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LLMs and Their Impact on Robotics

WHAT ARE LARGE
LANGUAGE
MODELS?

LLMs are advanced
Al systems trained on
extensive text data to
understand and
generate human-lbke
language

KEY LLMS IN
FOCUS

Prominent models:
GPT-4. LLaMA, and
PaLM-E, each with
unique features
enhancing language
processing

GPT-4

Enhances reasoning
capabilities, offering
advanced
understanding and

interaction

LLAMA

Focuses on efficient
learning from limited
data, optimizing
performance with

fewer resources

I

PALM-E

Integrates
multimodal data for
improved context
understanding in

varied applications

IMPACT ON
ROBOTICS

LLMs empower
robots to understand
commands and
interact naturally with
humans, enhancing
effectiveness.



Enhancing Robotics with LLM Capabilities

ZERO- AND FEW-SHOT LEARNING

Enables robots to grasp new tasks quickly

with minimal training data

EMERGENT ABILITIES

g Facilitates reasoning and generalization,

allowing robots to adapt to varied

scenarios

CONTEXTUAL UNDERSTANDING

@g Integrates external tools to enhance

decision-making capabilities




Challenges

LLMs often generate inaccurate
or unexpected responses

Raises safety of robot execution
Must include filtering and
correction mechanisms to ensure
safe deployment

Lack of systematic prompt design
guidelines hindering seamless
integration of key components



Research Focus of the Survey

Question 1 Question 2 Question 3

How are LLMs What are the What prompt

utilized in robotics integration structures are

domains? limitations, and required for basic
how can they be functionality?

addressed?



Communication in Robotics

| Language |
Understanding
Enables robots to interact effectively with
humans and other agents - Communication
Two Key Areas:
| Language
® Language understanding Generation

e Language generation



Language Understan

- Language
Understanding

Challenges:
® Syntax and semantics inconsistencies
- e Dependency on detailed world models

Transforming natural language into semantic

1 Iﬂtel‘pl“(-‘tation representations like PDDL and LTL

] GI‘Olllldlllg [ Mapping linguistic expressions to targets such
as behaviours or objects using tools like
ConceptGraphs and LLM-Grounder




Language Generation

Language
Generation

~ Task-oriented
Communication

| Non-task
Communication

Results in repetitive
and factually
inconsistent output

Declarative and
imperative
statements for task-
specifi °

and dialogue history

\—
/ Social-emotional \

expressions with
empathetic

response systems

like HeyBeau and

Superficial conversation
due to limited knowledge

K FurChat /

solution

Integration with
auxiliary knowledge
sources (e.g.,
knowledge graphs)

wn

/ Use of memory \
modules for
personalized

dialogues, as in the
companion

K robot /




Perception in Robotics

Plays a crucial role in enabling robots to make
decisions, plan their actions, and navigate the

real world
Two Key Areas:

® Sensing Modality
e Sensing Behavior

Perception

Sensing
Modality

Sensing
Behavior



Sensing Modality

Sensing
Modality -

Visual

Auditory

Haptic

-

Models like CLIP and InstructBLIP enable
object identification and scene understanding

~

=

Involves the interpretation
of sound. AudioCLIP and AVLMaps integrate
sound-based context

)

Involves the interpretation
of contact information. MultiPLY combines
tactile data with language for interactive
perception




Sensing
Behavior

limits the ability to perform tasks

when information
is unobserved or unavai
(e.g., unseen area,
weight)

Passive

lable

Gathering sensory
data without taking
active actions

)

Active

Actively seeking
out sensory
information to
improve
understanding

K TidyBot identifies \
the nearest object
from an overhead
view and classifies
its category using a
Kcloser camera view /

/ LLM-Planner \

generates seeking
actions such as
‘open the
refrigerator’ to
locate

invisible object




Planning in Robotics

The process of organizing and sequencing actions to
achieve specific objectives

Encompasses high-level task planning and low-level
motion planning

Planning

Static
‘ Planning

Task
Planning

Adaptive
Planning

Motion

Planning
TAMP *l



Task Planning

e Static Planning

O Fixed plans generated without adapting to environmental changes.

O Example: SayPlan uses PDDL planners to create predefined action sequences.
e Adaptive Planning

O Plans dynamically adjusted based on real-time feedback and observations.

0 Example: LLM-Planner adapts to new scenarios by integrating environmental feedback



LLM-Planner

Figure 1: An illustration of LLM-Planner for high-level
planning. After receiving the natural language instruction
(t = 0), LLM-Planner first generates a high-level plan by
prompting a large language model (e.g.. GPT-3). When
the embodied agent gets stuck during the execution of the
current plan (f = 5 and 20), LLM-Planner re-plans based
on observations from the environment to generate a more
grounded plan, which may help the agent get unstuck. The
commonsense knowledge in the LLM (e.g., food is often
stored in a fridge) allows it to produce plausible high-level
plans and re-plan based on new environmental perception.

/{ Cook a potato and put it into the recycle bin. ] Embodied Agent &
Environment

Navigation potato, Pickup potato,
....» PutObject potato recyclebin

Navigation fridge, OpenObject fridge,
Pickup potato, CloseObiject fridge, ....,
PutObject potato recyclebin

I cannot find a recycle bin, but I saw a
garbage can.

Navigation garbagecan,
PutObject potato garbagecan




Task and Motion Planning (TAMP)

® Motion planning refers to the process of generating a path by computing sequential
waypoints within configuration or task spaces
e Combines high-level task planning with low-level motion execution.

® Example Models:
o0 Text2Motion: Generates feasible high-level actions combined with learned motion skills.
O AutoTAMP: Integrates logical and physical reasoning to plan complex tasks, like

articulated object manipulations
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Revisiting the structure of intelligent
robotics research integrated with
LLMs in this survey
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Control

Control

—

Direct
Approach

Indirect
Approach

Explores the application of LLMs in robotic control systems.

-

\_

LLM itself is responsible for understanding a task
and translating it into a command.

~

J

/

LLMs can generate indirect representations of
control commands

\

22



Direct Approach

Motion primitives s
as "move forward," "

up," or "rotate 90
degrees."

uch
pick

Direct
Approach

Selecting Motion Primitives

LLM interprets the task (given in natural
language) and chooses which of these to
execute

Generating Control Signals =

The LLM directly generates low-level control
signals, like specifying motor speeds, joint
angles, or torque.

