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Importance of Surveys in Robotics Research



Overview structure of intelligent 

robotics research integrated with 

LLMs in this survey



LLMs and Their Impact on Robotics



Enhancing Robotics with LLM Capabilities

● Zero- and few-shot learning.

● Emergent abilities 

○ Reasoning

○ Generalization

○ Contextual understanding.

● Integration with external tools like 

planners or translators and 

multimodal perception systems



Challenges

● LLMs often generate inaccurate

or unexpected responses

● Raises safety of robot execution

● Must include filtering and 

correction mechanisms to ensure 

safe deployment

● Lack of systematic prompt design 

guidelines hindering seamless 

integration of key components



Research Focus of the Survey

Question 3

What prompt 

structures are 

required for basic 

functionality?

Question 1

How are LLMs 

utilized in robotics 

domains?

Question 2

What are the 

integration 

limitations, and 

how can they be 

addressed?



Communication in Robotics

Enables robots to interact effectively with 

humans and other agents

Two Key Areas:

● Language understanding

● Language generation



Language Understanding

Transforming natural language into semantic 

representations like PDDL and LTL

Mapping linguistic expressions to targets such 

as behaviours or objects using tools like 
ConceptGraphs and LLM-Grounder

Challenges:

● Syntax and semantics inconsistencies
● Dependency on detailed world models



Language Generation
Declarative and 

imperative 
statements for task-

specific objectives.

Social-emotional 

expressions with 
empathetic 

response systems 
like HeyBeau and 

FurChat

Integration with 

auxiliary knowledge 
sources (e.g., 

knowledge graphs)

Use of memory 

modules for 
personalized 

dialogues, as in the
companion

robot

Results in repetitive 

and factually 
inconsistent output solution

Superficial conversation 

due to limited knowledge 
and dialogue history solution



Perception in Robotics

Plays a crucial role in enabling robots to make 

decisions, plan their actions, and navigate the 

real world

Two Key Areas:

● Sensing Modality

● Sensing Behavior



Sensing Modality

Models like CLIP and InstructBLIP enable 

object identification and scene understanding

Involves the interpretation

of contact information. MultiPLY combines 
tactile data with language for interactive 

perception

Involves the interpretation

of sound. AudioCLIP and AVLMaps integrate 
sound-based context



Sensing Behavior
Gathering sensory 

data without taking 
active actions

Actively seeking 

out sensory 
information to 

improve 
understanding

TidyBot identifies 

the nearest object

from an overhead 

view and classifies

its category using a 
closer camera view

LLM-Planner

generates seeking
actions such as 

‘open the 

refrigerator’ to 
locate

invisible object

limits the ability to perform tasks 
when information

is unobserved or unavailable 
(e.g., unseen area,

weight)



Planning in Robotics

The process of organizing and sequencing actions to 

achieve specific objectives

Encompasses high-level task planning and low-level 

motion planning



Task Planning

● Static Planning

○ Fixed plans generated without adapting to environmental changes.

○ Example: SayPlan uses PDDL planners to create predefined action sequences.

● Adaptive Planning

○ Plans dynamically adjusted based on real-time feedback and observations.

○ Example:  LLM-Planner adapts to new scenarios by integrating environmental feedback



LLM-Planner



Task and Motion Planning (TAMP)

● Motion planning refers to the process of generating a path by computing sequential 

waypoints within configuration or task spaces

● Combines high-level task planning with low-level motion execution.

● Example Models:

○ Text2Motion: Generates feasible high-level actions combined with learned motion skills.

○ AutoTAMP: Integrates logical and physical reasoning to plan complex tasks, like 

articulated object manipulations
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Revisiting the structure of intelligent 

robotics research integrated with 

LLMs in this survey



Control

Explores the application of LLMs in robotic control systems.

22

LLM itself is responsible for understanding a task 

and translating it into a command.

LLMs can generate indirect representations of 

control commands



Direct Approach
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Direct 

Approach

Selecting Motion Primitives

Generating Control Signals

Motion primitives such 

as "move forward," "pick 

up," or "rotate 90 

degrees."

LLM interprets the task (given in natural 

language) and chooses which of these to 

execute

The LLM directly generates low-level control 

signals, like specifying motor speeds, joint 

angles, or torque.



Direct Approach

.Action Tokens for Control Policies:

● Early work focuses on generating action tokens to train Transformer architectures for control policies.

