LLM for Math Reasoning

- Large Language Models for Mathematical Reasoning: Progresses and Challenges
- DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Large Language Models for Mathematical Reasoning: Progresses and Challenges

Contents

- Introduction
- Math Problems & Datasets
- Related Work
- Methodologies
- Analysis
- Challenges
- Conclusion

Chenxu Li (jnr2jp)

Introduction

Background

🔿 Llama 3

Problems:

Fragmented problem types

Inconsistent evaluation criteria

Difficulty comparing technologies

Four pivotal dimensions:

i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated

ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving

iii) an overview of factors and concerns affecting LLMs in solving math

iv) an elucidation of the persisting challenges within this domain.

Math Problems & Datasets

-> Pure mathematical operations

-> Numerical manipulation

$$Q: 21 + 97$$

 $A: 118$

"Q" denotes questions and "A" for answers.

-> Mathematical exercises or scenarios

-> Written or verbal descriptions

Question-Answer

Q: Lily received \$20 from her mum. After spending \$10 on a storybook and \$2.5 on a lollipop, how much money does she have left?

A: \$7.5

Question-Equation-Answer

 \mathcal{Q} : Jack had 8 pens and Mary had 5 pens. Jack gave 3 pens to Mary. How many pens does Jack have now? \mathcal{E} : 8-3 \mathcal{A} : 5 (optional)

Question-Rationale-Answer

 \mathcal{Q} : Beth bakes 4, or 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does each person consume? \mathcal{R} : Beth bakes 4 2 dozen batches of cookies for a total of 4 * 2 = << 4 * 2 =8 >> 8 dozen cookies. There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = << 12*8 =96 >> 96 cookies. She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = << 96/16 = 6 >>6 cookies. \mathcal{A} : 6

Math Word Problems(MWP)

Tabular MWP

BEADS	\$/KILOGRAM
heart-shaped	3
rectangular	2
spherical	2
oval	2

Table 2: Table for the tabular MWP example.

 \mathcal{T} : Table 2 \mathcal{Q} : Henrik bought 2.5 kilograms of oval beads. How much did he spend? (Unit: \$) \mathcal{A} : 5

Geometry

- -> Shapes
- -> Sizess
- -> Interrelationships

Q: a=7 inches; b=24 inches; c=25 inches; h=6.72 inches; What is its area? (Unit: square inches) $\mathcal{A}: 84$

Math Problems & Datasets

	NAME	SIZE	LEVEL	NOTE	NAME
A	CMATH (Wei et al., 2023)	1.7K	e	Chinese; grade 1-6	
5	SAT-MATH (Zhong et al., 2023)	220		Multi-choice	GEOSHADER (Alvin et al., 2017)
	SVAMP (Patel et al., 2021)	1K	E	Three types of variations	GEOS (Seo et al., 2015)
L	ASDIV (Miao et al., 2020)	2.3K	e	Problem type and grade level annotated	CEOS + (Secher et al. 2017)
we	MAWPS (Koncel-Kedziorski et al., 2016)	3.3K	e	Extension of ADDSUB, MULTIARITH, etc.	GEOS++ (Sachan et al., 2017)
Ans	PARAMAWPS (Raiyan et al., 2023)	16K	B	Paraphrased, adversarial MAWPS	GEOS-OS (Sachan and Xing, 2017)
-uo	SINGLEEQ (Koncel-Kedziorski et al., 2015)	508	e		GEOMETRY3K (In et al. 2021)
lati	ADDSUB (Hosseini et al., 2014)	395	B	Only addition and subtraction	GEOMETRIJK (Lu ct al., 2021)
Equ	MULTIARITH (Roy and Roth, 2015)	600	B	Multi-step reasoning	GEOQA (Chen et al., 2021a)
-uo	DRAW-1K (Upadhyay and Chang, 2017)	1K	e		UNIGEO (Chen et al. 2022)
esti	MATH23K (Wang et al., 2017)	23K	E	Chinese	
Qu	APE210K (Zhao et al., 2020)	210K	E	Chinese	
	K6 (Yang et al., 2023)	600	e	Chinese; grade 1-6	Table 3: Geometry datasets
	CM17K (Qin et al., 2021)	17K	MH	Chinese; grade 6-12	
	CARP (Zhang et al., 2023a)	4.9K	M	Chinese	
н	GSM8K (Cobbe et al., 2021)	8.5K	M	Linguistically diverse	
swei	MATH (Hendrycks et al., 2021)	12.5K		Problems are put into difficulty levels 1-5	
An	PRM800K (Lightman et al., 2023)	12K		MATH w/ step-wise labels	
ale-	MATHQA (Amini et al., 2019)	37K	C	GRE examinations; have quality concern	
ion	AQUA (Ling et al., 2017)	100K	C	GRE&GMAT questions	
Rat	ARB (Sawada et al., 2023)	105	C	Contest problems and university math proof	
[-uo	GHOSTS (Frieder et al., 2023b)	709	O		
estio	THEOREMQA-MATH (Chen et al., 2023b)	442	C	Theorem as rationale	
Que	LILA (Mishra et al., 2022)	132K	0	Incorporates 20 existing datasets	
	MATH-INSTRUCT (Yue et al., 2023)	260K	0	Instruction-following style	
	TABMWP (Lu et al., 2023b)	38K	•	Tabular MWP; below the College level	

SIZE 102 186 1.4K 2.2K 3K 5K 14.5K -MINIF2F (Zheng et al., 2022): Evaluates systems (Metamath, Lean, Isabelle) on Olympiad-level problems.

