
LLM for Math
Reasoning

- Large Language Models for Mathematical Reasoning: Progresses
and Challenges

- DeepSeekMath: Pushing the Limits of Mathematical Reasoning in
Open Language Models

1

Large Language Models for
Mathematical Reasoning: Progresses and
Challenges

2

● Introduction
● Math Problems & Datasets
● Related Work
● Methodologies
● Analysis
● Challenges
● Conclusion

Contents

3

Chenxu Li (jnr2jp)

4

Introduction

5

Background

6

Problems:

Fragmented problem types

Inconsistent evaluation criteria

Difficulty comparing technologies

Background

7

Four pivotal dimensions:

i) a comprehensive exploration of the various mathematical problems and their

corresponding datasets that have been investigated

ii) an examination of the spectrum of LLM-oriented techniques that have been

proposed for mathematical problem-solving

iii) an overview of factors and concerns affecting LLMs in solving math

iv) an elucidation of the persisting challenges within this domain.

Background

8

Math Problems & Datasets

9

-> Pure mathematical operations

-> Numerical manipulation

Arithmetic

“Q” denotes questions and “A” for answers. 10

Math Word Problems(MWP)

-> Mathematical exercises or scenarios

-> Written or verbal descriptions

11

Math Word Problems(MWP)

Question-Answer

12

Question-Equation-Answer

Question-Rationale-Answer

Math Word Problems(MWP)

13

Tabular MWP

Math Word Problems(MWP)

14

Geometry

-> Shapes
-> Sizess
-> Interrelationships

15

Math Problems & Datasets

16

–MINIF2F (Zheng et al., 2022): Evaluates systems (Metamath, Lean, Isabelle) on Olympiad-level
problems.

–HOList (Bansal et al., 2019): Tests sequential theorem proving using only preceding lemmas.

–COQGYM (Yang & Deng, 2019): Provides 71K+ human-written proofs in Coq, enabling training
and validation.

– CHARTQA (Masry et al., 2022), with 9.6K human written questions and 23.1K model-generated
ques tions have explored a variety of complex reasoning questions that involve several logical and
arithmetic operations over charts.

 –MATHVISTA (Lu et al., 2023a): size: 6K; it features seven types of mathematical reasoning, and
fine-grained meta data are available,

Automated theorem proving & Math in vision-language context

17

Grade School Math

18

GSM8K

Dataset Overview

● Scale: Contains about 8,500 math problems.
● Language: Both the problems and the answers are in English.
● Applicable scenarios: Training models to reason step by step and verifying

mathematical logic capabilities.

Dataset structure
● Question type:

covers elementary school math knowledge points such as addition, subtraction,
multiplication, division, fractions, percentages, geometry, and measurement.

● Question format:
Questions are described in natural language and are usually combined with daily scenarios
(such as shopping, time calculation, allocation problems, etc.). The answer needs to be
derived step by step, and finally a numerical result is obtained.

Grade School Math

19

GSM8K

Grade School Math

20

GSM8K

21

AlphaGeometry

22

AlphaGeometry

Related Work

23

➔ Use cases, user stories, notes to set up the wireframes. Such as…

Research Progress

Study Research Focus Math Domain Coverage Educational
Perspective

Human Factors
Consideration

Frieder et al.
(2023a)

ChatGPT version
comparison
Four theorem proving
tasks

Theorem proving/Math
search/Computation

None Proposed human-AI
collaboration

Chang et al.
(2023)

General LLM
evaluation

Math problem-solving
(brief coverage)

None None

Testolin
(2023)

Deep learning & math
reasoning

General math reasoning None None

Lu et al.
(2023c)

Deep learning
applications

Mathematical reasoning
methodologies

None None

Liu et al.
(2023b)

LLM methods in
mathematics

Multi-domain coverage None Not emphasized

This Paper LLM-centric deep
analysis

Comprehensive
coverage

Yes Emphasizes human
factors

24

Matthew Nguyen (ttn5cv)

25

Methodologies

26

● Three progressive levels:

○ Prompting frozen LLMs
○ Strategies enhancing frozen LLMs
○ Fine-tuning LLMs

● Focus on improving math problem solving

Overview of Methods

27

Prompting Frozen LLMs
● Direct prompting with models like:

○ GPT‑3: Used for classification, equation extraction, and question generation.

○ ChatGPT: Evaluated on MWP.

○ GPT‑4: Explored with vanilla, Program‑of‑Thought, and Program Synthesis

prompts.