● These models, such as Gato, RT-1, and MOO, are trained using task-specific expert demonstrations.
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Generalization 

over Unseen 

Tasks

However, this requires extensive 

data collection and long 
training times, limiting scalability



Direct Approach
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Address the data collection challenge

Researchers leverage vision and 

language datasets

This approach preserves general visual-

language knowledge while adapting to 

control tasks

To minimize the training burden

low-rank adaptation (LoRA) is employed for fine-tuning



Direct Approach
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Challenges

LLMs struggle to generate 

continuous action-level 

commands (e.g., joint positions or 

torque values) due to their 

discrete token-based generation 

process.

Focus

To address this, researchers use 

LLMs to generate task-level 

outputs instead of low-level 

control signals.



Indirect Approach

Guiding Learning with Goal Descriptions:

● Researchers use goal descriptions in natural language to explain desired behaviors.

27

Indirect representations of control commands

Subgoals
Reward 

functions

based on natural 



Indirect Approach
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High level motion 
description

Natural language 
Goal

Generate corresponding reward 
function

Generating Code-Level Reward Functions:

This method requires 

pre-defined reward 

formats

Recent Work Prompts LLMs to infer new reward functions based on human-designed examples

Generated reward functions may 

not always be accurate or 

optimal for direct use in training



Refinement Loop to Improve Accuracy:

❖ To improve the accuracy of reward functions, a refinement loop is added to validate both:

➢ Syntax 

➢ Semantics 

Other Refinement Methods:

❖ Some approaches refine motion by:

➢ Adjusting control parameters based on the error state.

➢ Selecting a suitable motion target from human feedback.

Indirect Approach
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Prompt Guideline

“Our survey offers guidelines for prompt engineering in each component 

area, supplemented with key examples of prompt components, to provide 

practical insights for researcher entering this field”



Prompt Guideline

31

Well-designed prompts

● Include clear, concise, and specific statements without using technical jargon

● Incorporate examples that allow anticipating the model’s process

● Specify the format that we want the output to be presented

● Contain instructions to constrain actions



Prompt Guideline
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Guidelines over four robotics fields have been provided

Conversation 

Prompt: 

Interactive 

grounding

Directive Prompt: 

Scene-graph 

generation

Planning Prompt: 

Few-shot 

planning

Code Generation 

Prompt: Reward 

function 

generation.



Conversation Prompt: Interactive Grounding 
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Directive prompt: Scene-graph Generation
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Directive prompt: Scene-graph Generation
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Directive prompt: Scene-graph Generation
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Planning prompt: Few-shot Planning
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Planning prompt: Few-shot Planning
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Code Generation Prompt: Reward Design
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Code Generation Prompt: Reward Design

40



Code Generation Prompt: Reward Design
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Conclusion

42

Future Impact

The survey  showcases LLMs’ 
transformative role in 

robotics and guides future 

research directions.

LLMs in Robotics

This survey investigates the 

integration of LLMs in robotics, 

focusing on key components like 

communication, perception, 

planning, and control.

Methodological Advancements

It examines methodological 

advancements that maximize 

LLM capabilities, enhance 

response integrity, and provides 

practical prompt engineering 

guidelines with key examples.
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First Half 

Presented by: Swakshar Deb(swd9tc)
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Introduction

Ration of various data sources in the existing pre-trained Large Language Models (LLMs)

Zhao et. al., A Survey of Large Language Models, 2024 3

https://arxiv.org/pdf/2303.18223


Challenge: Limited Real-World Exposure of LLMs

Text only LLMs unable to process signal from various sensory input thus is not suitable for Long Horizon Tasks

Robot actions are grounded in real world through constant physical interactions

User Request: Put the apple on the plate User Request: Put the ball on the basket

.

.

Images taken from Honkerkamp et. al., Language-Grounded Dynamic Scene Graphs for Interactive Object Search with Mobile Manipulation, 2024
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https://arxiv.org/html/2403.08605v4


Opportunity: Multimodal LLMs Bridge Reality

Multimodal LLMs can process various sensory information thus suitable for real-world tasks.

Images taken from Honkerkamp et. al., Language-Grounded Dynamic Scene Graphs for Interactive Object Search with Mobile Manipulation, 2024

 

5

https://arxiv.org/html/2403.08605v4


Solution: Proposed Framework

6



The Scope of Multimodal Approaches 

                   with LLMs
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VIMA: Robot Manipulation with Multimodal Prompt

Multimodal prompts can be a combination of both natural text instruction and the visual scene

Multimodal prompts capture rich information about the task 

.