23



Direct Approach

Action Tokens for Control Policies:

e Early work focuses on generating action tokens to train Transformer architectures for control policies.
e These models, such as Gato, RT-1, and MOQ, are trained using task-specific expert demonstrations.

However, this requires extensive
data collection and long
training times, limiting scalability

Generalization
over Unseen
Tasks

24



Direct Approach

[ Address the data collection challenge }

This approach preserves general visual-
language knowledge while adapting to
control tasks

Researchers leverage vision and
language datasets

[ To minimize the training burden }

[ low-rank adaptation (LoRA) is employed for fine-tuning }

25



Direct Approach

Challenges

LLMs struggle to generate
continuous action-level
commands (e.g., joint positions or
torque values) due to their
discrete token-based generation
process.

Focus

To address this, researchers use
LLMs to generate task-level
outputs instead of low-level
control signals.

26



Indirect Approach

t representations of control commands }

asedcd orp Nmnaturaal
guage Imstructions

Reward
functions

A
Y

Guiding Learning with Goal Descriptions:

e Researchers use goal descriptions in natural language to explain desired behaviors.

27



Indirect Approach

This method requires
pre-defined reward
formats

Generated reward functions may

not always be accurate or ’ Generate corresponding reward
optimal for direct use in training function

[ Recent Work Prompts LLMSs to infer new reward functions based on human-designed examples }

28



Indirect Approach

Refinement Loop to Improve Accuracy:
< To improve the accuracy of reward functions, a refinement loop is added to validate both:
> Syntax
> Semantics

Other Refinement Methods:
< Some approaches refine motion by:
> Adjusting control parameters based on the error state.
> Selecting a suitable motion target from human feedback.

29



Prompt Guideline

“Our survey offers guidelines for prompt engineering in each component
area, supplemented with key examples of prompt components, to provide
practical insights for researcher entering this field”



Prompt Guideline

Well-designed prompts

Include clear, concise, and specific statements without using technical jargon

Incorporate examples that allow anticipating the model’s process

Specify the format that we want the output to be presented

Contain instructions to constrain actions

31



Prompt Guideline

[ Guidelines over four robotics fields have been provided

Conversation
Prompt:
Interactive
grounding

)

a

Directive Prompt:
Scene-graph
generation

)

e

Planning Prompt:
Few-shot
planning

)

/

Code Generation
Prompt: Reward
function
generation.

)

32



Conversation Prompt: Interactive Grounding

Task Description

You are a conversational agent that interactively grounds referenced objects within tasks to a specilic world model. You should
engage with humans for clarifications and logically infer the target objects. Keep vour response concise without explanation.

Task Procedure

You should:

l. Identify the target objects and their details from the task.

2, Iteratively ask for additional detail with a new eriterion if multiple options within the world model meet the criteria,
3. Select the most appropriate object within the world model when only a single option meets the criteria.

[ Task Context

Task: "Bring me something to eat”
World Model: ['water bottle', 'plate', 'napkin', 'coke can', 'potato chips', 'candle', "'sandwiches’, "pepper shaker', 'salt shaker',
"fork'. 'banana'. "cookie', 'apple', 'cereal box', 'juice box', 'cup'|

Interaction

LLM: Do yvou prefer something savory or sweet to eat?

User: sweet

LLM: Do you prefer something crunchy or soft as a sweet snack?

User: crunchy

LLM: Based on your I]]'l!fl‘t'[‘ll{":l‘ for ﬁu!:u'lhinp’. sweet and l'rﬂlll‘.'il:i.-', | suggest 1::'thy_iJJH the "cookie.”
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Directive prompt: Scene-graph Generation

Node Creation Prompt

Task Description

You are an agent responsible for generating nodes in a scene graph based on images. Each object's image and a unique
ID will be provided to you. Your task is to generate the name of the central object. The output should be formatted as
'ObjectName(ID), ObjectName(ID), ...". without any space within each object name. No additional explanation is required.

Task Context

Entire Scene Visualization

IDs: 0, 1, 2, 3. 4.

| o

Side View Robot View

VLM Output

VLM: YellowCube(0), BlueCube(1), Keyboard(2), Mouse(3), Phone(4)
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Directive prompt: Scene-graph Generation

Edge Creation Prompt

Task Description

You are an agent responsible for inferring edge relations in a scene graph. Based on the provided names and 3D
coordinate information of each object, infer one major {spatial_relation} from {source} to {target} (i.c., source->target:
spatial_relation), which means the source is located to spatial_relation of the target. Spatial relations are limited to 'left,’
'right,' 'forward,' 'back,' 'up.' and 'down'. The bbox__extent represents the object's dimensions along the X, Y, and Z
axes in meters, and the bbox__center specifies the object's central position in 3D space. For example, if the y-value of the

source's center is bigger than that of the target, then the source is located to the forward of the target (i.e., source- >target:

forward). Similarly, if the x-value of the source is bigger than the x-value of the target, then the source is located to the
right of the target (i.e., target->source: right). You can determine 'left' and 'right' based on the x-value, 'forward' and
'back' based on the y-value, and 'up' and 'down' based on the z-value.

Provide the output in a simple format, as shown in the example below. Take a deep breath and work on this problem

step-by-step.

Example

Example Input:

- object__list:

(cup(23), bbox__extent: [0.1, 0.1, 0.1], bbox__center: [10, 0.5, 0.53])
(box(20), bbox__extent: [0.6, 0.5, 0.32], bbox__center: [10, 0.5, 0.2])
- [source, target]: [box(20), cup(23)]?

Example_Output:

- box(20)->cup(23): down
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Directive prompt: Scene-graph Generation

Task Context

Input:

- object__ list:

(YellowCube(0), bbox__extent: [0.05, 0.05, 0.05], bbox__center: [0.52, 0.52, 1.07])
(BlueCube(1). bbox__extent: [0.05, 0.05, 0,05], bbox__center; [0.52, 0.52, 1])
(Keyboard(2), bbox__extent: [0.45, 0.15, 0.02], bbox__center: [0.53, 0.45, 1])
(Mouse(3), bbox__extent: [0.12, 0.06. 0.04]. bbox__center: [0.75, 0.46, 1])
(Phone(4), bbox_extent: [0.07, 0.14, 0.007]. bbox_center: [0.51, 0.2, 1])

- [source, target]: [BlueCube(1), Keyboard(2)]7

- [source, target]: [BlueCube(1), YellowCube(0)]?

