decoding non-coding DNA, enhancing scalability and accuracy.

> 0Ongoing issues include the necessity for curated datasets, high
computational costs, and model limitations in capturing comprehensive
genomic information, pointing to areas for future enhancement.
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Applications in Healthcare
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Applications in Healthcare
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Applications in Healthcare

> Clinical Natural Language Processing (NLP)
o Virtual Assistants: Answer patient queries, provide health advice
o Report Generation: Automate medical report creation
o Information Extraction: Extract key insights from EHRSs
> Medical Imaging
o Disease Detection: Identify tumors from medical images
o Image Generation: Create images from text descriptions
o Educational Tools: Visual aids for patient education

References:
[1] A Comprehensive Survey of Foundation Models in Medicine
[2] Foundation Model for Advancing Healthcare

[3] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records 18



Applications in Healthcare

> Electronic Health Records (EHR)
o Risk Prediction: Predict patient risks like readmission
o Summarization: Summarize patient histories
o Decision Support: Aid in treatment decisions
> Bioinformatics and Genomics
o Genetic Analysis: Identify disease markers in genetic sequences
o Drug Discovery: Design new drugs, predict protein structures
o Personalized Medicine: Tailor treatments based on genetic profiles

References:
[1] A Comprehensive Survey of Foundation Models in Medicine
[2] Foundation Model for Advancing Healthcare

[3] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records 19



Applications in Healthcare

> Multimodal Integration
o Data Fusion: Combine text, images, and genetic data
o Enhanced Diagnostics: Provide a comprehensive understanding of
conditions
o Personalized Treatment: Develop more effective treatment plans
> Healthcare Service Optimization
o Patient Prioritization: Triage patients based on urgency
o Automated Reporting: Streamline healthcare processes
o Efficiency Improvement: Reduce administrative burden
References:
[1] A Comprehensive Survey of Foundation Models in Medicine

[2] Foundation Model for Advancing Healthcare
[3] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records 20



Overview of Model Training and Evaluation
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Examples of Foundation Models in Healthcare

> Clinical Prediction Tasks: In-hospital mortality, long length of stay, 30-day
readmission, abnormal lab results.

Structured EHR Data: Summarize patient medical history for diagnostics.
Model Architecture: FMSM, 141M parameter Transformer model, pretrained
on 2.57M patient records.

> Data Mapping: OMOP CDM for compatibility.

V.V

EHR: Electronic Health Records, digital versions of patients' paper charts containing medical history,
diagnoses, medications, treatment plans, and more.

FMSM: Foundation Model Stanford Medicine, A model trained on patient records from Stanford Medicine.
OMOP CDM: Observational Medical Outcomes Partnership Common Data Model, standardizes healthcare
data for analysis.

References:
[1] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records 22



In-Depth Study of Clinical Prediction Tasks

> Methodology' SickKids: The Hospital for Sick Children
MIMIC-IV: Medical Information Mart for Intensive

o Data Sources: SickKids, MIMIC-IV. Care

: e AUROC: Area Under the Receiver Operating
o Evaluation Metrics: AU ROC’ ECE. Characteristic, measures model's ability to
> Results: distinguish between classes.

: . ECE: Expected Calibration Error, assesses
© In-hospltal mortallty. AUROC 0.957. model's prediction accuracy and confidence

o Long length of stay: AUROC 0.839. | 3lignment
o Hypoglycemia, anemia: Improved prediction accuracy.
> Technical Insights:
o Feature Representations: Dense vectors for patient timelines.
o Continued Pretraining: +3% performance improvement.

References:
[1] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records 23



Impact on Healthcare Processes

> Efficiency:
o Few-shot learning: 128 examples match GBM performance.
o Reduced label acquisition costs.
> Robustness:
o Cross-site adaptability: SickKids and MIMIC-IV.
o Continued pretraining: Enhanced local adaptation.
> Technical Insights:
GBM: Gradient Boosting Machines,

o Hyperparameter tuning. ensemble method using weak models
o Hierarchical bootstrapping for evaluation. [ Predictions.

References:
[1] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records 24



Advancements

> Adaptability:
o Strong performance across datasets.
o Continued pretraining: +3% performance.
> Efficiency:
o 60-90% fewer training examples needed.
o Faster deployment.
> Accuracy:
o High AUROC scores.
o Improved calibration (lower ECE).
> Technical Insights:
o Decoder-only Transformer architecture.

rReference®  Next-code prediction task for pretraining.
[1] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records 25



Multi-Center Applicability and Scalability

> Real-World Use Cases:

o SickKids: Pediatric healthcare.

o MIMIC-IV: Adult ICU settings.
> Technical Insights:

o OMOP CDM for data consistency.

o Hierarchical bootstrapping for robust evaluation.
> Cohort Characteristics:

o Detailed patient demographics.

o Few-shot learning experiments.