.

Jiang et. al., VIMA: General Robot Manipulation with Multimodal Prompts, 2022 8

https://arxiv.org/abs/2210.03094


Method: VIMA

Learn robot policy condition on 

prompt and historical token

Historical token is a set of 

past observation and action (ai)

Utilized causal transformer (i.e., previous 

actions are the cause of present action)

.

.

.
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Modular Robot

“Mori3” is a polygon based modular robot that can dynamically change it shape

To operate a modular robot, different controller is required for each individual shapes

Rolling TrackQuadrupedNautral Position

A modular robot can change its shape according to the task.

.
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https://www.eurekalert.org/news-releases/992048


An Universal Controller: MetaMorph

A Transformer based architecture to learn universal controller for a modular robot shape space.

Gupta et. al., METAMORPH: LEARNING UNIVERSAL CONTROLLERS WITH TRANSFORMERS, 2022 

Exteroceptive Observation: Observations of various sensory devices.

11

https://openreview.net/pdf?id=Opmqtk_GvYL


VoxPoser: Robot Manipulation with Value Map

Enhance robot motion planning with affordance maps and constraint maps.

Huang et. al., VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models, 2023
12

https://arxiv.org/abs/2307.05973


Method: VoxPoser

13



Continue…
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Continue…
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VLM as Internal Reward Model

Self generated dense reward with Vision Language Model (VLM) from the sparse reward

Traditional Reinforcement Learning has limited feedback (i.e., environmental reward) during learning process .

.

Palo et. al., Towards A Unified Agent with Foundation Models, 2023
16

https://arxiv.org/abs/2307.09668


VLM as Internal Reward Model

Self generated dense reward with Vision Language Model (VLM) from the sparse reward

Traditional Reinforcement Learning has limited feedback (i.e., environmental reward) during learning process .

.
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NLMap: Open Vocabulary Queryable Map

In the pre-exploration stage, robot constructs the semantic map (i.e., voxel)

After the pre-exploration stage, user can query any object within the scene

.

.

Cheng et al., Open-vocabulary Queryable Scene Representations for Real World Planning, 2022
18

https://arxiv.org/abs/2209.09874


Method: NLMap

Uses both the CLIP and VILD image encoder to extract object features, ᵩi

pi is the position and ri is the size of the i-th object

.

.
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Continue…

Object query: find similarity between image - text encoding and highlight the position with highest similarity.
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Language Guided Trajectory Modification

LATTE proposes to modify the robot end-effector trajectory based on the natural language instruction.

Bucker et. al., LATTE: LAnguage Trajectory TransformEr, 2022 21

https://arxiv.org/abs/2208.02918


Method: LATTE
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Second Half of the paper Large Language 

Models for Robotics:

Opportunities, Challenges, and 

Perspectives

Presented By : Md. Mahir Ashhab (ftm2nu)
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Natural Language Understanding in Robotics

Core Insights

• LLMs serve as a knowledge base for robotic tasks, offering common sense 
reasoning and enhancing code comprehension.

• Examples include-
• ProgPrompt : Programming language features in LLMs for better task performance.

• GIRAF : Interprets gestures and language commands for human-machine collaboration.

• Cap (Code as Policies) : Adapts language model programs for robots, enabling layered 
control and complex task execution.

• Key Advantages:

• Reduced need for data collection and model training compared to traditional robotics.

• Flexibility and adaptability to diverse scenarios and tasks.

• Applications: From home cleaning to technical robot programming.

24



ProgPrompt
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GIRAF
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CAP

27



Complex Task Reasoning and Decision-

making
Key Techniques

• SayCan: Combines LLMs with reinforcement learning for task refinement.

• Instruct2Act: Translates multimodal commands into action sequences via LLM-generated 
policy codes.

• PDDL Planning: Guides heuristic search planners using pretrained LLM outputs.

• REFLECT: Uses LLMs for failure explanation and task correction.

• Visual-Linguistic-Action Models: Integrates multimodal pretraining for improved robotic 
strategies.

• Socratic Models: Uses dialogue between pre-trained models for zero-shot task performance.

Advantages

• Enhanced semantic understanding.

• Integration of multimodal inputs (e.g., vision, language).

• Zero-shot and few-shot learning capabilities.

28



SayCan

29



Instruct2Act
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Reflect
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Vision-Language-Action Model

32



Interactive Strategies

Innovations

• Matcha: Combines LLMs with 
multimodal perception for better 
interaction.