- |source, target): [YellowCube(0), Keyboard(2)|?

- [source, target|: [Keyboard(2). Mouse(3)]?

- [source, target]: [Keyboard(2), Phone(4)]?

Output:

LLM Output Scene-Graph Visualization

LLM:

(Skip explanations)

- BlueCube(1)->Keyboard(2): forward

- BlueCube(1)->YellowCube(0): down

- YellowCube(0)->Keyboard(2): forward
- Keyboard(2)->Mouse(3): left

- Keyboard(2)->Phone(4): forward —_—
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Planning prompt: Few-shot Planning

Task Description

Create a next plan for a robot to complete a household task using the allowed actions and visible objects. The robot is
able to pick up and hold only one object. The robot CANNOT open or close some objects when the robot holds an object
(after PickUp and before Putlnte). Initially, the robot does not hold anything, and every openable object is closed. All plan

sequences start with 'Initial,’ which means initial condition. When the task is completed, use the action '"Done’ to finish it.

Do not do anyvthing other than what the task requires. Answer only one step of the next plan without other things.

Examples

For example,

Task: Put paper in the drawer

Allowed actions: Initial, Open (object), Close (object), PickUp (object), Putlnto {object), Done
Visible objects: paper, drawer, carrot

Executed plans: Initial, Open (drawer), PickUp (paper), PutInto (drawer)

MNext plan: Close (drawer)

Task: Put only stationery in the drawer

Allowed actions: Initial, Open (object), Close (object), PickUp (object), Putlnto (object), Done
Visible objects: paper, drawer, carrot

Executed plans: Initial, Open (drawer), PickUp (paper), Putlnto (drawer), Close (drawer)

Next plan: Done
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Planning prompt: Few-shot Planning

Task Context

Task: Put only food in the refrigerator

Allowed actions: Initial, Open (object), Close (object). PickUp (object), Putlnto (ohject), Done
Visible objects: refrigerator, carrot, pencil

Executed plans: Initial

MNext plan:

LLAM Output

LLM: Open (refrigerator)

Interaction

User: Executed plans: Initial, Open (refrigerator)

Next plan: LLM: PickUp (carrot)

User: Executed plans: Initial, Open {refrigerator), PickUp (carrot)

Next plan; LLM: Putlnto (refrigerator)

User: Executed plans: Initial, Open (refrigerator), PickUp (carrot), Putlnto (refrigerator)
Next plan: LLM: Close (refrigerator)

User: Executed plans: Initial, Open (refrigerator), PickUp (carrot), Putlnto (refrigerator), Close (refrigerator)

Next plan: LLM: Done
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Code Generation Prompt: Reward Design

Task Description

You need to control a two-jointed robot arm to touch the target with its fingertip in 2d xy plane. The action space is Box(-1.0,
1.0, (2,), float32) as a torque applied to joints. Please design a reward function for training RL agents in Python based on the

following information.

Available APlIs

You can use the following functions to design a reward function.

- def get__joint__angles(env) -> tuple[float, float] # get the current angles of the joints in radian

- def get__joint__angular__velocities(env) -> tuple[float, float] # get the current angular velocities of the joints in rad/s
- def get__current__action(env) -> tuple[float, float] # get the current action torque in Nm

- def get__current__position(env) -> tuple[float, float] # get the current x, y position of the fingertip

- def get__target__position(env) -> tuple[float, float] # get the target x, y position
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Code Generation Prompt: Reward Design

Goals and Constraints

The trained RL agent should accomplish the following goals and constraints.
- The starting joint angles and angular velocities are all initialized to zero

- The target position is randomly initialized

- Finish the task with less joint torque consumption as possible

- Do not consider other goals or constraints except given ones

Generation Rules

You should follow the rules below.
- Write the Python function in the form of 'def compute_reward(env) -> float' and return the 'reward: float' only

- Do not use redundant constant variables, class instances, or functions that are not given, but you can use popular Python

libraries like numpy if you import them
- Consider the scale of each reward component
- Return the generated Python function only
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Code Generation Prompt: Reward Design

LLM Output

import numpy as np

def compute_reward(env) -> float:
# Get current position and target position
current_pos = np.array(get_current_position(env))
target_pos = np.array(get_target_position(env))
# Calculate Euclidean distance between current and target position
distance_to_target = np.linalg.norm(current_pos - target_pos)
# Get current joint angles and angular velocities
joint_angles = np.array(get_joint_angles(env))
joint_velocities = np.array(get_joint_angular_velocities(env))
# Get current action
current_action = np.array(get_current_action(env))
# Calculate penalty based on joint torque
torque_penalty = -0.01 * np.linalg.norm(current_action)
# Calculate reward based on distance to target
distance_reward = -0.1 * distance_to_target
# Combine rewards
reward = distance_reward + torque_penalty
return reward



Conclusion

LLMs in Robotics

Methodological Advancements

Future Impact

This survey investigates the
integration of LLMs in robotics,
focusing on key components like
communication, perception,
planning, and control.

It examines methodological
advancements that maximize
LLM capabilities, enhance
response integrity, and provides
practical prompt engineering
guidelines with key examples.

The survey showcases LLMs’
transformative role in
robotics and guides future
research directions.

42



Large Language Models for
Robotics: Opportunities,
Challenges, and Perspectives

20250129
Presented by UVA — GenAl - Survey course



First Half

Presented by: Swakshar Deb(swd9tc)



Introduction

Ration of various data sources in the existing pre-trained Large Language Models (LLMs)
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25%
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0
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https://arxiv.org/pdf/2303.18223

Challenge: Limited Real-World Exposure of LLMs

* Robot actions are grounded in real world through constant physical interactions

» Text only LLMs unable to process signal from various sensory input thus is not suitable for Long Horizon Tasks

User Request: Put the apple on the plate

Images taken from Honkerkamp



https://arxiv.org/html/2403.08605v4

Opportunity: Multimodal LLMs Bridge Reality

« Multimodal LLLMs can process various sensory information thus suitable for real-world tasks

Task: | am hungry. Find me something for breakfast.