References:
[1] A Multi-center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records 26



Al challenges in healthcare
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Al challenges in healthcare

> Healthcare Data Is Unique:
O Highly sensitive and personalized (e.g., patient medical records).
O Diverse formats: EHRs, medical imaging, genomic data, etc.

> Challenges:
o Data quality issues.
o Privacy and security concerns.
o Limited access to diverse datasets.

[1] Foundation Models in Medicine: Limited public datasets make generalization challenging.
[2] Sharing constraints: Privacy laws like GDPR, HIPAA hinder global data sharing 28



Data Quality Issues

> Inconsistencies in Data
O Hospitals adopt different EHR standards, leading to compatibility issues.
> Example:
O SickKids (Canada): Pediatric-focused data.
O  MIMIC-IV (USA): Primarily adult ICU data.
O The lack of a unified standard complicates training and testing across
Institutions.

[1] A Multi-Center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records
[2] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions 29



Data Quality Issues

> [ncomplete Data
O Missing values in EHR datasets (e.g., unrecorded lab results, treatment
histories).
O Fragmented patient data across departments limits its utility for Al
models.
> Bias in Data
O Underrepresentation of certain populations in training datasets.
O SickKids data is leaned towards children, reducing generalizability to
adult healthcare systems.

[1] A Multi-Center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records
[2] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions 30



Privacy and Security

> Strict Privacy Laws:
O GDPR (Europe): Restricts data sharing across borders.
O HIPAA (USA): Ensures protection of patient health information (PHI).
O Institutions face legal and financial risks if they fail to comply.
> Data Anonymization Issues
O De-identification techniques remove personal identifiers but can lead to:
Loss of contextual richness in medical text. And reduced performance for
Al models in tasks like prediction and diagnosis.
O GatorTronGPT: Used de-identified text for training but experienced
limitations in tasks requiring nuanced clinical context

[1] A Multi-Center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records
[2] A Comprehensive Survey of Foundation Models in Medicine 31



Privacy and Security

> Challenges of Cross-Institutional Collaboration
O Hospitals and institutions lack standardized frameworks for secure data
sharing.
O SickKids and MIMIC-IV data were used separately due to privacy
concerns, despite their complementary nature
> Emerging Security Risks
O Al models are vulnerable to: Data breaches and cyber-attacks.
O Unauthorized use of Al models trained on sensitive medical datasets
could lead to privacy violations and ethical dilemmas

[1] A Multi-Center Study on the Adaptability of a Shared Foundation Model for Electronic Health Records
[2] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions 32



Algorithmic Challenges in Healthcare Al

> Why Algorithms Matter in Healthcare Al
o Algorithms drive decision-making: From diagnosis to treatment
recommendations.

> Challenges arise from model complexity and healthcare's dynamic
nature.
O Explainability and interpretability.
O Handling bias and fairness.
O Reliability in clinical settings.

[1] A Comprehensive Survey of Foundation Models in Medicine
[2] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions 33



Responsibility in Algorithmic Decision-Making

> Explainability Challenges:
O Neural networks often function as "black boxes." GPT-4 in medical
contexts provides no clear rationale for its conclusions.

> Fairness Issues:
O Models trained on biased datasets produce unfair outcomes.
O Found inherent biases in GPT-based medical systems when diagnosing
rare diseases

[1] A Comprehensive Survey of Foundation Models in Medicine
[2] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions 34



Ensuring Reliability in Al Models

> Model Hallucinations:
O Generating plausible but incorrect outputs.
O A model suggested non-existent drug interactions during a clinical query.

> Qutdated Knowledge:
O Healthcare evolves rapidly; static models can't keep up.
O FMs trained on outdated datasets missed new treatment guidelines.
O EHR Systems and Reliability: CLMBR-T-base model showed limitations
iIn handling rare conditions due to static pretraining .

[1] A Comprehensive Survey of Foundation Models in Medicine
[2] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions 35



Resource and Infrastructure Challenges in Healthcare Al

> Al models require significant resources:
O Training foundation models (FMs) demands high-end hardware.
O Deployment in real-world healthcare settings adds further constraints.

> Core Challenges:
O High computational and financial costs.
O Limited scalability for resource-constrained environments.

[1] A Comprehensive Survey of Foundation Models in Medicine
[2] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions 36



Computational Demands in Al Model Training

> Training Foundation Models:
O Training LLaMA with 65B parameters took 21 days on 2048 A100 GPUs
with 80GB RAM per GPU.
O Estimated energy costs for similar models run into millions

> Expensive Hardware Requirements:
O Models like MedSAM require 20 Nvidia A100 GPUs (1600 GB memory).
O Limited availability of GPUs globally affects researchers and smaller
hospitals

[1] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions
37



Scalability in Real-World Settings

> Adaptation for Resource-Limited Settings:
O Many models cannot run efficiently on smaller devices or low-resource
environments (e.g., rural clinics).
O Scaling MedSAM for smaller hospitals remains impractical without
significant modifications.
> Balancing Cost and Efficiency:
O Methods like model compression and pruning can reduce resource
needs but may compromise accuracy.
O We need some ongoing research into lightweight architectures.