○ Multimodal Models: GPT4V and Bard evaluated on visual contexts.

28

An Independent Evaluation of ChatGPT on MWP

Shakarian et al. (2023) 29

An Independent Evaluation of ChatGPT on MWP

Shakarian et al. (2023) 30

MATHVISTA:
Evaluating
Mathematical
Reasoning Of
Foundation Models
In Visual Contexts

Lu et al. (2023a) 31

Strategies Enhancing Frozen LLMs
● Preprocessing: Replacing numerical expressions with English words

● Advanced Prompting:
○ Self-Consistency techniques

○ Code-based self-verification (especially for GPT‑4 Code Interpreter)

● Using External Tools: Python REPL and symbolic solvers

● Interactive Frameworks: e.g., MathChat for simulated conversation

● Evaluation Beyond Accuracy: Incorporating confidence levels and verifiable

explanations

32

LPML: LLM-Prompting Markup Language For
Mathematical Reasoning

Yamauchi et al. (2023) 33

● One of the most essential challenges in employing LLMs for mathematical reasoning is the

management of calculation and reasoning errors in LLMs’ outputs

● External tools like Python REPL have been used to handle calculations, but integration with

CoT is not seamless.

● Reasoning and computation are often treated as separate modules, leading to inconsistent

results.

Yamauchi et al. (2023) 34

● Introduces LPML, an XML-like markup language that structures outputs (using tags like

<THINK>, <PYTHON>, <OUTPUT>) for better control and parsing.

● Creates an interactive loop where the LLM generates both CoT reasoning and executable

Python code, with a system feeding back verified results.

● Enhances accuracy by having the LLM prioritize computed results over its own internal

reasoning.

LPML: LLM-Prompting Markup Language For
Mathematical Reasoning

LPML:
LLM-Prompting
Markup Language
For Mathematical
Reasoning

Yamauchi et al. (2023) 35

Yamauchi et al. (2023) 36

● While LPML is effective, the rigid markup can limit flexibility and natural dialogue flow in

complex reasoning tasks.

● We need a more dynamic, interactive framework that adapts to iterative problem solving.

● MathChat adopts a conversational, multi-turn dialogue model where an LLM agent

collaborates with a user proxy agent instead of a predefined system, leveraging the

chat-optimized feature of state-of-the-art LLMs

MathChat: Converse To Tackle Challenging Math
Problems With LLM Agents

MathChat:
Converse To
Tackle
Challenging Math
Problems With
LLM Agents

37Wu et al. (2023)

Solving Challenging Math Word Problems Using GPT-4
Code Interpreter With Code-Based Self-Verification

● GPT-4 Code Interpreter is a variant of GPT-4 that integrates natural language reasoning

with the capability to generate and execute code.

● The model is able to evaluate the outcomes of code execution and automatically adjust

reasoning steps of solutions when needed.

● However, despite these advantages, GPT4-Code falls short in assuring final solution

correctness.

38

Solving Challenging Math Word Problems Using GPT-4
Code Interpreter With Code-Based Self-Verification

● Explicit Code-Based Self-Verification (CSV): This method explicitly prompts the model to

generate additional code dedicated to verifying its final answer.

● Iterative Correction: If the verification code indicates that the answer is incorrect (returns

“False”), the model is prompted to revise and re-verify its solution.

39

Solving Challenging
Math Word
Problems Using
GPT-4 Code
Interpreter With
Code-Based
Self-Verification

Zhou et al. (2023a) 40

Solving Challenging
Math Word
Problems Using
GPT-4 Code
Interpreter With
Code-Based
Self-Verification

Zhou et al. (2023a) 41

● Verification-Guided Voting: Combines multiple solution paths by

assigning different weights based on their verification outcomes

Solving Challenging Math Word Problems Using GPT-4
Code Interpreter With Code-Based Self-Verification

Zhou et al. (2023a) 42

Fine-tuning LLMs
● Selecting In-Context Examples: e.g., PROMPTPG learns which examples work best

● Generating Intermediate Steps: “Scratchpad” approaches for step-by-step

reasoning

● Answer Verifiers: Fine-tuning models to assess their own solutions (pseudo‑dual

learning)

● Enhanced Datasets & Knowledge Distillation:
○ Training on error‐correction pairs

○ Teacher–student frameworks

● Solver Ensembles: Combining multiple approaches for robust performance

43

Training Verifiers to Solve Math Word Problems

Cobbe et al. (2021) 44

● Generation: First, a generator model (finetuned on the GSM8K dataset) is used to

produce multiple candidate solutions for a given problem.