Images taken from Honkerkamp et. al., [anguage-Groun


https://arxiv.org/html/2403.08605v4

Solution: Proposed Framework

Predefined Action Pool GPT-4V Generated Task Plan

move_hand()
grasp_object()
release_object()

Step by Step Instruction
1. move hand to the location of
the target in the bottom drawer
2. grasp the target
move hand with the target to
the counter
4. release the target onto the

o

Instruction: pick green chip bag counter
from bottom drawer and place on _
counter @ GPT-4V Reasoning  Action Plan
Environment + Instruction Planning move_hand(bottom drawer)

grasp_object(target)
move_hand(counter)
release_object(target)

Matching Score Target Object
green jalapeno chip bag
Self | Evaluate
Environment State

@ GPT-4V <green jalapeno chip bag> in the

<bottom drawer>

s U

N <green jalapeno chip bag> on the
<counter>

Demonstration



The Scope of Multimodal Approaches
with LLMs



VIMA: Robot Manipulation with Multimodal Prompt

« Multimodal prompts can be a combination of both natural text instruction and the visual scene

« Multimodal prompts capture rich information about the task

Visual Goal: Rearrangement

/ . 3 A ] I
| Rearrange objects to match this scene: e -
PR, -, i
/ =

One-shot Demonstration

I 1 i h‘
Follow this motion for  § : L's "l‘ s 4 VI A 1 T
2 S =

Novel Concept Grounding
Thisis a blicket @) Thisisawug il Putawuginto a blicket

Text token =
Object token

Visual Constraint ~ Padding

TR
Sweepall &2 into i % without exceeding e ‘:‘ A'{ =
fraesat - . .'__2;

ian 1 IMA: neral R Manipulation with Multimodal Prom 2022


https://arxiv.org/abs/2210.03094

Method: VIMA

Historical token is a set of

past observation and action (a;)
. Learn robot policy condition on
prompt and historical token
. Utilized causal transformer (i.e., previous

actions are the cause of present action)

Text Token ai

Object token

Action token

Prompt Tokens

Object Encoder

15

aom o 2 773
[ !
m O

HImn a o =
R

Sweep all 2 into

without touching

Multimodal Prompt

az

Self-Attention

Cross-Attention

Self-Attention

Cross-Attention

History Tokens

ai

Object Encoder

Interaction

az

asg

Object Encoder

Eﬁ»‘c e




Modular Robot

« A modular robot can change its shape according to the task

 To operate a modular robot, different controller is required for each individual shapes

“Mori3” is a polygon based modular robot that can dynamically change it shape

Nautral Position Quadruped Rolling Track

10


https://www.eurekalert.org/news-releases/992048

An Universal Controller: MetaMorph

« A Transformer based architecture to learn universal controller for a modular robot shape space

+ Exteroceptive Observation: Observations of various sensory devices

U830} 8|NpPowW Jad

A

» 0=

)

uonoalold Jeaur

>+ 00— —> [ )]—>
—+ B8— —C [)—
—0+B—| _§ D
—)+O0— §:§ > T )—
—+ O— ‘é’hé —> )
—0+B—| 3 3 [>T
S0+ B8— % —> [ J—>
>0+ B— ] S i S
—>(J+ @—\ —>(C [)—>

RN

indino Jajjo5uo9 juiol Jad

D Learnt Position
Embeddings

Exteroceptive Obs.

= s

Multi-Head l‘/- L VAN —
Attention 4 g

[ Nom L

| | J
Module MLP
Embeddings

Transformer

Encoder
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https://openreview.net/pdf?id=Opmqtk_GvYL

VoxPoser: Robot Manipulation with Value Map

« Enhance robot motion planning with affordance maps and constraint maps

dcam o — h \ Kdef affordance_map():
r R ¢ N SLls msize = (100,100,100)
'8 VlSlon I~ map = np.zeros(msize)
handles = detect('handle')
-» Language‘;/ k = lambda x: x.pos[2]
) MOdel handles. sort(key=k)

top_handle = handles[-1]
X,Y,z = top_handle.pos
map[x,y,z] =1
return smooth(map)
def constraint_map():
msize = (100,100,100)
Ei map = np.zeros(msize)

Open the top drawer. Large vases = detect('vase')

vase = vases[0]
Please also watch  —» Language = Xyz = vase.occupancy_grid

out for that vase! Model map[xyz] = -1

return smooth(map)

L y View #1

Constraint Maps

(a) 3D Value Map Composition

(b) Motion Planning

12


https://arxiv.org/abs/2307.05973

Method: VoxPoser

Vision

Model

Open the top drawer. Large

Please alsowatch ~—> Language —>

out for that vase! Model

i

A
— Language

a

4 )

|handles = detect('handle")|

. -
(a) 3D Value Map Composition

(b) Motion Planning

13



Continue...

Open the top drawer.
Please also watch
out for that vase!

View #1 View #2 |

Affordance 'Maps

( \ .......
Vision :
A
— Language
Model
map[x,y,z] =1 1 | ..
return smooth(map)
Large o
— Language — -
Model ‘

5 -

e

RS

View #2 |

(a) 3D Value Map Composition

Constraint Maps""

(b) Motion Planning

14



Continue...

Open the top drawer.
Please also watch
out for that vase!

( \ .......
Vision .
A
— Language
Model :
View #1 View #2 |
""""" Aff&rdancé"Maps
...... A, g
Large o
— Language — ariag |~
= -1 H
MOdel nggﬁngmooth(map) i
\--- ) View #1 View#2§

(a) 3D Value Map Composition

Constraint Maps""

(b) Motion Planning

15



VLM as Internal Reward Model

« Traditional Reinforcement Learning has limited feedback (i.e., environmental reward) during learning process

» Self generated dense reward with Vision Language Model (VLM) from the sparse reward

ET N Vit Sub-goals plan:
“ : Stack the re “The robot is grasping the red object. <) o
objectontop of theblue — LLM |— Theredobjectis ontop of theblue | VLM ¢T <gZ) ¢I <Ot)

Self-generated Igrasping reward Environment reward
“The robot is grasping
the red object”

16


https://arxiv.org/abs/2307.09668

VLM as Internal Reward Model

« Traditional Reinforcement Learning has limited feedback (i.e., environmental reward) during learning process

» Self generated dense reward with Vision Language Model (VLM) from the sparse reward

“TASK: Stack the red

object on top of the blue —

object.”