[1] Foundation Models for Advancing Healthcare: Challenges, Opportunities, and Future Directions
38



Future Directions
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Future of FMs Iin Healthcare

> Scaling FMs:
o Addressing specialized medical domains by leveraging task-specific fine-tuning and domain
adaptation techniques.

> Interoperability:

o Achieving seamless integration and collaboration across multi-institutional datasets through
federated learning and standardized data-sharing protocols.

> Personalized Medicine:

o Enabling real-time adaptive models capable of understanding patient-specific data, such as
genomics, lifestyle, and historical medical records.

> Rare Diseases:
o Fine-tune model trained on common data

> Artificial General Intelligence (AGI)

40



Overcoming Current Challenges

> Data Scarcity:

o Limited annotated datasets for model training can be addressed through synthetic data
generation, augmentation strategies, and leveraging unstructured data via self-supervised
learning.

> Bias and Fairness:

o Disparities in performance across patient demographics necessitate the development of
fairness-aware algorithms and bias evaluation metrics.

> Scalability Issues:

o High computational costs for training and deployment require energy-efficient training
methods, such as sparsity techniques and model compression.

> Model Interpretability:
o Empowering clinicians with tools to intervene in the model’s decision-making process can

enable personalized and context-aware healthcare solutions.
41



Overcoming Current Challenges

> Model Size and Practical Use:
o Balance between performance and computational cost needs careful consideration.

> Privacy Preserving:
o Ensuring data security and confidentiality while collaborative model training across multiple
institutions.

> Security:
o Incorporate robust FMs before deploying them into clinical settings.

42



Multimodal Learning

> Integration of Multimodal Data:
o Combining EHRs, medical images, genomic data, and wearable device signals to create
comprehensive patient profiles.
> Real-Time Decision-Making:
o Combining text, image, and bio-signal inputs through end-to-end multimodal frameworks such
as transformers and cross-modal embeddings.
> Artificial General Intelligence (AGI):
o Has the potential to revolutionize patient care by integrating advanced models that can
understand and analyze complex clinical.

43



Explainability and Trustworthiness

> Explainability:
o Moving beyond black-box models by using techniques like SHAP values, saliency maps, and
attention visualization.
> Validation Frameworks:
o Ensuring safety and reliability in real-world applications through clinical trials and regulatory
compliance.
> Security:
o Incorporate robust FMs before deploying them into clinical settings so models are prone to
adversarial attacks.

> Ethical Al:

o Embed fairness and accountability mechanisms to build clinician and patient trust in Al systems.

44



Ethical and Legal Considerations

> Privacy-Preserving Models:
o Implementing secure federated learning to maintain patient confidentiality while enabling
collaborative research.
> Liability Concerns:
o Defining clear accountability frameworks and error-handling protocols for Al-assisted
healthcare decisions.
> Sustainability:
o Reducing the costs of data collection and processing, model training, and inference will
stimulate the commercial advantages of HFMs and improve sustainability.

45



Infrastructure Challenges

> Efficient Training:
o Explore sparsity and pruning techniques to reduce computational costs without sacrificing
accuracy.

> Edge Computing:
o Deploy lightweight FMs in resource-limited environments, such as rural clinics.
> Sustainability:
o Reduce environmental impact through energy-efficient training methods and reusable models.

46



Collaborating for the Future

> Industry-Academia Partnerships:

o Innovate by combining cutting-edge research with practical healthcare applications.
> Open-Source Initiatives:

o Democratize Al development by sharing pre-trained models and datasets while ensuring
privacy.

> Interdisciplinary Teams:
o Build bridges between data scientists, clinicians, and ethicists for comprehensive Al solutions.

47



Conclusion

> Transformative Potential:
o Foundation models are revolutionizing healthcare, enabling improved diagnostics, and efficient
resource use.
> QOvercoming Challenges:
o Addressing data scarcity, bias, interpretability, and computational demands is critical for
widespread adoption.
> Collaborative Future:
o Interdisciplinary efforts between researchers, clinicians, and policymakers are essential for
sustainable progress.
> Vision Forward:

o The integration of advanced Al technologies promises a future of equitable, accessible, and
impactful healthcare solutions for simple and complex scenarios.

48
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Discussion

> |n what situation would using foundation models not always be ideal in

healthcare?
o Highly specific tasks, lack of data
o Task is very sensitive to bias
o Extreme accuracy is needed
o Deployment resource limitations

50



Discussion

> How can privacy be ensured with foundation models in healthcare?
o Data modification with the goal of privacy
o Differential privacy to prevent inference attacks
o LLM privacy agent for verification

51



Discussion

> How will the adoption of Al in healthcare affect the workforce?
o Training may be needed to use Al properly
o Importance of knowing the Al's limitations and verifying
o More productive

52



Discussion

> Do you think AGI will help solve limitations of FMs?

53
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