• Generative Agents: Simulate human 
behavior using memory synthesis 
and LLMs for realistic interaction 
patterns.

Focus Areas

• Multimodal perception and 
human behavior simulation.

• Integration with perceptual 
systems like image recognition 
and speech processing.

Potential Applications

Intelligent assistants, robotics, 

augmented reality systems.

Challenges

Ethical and social implications of 

human-like AI behavior.

33



MATCHA
Overview of MATCHA

34



Generative Agents
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Key Takeaways

LLMs are transforming robotics and AI by

• Enhancing generalization, decision-making, and interaction 
capabilities.

• Reducing reliance on traditional data collection and specialized 
training.

• Providing flexible and scalable solutions across diverse tasks and 
domains. 

However, success depends on 

• Tailoring applications to specific tasks 

• Addressing challenges such as system complexity and ethical 
concerns.

36



GPT -4V Empowered Embodied Task Planning

Overview

• Framework for robotic task planning using GPT-4V.

• Combines video demonstrations and natural language 

instructions.

• Evaluates manipulation and grasping tasks, critical in instruction-

following robotics.

37



GPT -4V Empowered Embodied Task Planning
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Evaluation Setup

• Datasets: 40+ cases from 9 datasets (e.g., Google Open X-

Embodiment Dataset).

• Scenarios: Kitchen pickups, tabletop rearrangements.

• Inputs: Video + natural language for generating action plans.

• Process

• Natural language instructions and visual inputs processed by GPT-4V.

• Step-by-step task plans generated.

• Plans compared against ground truth for evaluation.

39



Prompt Design

Components of Prompts

1.System Role Explanation: Defines GPT-4V’s task and role.
2.Predefined Action Pool: Provides action vocabulary.

3.Example Output: JSON format example ensures output 

consistency.

4.Environment & Instruction: Combines video frames and 

language instructions.

5.Evaluation: Self-assessment of task plans against ground truth

40



Prompt Example: System

41



Prompt example
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Experimental Results - Dataset Performance
Table of Matching Scores

Dataset Description Matching Score

RT-1 Robot Action
Robot picks, places, and moves 17 objects from the Google micro 

kitchens.
9/10

QT-Opt Kuka robot picking objects in a bin. 8/10

Berkeley Bridge
Robot interacts with household environments, including kitchens and 

sinks.
8.7/10

TOTO Benchmark Dataset includes trajectories of scooping and pouring tasks. 8.5/10

BC-Z Picking, wiping, and placing tasks on diverse tabletop objects. 7.7/10

Berkeley Autolab 

UR5
Data consists of 4 robot manipulation tasks. 8.3/10

NYU VINN Robot arm performs diverse manipulation tasks on a tabletop. 9/10

Freiburg Franka Play Interacts with toy blocks, performs pick-and-place and stacking tasks. 10/10

USC Jaco Play Performs pick-and-place tasks in a tabletop toy kitchen environment. 9/10

Overall Aggregate performance across datasets. 8.7/10 43



RT-1 Robot Action
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RT-1 Robot Action
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QT-Opt
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Berkeley Bridge
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Freiburg Franka Play
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USC Jaco Play
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BC-Z
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TOTO Benchmark
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Key challenges

1. Homogeneous Plans  

• Lacks detailed, robust designs for complex environments.

2. Prompt Complexity

• Requires carefully crafted, lengthy prompts.

3. Execution Constraints

• Limited by predefined actions, reducing flexibility.

4. Closed-source & Delays

• GPT-4V API limitations hinder real-time applications.

52



Future Opportunities

Precision Agriculture

• Automation of labor-intensive tasks (e.g., fruit picking, crop 

phenotyping).

Healthcare

• Enhancing robot-assisted surgeries and screenings.

Brain-Computer Interfaces (BCIs)

• Aligning brain signals with language for self-planning and control.

53



Conclusion

Key Takeaways

• LLMs like GPT-4V showcase impressive capabilities in enhancing robotic intelligence through 
reasoning, language understanding, and multimodal processing.

• While promising, significant challenges persist, including model transparency, real-world 
applicability, and safety concerns.

Path Forward

• Address limitations through rigorous research in:
• Testing, training, and policy adaptation.

• Ethical oversight and safer model architectures.

• Embrace sim-to-real development to streamline intelligent robot design and deployment.

Final Thought

• The integration of LLMs and robotics is a transformative frontier that demands interdisciplinary 
collaboration to unlock its full potential responsibly.
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Thank you
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