Sub-goals plan:

“The robot is grasping the red object.
grasping ] — VLM

The red object is on top of the blue

o1(9:) - ¢1(0t)

ObjeCt'" ===---;=:r!_"!!!:”z\\C"

Self-generated Igrasping reward
“The robot is grasping
the red object”

. 1
Environment reward

“The robot is
grasping thered ----- CLIP - Text . .|—|
object.” .

Parallel Dot Product

£

y / 3
. 7‘:‘\‘ 5 P .5
/ \ o

17




NLMap: Open Vocabulary Queryable Map

 In the pre-exploration stage, robot constructs the semantic map (i.e., voxel)

. user can query any object within the scene
Recycle the LLM Object Recycling bin
@ empty coke can. Proposal coke can
Instruction Open Vocabulary

|.‘ \
A

Pre-exploration

A i

_____________________________________________

l LLM Planning

1. Find a coke can 2. Pick up the coke can
3. Go to recycling bin 4. Put down the coke can

18


https://arxiv.org/abs/2209.09874

Method: NLMap

» Uses both the CLIP and VILD image encoder to extract object features, ;

« p;1s the position and r; is the size of the i-th object

Context elements { (gbl Di; 7“2-)} Query: napkin box Query: tap

Query: apple

Query: fruit



Continue...

o Object query: find similarity between image - text encoding and highlight the position with highest similarity

D : (i, pi, ri), yi —max(Dqip, Dyita ), where
Dclip — (éclip_img (Iz ) 7@clip_te:ct (Iz»
Dyita = (Puitd_img(Li):Petip_text (13))

Context e!ements{((j)i’ Dis ‘7’1‘)} Query: napkin box Query: tap Query: apple Query: fruit

= = = =

20



Language Guided Trajectory Modification

« LATTE proposes to modify the robot end-effector trajectory based on the natural language instruction

) |
= Keep a much bigger distance from the computer.

Modified

21


https://arxiv.org/abs/2208.02918

Method: LATTE

! Li | Modified Traj.

NL interaction ( ™) §m0d
= BERT ] GBERT 1x768
‘Stay far frol
e et [ t
———— MLP ]
L(O CLIP | dcur
(03) text enc. v XM
?:3 i:lag W [ Cos similarity }J concatie——......c..... s
/ & imgenc. | ¢!
/ 7 BW, e deur 5
a P T N T T N Transformer
concat. I : Decoder
\ ® (Ot) go
Initial "
Obj poses Trajectory I T
Mx 4 Nx4 i mod
[

1 Shifted
Base planner —

, v v

Constraints
satisfaction
module

22



Second Half of the paper Large Language
Models for Robotics:
Opportunities, Challenges, and
Perspectives

Presented By : Md. Mahir Ashhab (ftm2nu)



Natural Language Understanding in Robotics

Core Insights

* LLMs serve as a knowledge base for robotic tasks, offering common sense
reasoning and enhancing code comprehension.

* Examples include-
* ProgPrompt: Programming language features in LLMs for better task performance.

* GIRAF : Interprets gestures and language commands for human-machine collaboration.

 Cap (Code as Policies) : Adapts language model programs for robots, enabling layered
control and complex task execution.

* Key Advantages:
* Reduced need for data collection and model training compared to traditional robotics.

* Flexibility and adaptability to diverse scenarios and tasks.
* Applications: From home cleaning to technical robot programming.

24



ProgPrompt

PROMPT for Planning

Import action primitives
from actions import walk <obj>,
grab <obj>, switchon <obj>,
open <obj>, standup, find
|<obj>, putin <obj> <obj>, ...

Generated Plan
def microwave salmon():

(# 0: walk to kitchen
walk('kitchen')
# 1: find microwave
(find( 'microwave')
(# Z: open microwave
assert('close' to 'microwave'

Comment:
Summary

AcgpnAPl
PRNSES
-

PROMPT for State Feedback

Example assertion check(s) LLM [G PT_3]
You see: "fridge is CLOSED,

Lightswitch is ON, cereal, i
bookshelf, box INSIDE bookshelf,
cereal ON wallshelf, paper

INSIDE bookshelf..."
You have: "book"

Available objects list
objects=[clothesshirt’ sink,

else: find('microwave') - o ‘ o
pie, apple, fridge, garbagecan, assert('microwave' is 'closed')) assert('close' to 'mug' ) def microwave_salmon()
tv, dishwashingliquid, bed, €lse: close( microwave ) False ; . ‘ :
bookshelf, salmon, stove, plate, open( 'microwave') dasertyboak’ In “hauds’)
i1 . ~ True i i ' '
coffeepot, kitchentable, ssertlieerant’ on ‘bockeheif’s assert( TASINE L Qggﬁd
i 3 i . , L Lsef {‘microwave')
\‘_/lﬂeglaS%, paper, mlgrowave, # 5: pUt salmon in microwave False —Pe“ operl1 r:u rowave I
toothbrush, toothpaste, t('sal * in ‘hands') = putin{ salmon’, 'microfave )
bathroomcabinet, kitchen, lime, Aassertl s .mQDT—*n—W ?D S = Gl J
painkillers, barsoap ] else: find('salmon') : :
\ ‘ L e else: grab('salmon') Current Semantic State

3SCBrt( Cloce To "microwave ] You see: "microwave is OPEN and

else: find('microwave') OFF, microwave ON
-O[assert('microx-/ave' is 'opened']— kitchencounter.