● Verification: A separate verifier model is then trained to assess the correctness of

these candidate solutions. The verifier judges each solution (either at the

full-solution level or at each token, with token-level predictions found to be more

effective) based solely on whether the final answer is correct.

Training Verifiers to Solve Math Word Problems

Cobbe et al. (2021) 45

Training Verifiers to Solve Math Word Problems

Cobbe et al. (2021) 46

● The verifier is trained using a joint objective: it learns both to predict correctness

(using a mean squared error loss on a scalar value for each token) and to perform

language modeling.

● By sampling many solutions (typically 100 per problem) and labeling them as correct

or incorrect, the verifier learns to rank candidate solutions reliably.

Training Verifiers to Solve Math Word Problems

Cobbe et al. (2021) 47

Challenges, Analysis, and Implications

48

Challenges, Analysis, and Implications
● Robustness & Vulnerabilities: While instruction-tuned LLMs (e.g., GPT-4) have enhanced

sensitivity and can maintain robustness even against distractions, they still struggle with complex

or adversarially modified math problems, highlighting inherent vulnerabilities.

● Critical Influencing Factors: Key elements such as tokenization strategies, pre-training content

(including code and LATEX), prompt design, and model scale fundamentally determine LLMs'

arithmetic and reasoning performance.

● Educational Implications: Beyond raw problem-solving, LLMs impact math education by providing

detailed, conversational, and step-by-step solutions that foster critical thinking, yet they also risk

misinterpreting student needs and overcomplicating explanations, which can hinder effective

learning.

49

Conclusion

50

● Comprehensive Overview: The survey reviews the landscape of large language models in

mathematical reasoning, covering various types of math problems, associated datasets, and

inherent challenges in the domain.

● Advancements and Limitations: It highlights recent progress in LLMs—including their

improved problem-solving capabilities and applications in educational contexts—while also

noting the current limitations and vulnerabilities of these models.

● Future Directions: The authors advocate for a more human-centric approach in math

education and call for continued research to address persistent challenges and expand the

practical applications of LLMs in diverse mathematical settings.

Conclusion & Future Directions

51

DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open
Language Models

52

Zeqiang Ning (avr7qy)

53

Introduction to
DeepSeekMath

● Background
LLMs have revolutionized

mathematical reasoning, but current

open-source models fall short

compared to cutting-edge models like

GPT-4 and Gemini-Ultra, but

DeepSeekMath outperform

open-source models in math

capabilities

54

Contributions
● Math Pre-Training at Scale

○ DeepSeekMath Corpus: 120B tokens, 7x Minerva, 9x OpenWebMath.

○ DeepSeekMath-Base 7B: Performs comparably to Minerva540B, showing

data quality is key.

○ Code Training: Improves math problem-solving, with or without tools.

○ arXiv Training: No significant improvement in math benchmarks.

55

Data Collection—DeepSeekMath
● Construct a large-scale mathematical corpus from Common Crawl

● Approach: Iterative pipeline starting with a seed corpus

● FastText Model

56

Pipeline collecting data
●

OpenWebMath

57

Validating the Data Quality
 Math Corpus Comparison

 Training Set

● Model: DeepSeekLLM 1.3B

● Training 150B tokens per corpus

● Optimizer: AdamW

● Batch size: 4M tokens

DeepSeekMath MathPile OpenWebMath Proof-Pile-2

120.2B 8.9B 13.6B 51.9B

● Learning rate:
Warm-up for 2,000 steps
Decrease to 31.6% after 80% of training
Further decrease to 10.0% after 90% of training

58

Evaluation of Corpus Results

59

Evaluation of
Corpus Results

● High-quality: few-shot
chain-of-thought prompting

● Multilingual: Chinese and
English

● Large-scale

60

Training DeepSeekMath-Base
● Model: Initialized with DeepSeek-Coder-Base-v1.5 7B, trained on 500B tokens.
● Data Distribution
● Capabilities:

○ Problem-solving with tools
○ Formal theorem proving
○ Natural language understanding
○ Reasoning and programming skills

61

Evaluating on Mathematical Problem Solving

62

Evaluating on Mathematical Problem Solving

63

Evaluating on Natural Language
Understand
Mathematics

DeepSeekMath-Base 7B significantly outperforms DeepSeek-Coder-Base-v1.5 on MMLU, BBH, and

coding benchmarks (HumanEval and MBPP), and surpasses the general model Mistral 7B, demonstrating

the positive impact of math training on language understanding, reasoning, and coding abilities.