Example task(s)

def throw_away_lime():
# 0: find lime
find( ' lime')

else: open('microwave') JCIEL D P LT
putin('salmon', 'microwave')

assert('microwave' is 'opened') )

J

# 5: close garbagecan

assert('close' to 'garbagecan')
else: find('garbagecan')

assert('garbagecan' is 'opened')
else: open('garbagecan')

close( 'microwave’)

switchon( 'microwave')
# 8: wait for salmon to be done

cooking 1-2 minutes walk{kitchen)@find(salmon)@grab(salmon) i putin(salmon
| _

close( 'garbagecan') # 9: turn off microwave - microwave)
| # 6: Done switchoff('microwave’) .
;6pen-: ‘microwave')
Next task prompt
def microwave_salmon( ): grab( ‘'salmon’) : :
- # 12: put salmon on plate - i i ] close
. assert(*salmon’ in ‘'hands' ) { Jptional (’mlcrw
s g =l = B =

ert{'close' to ‘plate' )
else: find('plate’)
in('salmon', 'plate')

close( 'microwave’)

\_\#_14: Done_ o O .




GIRAF

Task Specification

Scene Descriptor Ds ene

Object
Localization

Object
Segmentation
gmentatio -L e
Classification
Output: O = {(c1,p1):---.(co0;.Pio))}

(“hex key”, pi1)
(“wrench”, p:)

(“hammer”, pi)

“Give me that tool.” Human Descriptor Dyyman

\ el SPeeCh Give(@.1s) me(0.2s)
Recognition ~ that(e.5s) tool(e.7)
Cl Gesture Gcation pointing

# Instruction: Give me that tool
# Gesture: [pointing]

LLM Task Planner
LLM reasons about speech and gesture instructions:

tool_pos = detect_referred_obj_pos(‘tool’, timing)

Perception API
Gesture Referent __, LLM
Detection *— Semantic Filter

def detect_referred_obj_pos(o_name, t_gesture)
hand_keypoints = get_hand_keypoints(timing)
tool_pos = detect_obj_pos(o_name, hand_keypoints)

LLM generates a sequence of robot actions (policy 7):

pickup_obj_at_pos(tool_pos)
hand_over()

Robot Execution

Motion Primitives

pickup_obj_at_pos

26



CAP

User

Large <+—--- Stack the blocks on the empty bowl.
Language =
Model ception APls I

l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name):

empty_bowl = bowl_name

break
objs_to_stack = [empty_bowl] |+ block_names
stack_objects(objs_to_stack)

l def is_empty(name):

def stack_objects(obj_names):
n_objs = len(obj_names) | v
for i in range(n_objs - 1): s
obj® = obj_names[i + 1]
obj1 = obj_names[i]
pick_place(objo, obj1)

27



Complex Task Reasoning and Decision-
making

Key Techniques

SayCan: Combines LLMs with reinforcement learning for task refinement.

Instruct2Act: Translates multimodal commands into action sequences via LLM-generated
policy codes.

PDDL Planning: Guides heuristic search planners using pretrained LLM outputs.
REFLECT: Uses LLMs for failure explanation and task correction.

Visual-Linguistic-Action Models: Integrates multimodal pretraining for improved robotic
strategies.

Socratic Models: Uses dialogue between pre-trained models for zero-shot task performance.

Advantages

Enhanced semantic understanding.
Integration of multimodal inputs (e.g., vision, language).
Zero-shot and few-shot learning capabilities.

28



SayCan

| spilled my drink, can you help? | spilled my drink, can you help?

GPT3

LaMDA

FLAN

You could try using
a vacuum cleaner,

Do you want me to
find a cleaner?

I'm sorry, | didn't
mean to spill it.

- ———————————— —— —

LLM Value Functions

"find a cleaner” S
e find a sponge
il "go to the trash can”

"pick up the sponge "pick up the sponge”

“Iry using the vacuum® By iy poskes

SayCan
"ﬂnd;;;onge”

D010 the traah can®
‘pick up the sponge*

N Ll

| would:

1. find a sponge

2. pick up the sponge
3. come to you

4. put down the sponge
5. done

29



nstruct2Act

LLM Generated Policy

@ Instruction

Put the green and purple polka dot block into the green contamer.

Put =d

ed obi> . into <hase obj= .

Put the first clicked object W& into the second one

Gencrated Policy

yticnm [actionmaction]

-

Python Interpreter

SAM(...)

-

ImageCrop(...)

Ltk

.“--..
‘ : :I'\ { ¥

Mudti-Model Instreution Retrieval

Input Image CLIPRetrieval(...)
Uni-Model Instreution Retneva
"green and purple Text i
polka dot block " Encoder "

Fyy ' Fr FiFr FJ;.'F:'.

et PO S T

J
Ima; |
£ LR ﬂ,-ﬁ.

Encoder

> R

Pixel2Lloc(...)

I

Coord.
Mapping

PickPlace(...)

Skill Primitive:

Pick Place
Rotute Action
Construction

RobotSetting|...)

Parameter Setting:

Speed {é}
Action Space @

Robotic Executor

Low-level
Controller

}

30



Reflect

The REFLECT Framework

Multisensory Hierarchical

Robot Summary Task: Heat potato

Failure Explanation: @ Failure Correction:
Try to turn on microwave » 1. Close Microwave Door
when door is open 2. Turn on Microwave

RoboFail Dataset Examples
Action: Place carrot in pot Task: Serve a cup of coffee

E a4 ' Nocoffee

Task: Store apple in fridge

>
=

iy jCarrot
v

, fell out

Failure:
Missed step
to toggle on
coffee
machine

S Failure:

' Chose the

"t wrong bowl

31



Vision-Language-Action Model

Internet-Scale VQA + Robot Action Data

Q: What is happening
in the image?

LA grey donkey walks?

down the street.

Q: Que puis-je faire avec
ces objets?

3

Faire cuire un gateau.

b i Q: What should the robot
g § o do to <task>?
e S >

% [ ATranslation = [0.1, -0.2, 0]
. | ARotation = [10°, 25° -7°]

Vision-Language-Action Models for Robot Control

Q: What should the robot RT 2
<task>? A: ... -
e g Large Language Model

OO E EaEEaEaCHOHCHODOD
SRR SRR S G AR S S
N ( |
-~ [ -3 1 ] ]
B ,%%m : % & % F ¥ F %
BRI - i coo

: 1 | AT=[0.1,-02, 0]
A:132114128525156 | ——— -[10" 25° -
De-Tokenize AR=10,25::7]

Robot Action

Closed-Loop
Robot Control

Put the strawberry
into the correct bow!

24
. > -
....

Pck the nearly falling bag

=

Co-Fine-Tune Deploy i

e

Pick object that is different
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Interactive Strategies

Innovations

* Matcha: Combines LLMs with
multimodal perception for better
interaction.

* Generative Agents: Simulate human
behavior using memory synthesis
and LLMs for realistic interaction
patterns.

Potential Applications
Intelligent assistants, robotics,
augmented reality systems.

Focus Areas

* Multimodal perception and
human behavior simulation.

* Integration with perceptual
systems like image recognition
and speech processing.

Challenges
Ethical and social implications of
human-like Al behavior.

33



MATCHA

[ Pick up the plastic block ]@

visualize(scene)

The scene contains [green block,
orange block, yellow block]

knock_on(yellow block)
m It sounds silent. J

knock_on(orange block) ;
T —~ ‘.MF
material cannot be certainly

confirmed according to the impact

sound. It could be plastic with a 47%

chance, or ceramic with a 35%

. chance.

touch(orange block) ‘

’ 1(MF |
‘ It feels hard. |'_

/| | picked up the orange block
because the sound from knocking
was inconclusive, but the weight
and feel were both consistent with 6
a plastic cube.

Overview of MATCHA

d .

ViLD

—
§ .

L
e S ¢-x !

A
J Task Done

« -~ control policy
el T

\_, Haptic module - .

(]}

.__! Sound module m
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Generative Agents

Joining for coffee at a cafe

Lt Y o #r 2 e S # s

Arriving at school

Taklng a walk

in the park
o w [Abigail): Hey Klaus, mind if
I join you for coffee?
[Klaus): Not at all, Abigail.

How are you?

Finishing a o} N 2
morning routine | 1 = cal @0 Ml Cl {John]: Hey, have you heard
oy g f & o o Xy o T 7 : anything new about the
AW s . | Ay M= Bl upcoming mayoral election?
’ D08, (Tom): No, not really. Do you
know who is running?




Key Takeaways

LLMs are transforming robotics and Al by

* Enhancing generalization, decision-making, and interaction
capabilities.

* Reducing reliance on traditional data collection and specialized
training.

* Providing flexible and scalable solutions across diverse tasks and
domains.

However, success depends on
* Tailoring applications to specific tasks

* Addressing challenges such as system complexity and ethical
concerns.

36



GPT -4V Empowered Embodied Task Planning

Overview
* Framework for robotic task planning using GPT-4V.

* Combines video demonstrations and natural language
Instructions.

* Evaluates manipulation and grasping tasks, critical in instruction-
following robotics.

37



GPT -4V Empowered Embodied Task Planning

Instruction: pick green chip bag
from bottom drawer and place on
counter

Predefined Action Pool GPT-4V Generated Task Plan

move_hand()
grasp_object()
release_object()

Step by Step Instruction
1. move hand to the location of
the target in the bottom drawer
2. grasp the target
3. move hand with the target to
the counter
4. release the target onto the

Environment + Instruction

Demonstration

T counter

Reasoning  aAction Plan
@ GPT-4V m move_hand(bottom drawer)
grasp_object(target)
move_hand(counter)

release_object(target)

Matching Score Target Object
green jalapeno chip bag
Self ‘ Evaluate
Environment State

@ GPT-4V <green jalapeno chip bag> in the

<bottom drawer>

A v

V <green jalapeno chip bag> on the
<counter>
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Evaluation Setup

 Datasets: 40+ cases from 9 datasets (e.g., Google Open X-
Embodiment Dataset).

* Scenarios: Kitchen pickups, tabletop rearrangements.
* Inputs: Video + natural language for generating action plans.

* Process
* Natural language instructions and visual inputs processed by GPT-4V.

* Step-by-step task plans generated.
* Plans compared against ground truth for evaluation.

39



Prompt Design

Components of Prompts
1.System Role Explanation: Defines GPT-4V’s task and role.

2.Predefined Action Pool: Provides action vocabulary.

3.Example Output: JSON format example ensures output
consistency.

4.Environment & Instruction: Combines video frames and
language instructions.

5.Evaluation: Self-assessment of task plans against ground truth

40



Prompt Example: System

You are an excellent robot task planner. Given a natural language instruction and information about the working
environment, you break it down into a sequence of step-by-step instructions and corresponding robot actions.

Predefined Action Pool:

* move_hand(): Move the robot hand from one position to another with/without grasping an object.

* grasp_object(): Graban object.

* release_object(): Release an object in the robot hand.

Necessary robot actions are defined as above. Note some actions can be done by move _hand() like opena
drawer by pull back and close it by push forward. If necessary, add new actions to the pool to complete the task.

You generate the task plan and output it as JSON with three keys:

* JSON{"task_cohesion"}: A JSON containing information about the robot's actions that have been split up.
* JSON{"environment_before"}: The state of the environment before the actions.

* JSON{"environment_after"}: The state of the environment after the actions.

Three keys exist in JSON{ "task cohesion"}.

* JSON{"task_cohesion"}{"task_sequence"}: Contains a list of robot actions. Only the behaviors
defined in the "Predefined Action Pool" will be used.

* JSON{"task_cohesion"}{"step_instructions"}: Contains a list of step-by-step instructions
corresponding to the JSON{"task_cohesion"}{"task_sequence"}.

* JSON{"task_cohesion"}{"object_name"}: The name of the target object.

You should only return the JSON, without any explanation or notes. 41



Prompt example

USER Instruction: <natural language instruction>.

Working Env: as shown in the given image. <image>
ASSISTANT  Task planning response.

USER Robot task instruction: <natural language instruction>
Task plan generated by GPT-4: <task plan>
Frames sampled from a reference demonstration for the above robot task: <images>

Generate a description of the video.

Score the generated actions on a scale from 0 to 10, based on how well they match the demo video:
a perfect match scores 10.

You should only return a JSON, which has three keys:

* JSON{"demo_video_description"}: The description of the reference demonstration video.

* JSON{"matching_score"}: The matching score.
* JSON{"explanation"}: The explanation of your score.