64

Supervised Fine-Tuning
● Constructing a mathematical instruction-tuning dataset covering English and Chinese

problems from different mathematical fields and of varying complexity levels.

● DeepSeekMath-Instruct 7B is a model that undergoes mathematical instruction

tuning based on DeepSeekMath-Base and a mathematical instruction tuning dataset
○ evaluating on four quantitative reasoning benchmarks

○ Comparing with leading models.

65

Evaluating

1. In the evaluation where tool use is
disallowed, DeepSeekMath-Instruct 7B
surpasses all open-source models and most
proprietary models (e.g., Inflection-2 and
Gemini Pro) on the MATH dataset, but still
underperforms GPT-4 and Gemini Ultra.

2. In the evaluation where tool use is allowed,
DeepSeekMath-Instruct 7B achieves an
accuracy of nearly 60% on MATH,
surpassing all open-source models and
competing with DeepSeek-LLM-Chat .

66

Wenhao Xu (wx8mcm)

67

Reinforcement Learning

68

Reinforcement Learning Intro
● Purpose of RL Post-SFT

○ Enhance model reasoning abilities beyond supervised training limits.

● Reinforcement Learning Phases

○ Fine-tuning through iterative feedback and reward-based optimization.

● In-Domain vs. Out-of-Domain Tasks

○ RL improves performance on both familiar and new benchmarks.

69

From PPO to GRPO
● PPO uses actor-critic models, high resource usage.

● GRPO eliminates the critic model.

● Baseline estimated from group scores.

● Reduces training resources significantly.

70

GRPO Methodology
● Samples multiple outputs per question.

● Uses average reward as baseline.

● Regularizes with KL divergence between policy and reference models.

71

GRPO Methodology

72

GRPO vs PPO
● Computational Efficiency

○ GRPO significantly reduces memory requirements compared to PPO.

● Performance Boosts

○ GRPO led to improvements from 46.8% to 51.7% on MATH benchmark.

● Unified Paradigm for RL Techniques

○ GRPO fits into a broader framework of reinforcement learning strategies

like RFT and DPO.

73

Training Process
● Outcome Supervision RL

● Process Supervision RL

● Iterative RL

74

Evaluation
● Benchmarked against leading models

(GPT-4, Gemini Ultra, etc.).

● Without Tool Use:

○ Surpasses all open-source models on

MATH.

○ Outperforms many proprietary models.

● With Tool Use:

○ Approaches 60% accuracy on MATH.

○ Competitive with larger models like

DeepSeek-LLM-Chat 67B.
75

Discussion

76

Pre-Training Insights
● Code Training Benefits:

● Enhances mathematical reasoning both with and without tool use.

● Mixed code/math training mitigates catastrophic forgetting.

● Two-stage training: Code followed by math training yields best results.

77

Impact of Code Training
● Code training boosts

program-aided mathematical

reasoning.

● Enhances efficiency of

subsequent math training.

● Mixed training improves

reasoning and coding

performance.

78

ArXiv Papers and Mathematical Reasoning
● Limited improvement from arXiv paper pre-training.

● No notable gains on GSM8K, MATH, and other benchmarks.

● Potential factors:

○ ArXiv content may not align with problem-solving tasks.

○ Impact may vary with model scale or specific tasks.

79

Conclusion, Future Work

80

Conclusion
● DeepSeekMath significantly outperforms all open-source models on competition-level

MATH benchmarks.

● Approaches the performance of leading closed-source models like GPT-4 and Gemini-Ultra.

● Key Findings:

○ Public web data can serve as a high-quality resource for mathematical reasoning.

○ Code training prior to math training enhances reasoning capabilities.

○ Group Relative Policy Optimization (GRPO) improves reasoning with optimized

memory usage.

81

Limitations
● DeepSeekMath underperforms in geometry and formal theorem proving

compared to closed-source models.

● Struggles with problems involving specific geometric shapes like triangles and

ellipses.

● Model scale limitations hinder few-shot learning capabilities.

● Reliance on publicly available data may introduce quality and coverage gaps

82

Future Work
● Enhancing RL Techniques

○ Further refining GRPO and exploring hybrid RL approaches for better

performance.

● Expanding Multilingual Datasets

○ Incorporate more languages to broaden model applicability in global

benchmarks.

● Combining Code and Math Training

○ Explore deeper integration of code and math data to enhance both

reasoning and computational skills.

83

Questions?

84

Thank you!

85