ASSISTANT Evaluation response.
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Experimental Results - Dataset Performance

Table of Matching Scores

Dataset

Description

Matching Score

Robot picks, places, and moves 17 objects from the Google micro

RT-1 Robot Action : 9/10
kitchens.
QT-Opt Kuka robot picking objects in a bin. 8/10
Berkeley Bridge R-obotlnteracts with household environments, including kitchens and 3.7/10
sinks.
TOTO Benchmark Dataset includes trajectories of scooping and pouring tasks. 8.5/10
BC-Z Picking, wiping, and placing tasks on diverse tabletop objects. 7.7/10
3;r5keleyAutolab Data consists of 4 robot manipulation tasks. 8.3/10
NYU VINN Robot arm performs diverse manipulation tasks on a tabletop. 9/10
Freiburg Franka Play |Interacts with toy blocks, performs pick-and-place and stackingtasks. |10/10
USC Jaco Play Performs pick-and-place tasks in a tabletop toy kitchen environment. |9/10
Overall Aggregate performance across datasets. 8.7/10 49




RT-1 Robot Action

Environment + Instruction

pick green jalapeno chip bag from bottom
drawer and place on counter

Prediction by GPT-4V

Step by Step Instruction
1. move hand to the location of the target in the bottom drawer
2. grasp the target
3. move hand with the target to the counter
4. release the target onto the counter
Action Plan
move hand(bottom drawer)
grasp_object(target)
move_hand(counter)
release object(larget)
Target Object: green jalapeno chip bag
Environment State
<green jalapeno chip bag> in the <bottom drawer>
l
<green jalapeno chip bag> on the <counter>
Matching Score: 10/10
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RT-1 Robot Action

Environment + Instruction

pick apple from white bowl

Prediction by GPT-4V

Step by Step Instruction
1. Move robot hand to the position above the apple in the white
bowl
2. Grasp the apple
3. Move robot hand away from the bowl with the apple grasped
Action Plan
move hand(above the apple)
grasp_object(appie)
move_hand(away from the bowl)
Target Object: apple
Environment State
<apple> in the <white bowl on the table>
!
<apple> grasped by the robot hand
Matching Score: 8/10
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QT-Opt

Environment + Instruction

Prediction by GPT-4V

Step by Step Instruction
1. Move the robot hand above an object to pick it
2. Grasp the chosen object
3. Move the hand to a different location with the
object grasped
Action Plan
move hand(above an object)
grasp_object(any object)
move_hand(different location)
Target Object: any object
Environment State
A work area containing <various objects>
!
<an object> moves it to a <different location>
Matching Score: 8/10
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Berkeley Bridge

Environment + Instruction

Move the silver pot from in front of the red can, to
next to the blue towel at the front edge of the table.

Prediction by GPT-4V

Step by Step Instruction
1. Grasp the silver pot in front of the red can
2. Move the grasped silver pot to the location next to the blue
towel at the front edge of the table
3. Release the silver pot next to the blue towel at the front edge of
the table
Action Plan
grasp_object(silver pot)
move_hand(next to the blue towel at the front edge of the table)
release_object(silver pot)
Target Object: silver pol
Environment State
<silver pot> in front of < the red can>
|

<silver pot> next to < the blue towel at the front edge of the table>
Matching Score: 9/10
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Freiburg Franka Play

Environment + Instruction Prediction by GPT-4V

Step by Step Instruction
1. Move the robot hand to the handle of the drawer
and pull it open
Action Plan
move_hand(the handle of the drawer)
move_hand(right end)
Target Object: drawer
Environment State
<drawer> closed
!
<drawer> open
Matching Score: 10/10

open the drawer
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USC Jaco Play

Environment + Instruction

Prediction by GPT-4V

Step by Step Instruction
1. Move the robot hand to the location of the gray bowl
2. Grasp the gray bowl
3. Move the robot hand with the gray bowl to the oven
4. Release the gray bowl in the oven
Action Plan
move_hand(location of the gray bowl)
grasp_object(gray bowl)
move_hand(to the oven)
release_object(gray bowl)
Target Object: gray bow!
Environment State
<gray bow!> on the <floor>
!
<gray bowl!> inside <the oven>
Matching Score: 8/10
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BC-Z

Environment + Instruction

place the eraser on the white sponge

Prediction by GPT-4V

Step by Step Instruction
1.Move the robot hand to the position of the eraser
2.Grasp the eraser
3.Move the robot hand to the position above the white sponge
4.Release the eraser onto the white sponge
Action Plan
move hand(to the apple)
grasp_object(apple)
move _hand(to the tray)
release_object(into the tray)
Target Object: eraser
Environment State
<graser> <on the surface away from the white sponge><white_sponge>
<positioned on the surface>
!
<egraser> <placed on the white sponge><white sponge> <unchanged>
Matching Score: 5/10

50



TOTO Benchmark

Environment + Instruction

Prediction by GPT-4V

Step by Step Instruction
1.Move the hand over the red cup
2.Grasp the bottle
3.Tilt the hand to pour the contents from the red cup
4. Return the red cup to the upright position and release it
Action Plan
move_hand(align with the bottle)
grasp_object(bottle)
move_hand(above the cup)
release_object(botlie)
Target Object: red cup
Environment State
<red cup> <on the table, upright, presumably with contents>
|
<red cup> <on the table, empty>
Matching Score: 8/10
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Key challenges

1. Homogeneous Plans
* Lacks detailed, robust designs for complex environments.

2. Prompt Complexity
* Requires carefully crafted, lengthy prompts.

3. Execution Constraints
* Limited by predefined actions, reducing flexibility.

4. Closed-source & Delays
* GPT-4V API limitations hinder real-time applications.
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Future Opportunities

Precision Agriculture

* Automation of labor-intensive tasks (e.g., fruit picking, crop
phenotyping).

Healthcare

* Enhancing robot-assisted surgeries and screenings.
Brain-Computer Interfaces (BCls)

* Aligning brain signals with language for self-planning and control.
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Conclusion

Key Takeaways

* LLMs like GPT-4V showcase impressive capabilities in enhancing robotic intelligence through
reasoning, language understanding, and multimodal processing.

* While promising, significant challenges persist, including model transparency, real-world
applicability, and safety concerns.

Path Forward

* Address limitations through rigorous research in:
* Testing, training, and policy adaptation.
* Ethical oversight and safer model architectures.

* Embrace sim-to-real development to streamline intelligent robot design and deployment.

Final Thought

* The integration of LLMs and robotics is a transformative frontier that demands interdisciplinary
collaboration to unlock its full potential responsibly.
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Thank you
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