-HOList (Bansal et al., 2019): Tests sequential theorem proving using only preceding lemmas.

-COQGYM (Yang & Deng, 2019): Provides 71K+ human-written proofs in Coq, enabling training and validation.

- CHARTQA (Masry et al., 2022), with 9.6K human written questions and 23.1K model-generated ques tions have explored a variety of complex reasoning questions that involve several logical and arithmetic operations over charts.

-MATHVISTA (Lu et al., 2023a): size: 6K; it features seven types of mathematical reasoning, and fine-grained meta data are available,

GSM8K

Grade School Math

Dataset Overview

- **Scale:** Contains about 8,500 math problems.
- Language: Both the problems and the answers are in English.
- **Applicable scenarios:** Training models to reason step by step and verifying mathematical logic capabilities.

Dataset structure

• Question type:

covers elementary school math knowledge points such as addition, subtraction, multiplication, division, fractions, percentages, geometry, and measurement.

• Question format:

Questions are described in natural language and are usually combined with daily scenarios (such as shopping, time calculation, allocation problems, etc.). The answer needs to be derived step by step, and finally a numerical result is obtained.

Grade School Math

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies **Final Answer:** 6

Problem: Mrs. Lim milks her cows twice a day. Yesterday morning, she got 68 gallons of milk and in the evening, she got 82 gallons. This morning, she got 18 gallons fewer than she had yesterday morning. After selling some gallons of milk in the afternoon, Mrs. Lim has only 24 gallons left. How much was her revenue for the milk if each gallon costs \$3.50?

Mrs. Lim got 68 gallons - 18 gallons = <<68-18=50>>50 gallons this morning.

So she was able to get a total of 68 gallons + 82 gallons + 50 gallons = <<68+82+50=200>>200 gallons.

She was able to sell 200 gallons - 24 gallons = <<200-24=176>>176 gallons.

Thus, her total revenue for the milk is 3.50/gallon x 176 gallons = <<3.50*176=616>>616.

Final Answer: 616

Problem: Tina buys 3 12-packs of soda for a party. Including Tina, 6 people are at the party. Half of the people at the party have 3 sodas each, 2 of the people have 4, and 1 person has 5. How many sodas are left over when the party is over? Solution: Tina buys 3 12-packs of soda, for 3*12= <<3*12=36>>36 sodas 6 people attend the party, so half of them is 6/2= <<6/2=3>>3 people Each of those people drinks 3 sodas, so they drink 3*3=<<3*3=9>>9 sodas Two people drink 4 sodas, which means they drink 2*4=<<4*2=8>>8 sodas With one person drinking 5, that brings the total drank to 5+9+8+3= <<5+9+8+3=25>>25 sodas As Tina started off with 36 sodas, that means there are 36-25=<<36-25=11>>11 sodas left Final Answer: 11

GSM8K

Grade School Math

AlphaGeometry

a A simple problem

"Let ABC be any triangle with AB = AC. Prove that $\angle ABC = \angle BCA$."

e IMO 2015 P3

"Let ABC be an acute triangle. Let (O) be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of BC. Let Q be the point on (O) such that QH \perp QA and let K be the point on (O) such that KH \perp KQ. Prove that the circumcircles (O₁) and (O₂) of triangles FKM and KQH are tangent to each other."

AlphaGeometry

Table 1 | Main results on our IMO-AG-30 test benchmark

Method		Problems solved (out of 30)
Computer algebra	Wu's method ²¹ (previous state of the art)	10
	Gröbner basis ²⁰	4
Search (human-like)	GPT-4 (ref. 25)	0
	Full-angle method ³⁰	2
	Deductive database (DD) ¹⁰	7
	DD+human-designed heuristics ¹⁷	9
	DD+AR (ours)	14
	DD+AR+GPT-4 auxiliary constructions	15
	DD+AR+human-designed heuristics	18
	AlphaGeometry	25
	Without pretraining	21
	Without fine-tuning	23

Related Work

Research Progress

Study	Research Focus	Math Domain Coverage	Educational Perspective	Human Factors Consideration
Frieder et al. (2023a)	ChatGPT version comparison Four theorem proving tasks	Theorem proving/Math search/Computation	None	Proposed human-Al collaboration
Chang et al. (2023)	General LLM evaluation	Math problem-solving (brief coverage)	None	None
Testolin (2023)	Deep learning & math reasoning	General math reasoning	None	None
Lu et al. (2023c)	Deep learning applications	Mathematical reasoning methodologies	None	None
Liu et al. (2023b)	LLM methods in mathematics	Multi-domain coverage	None	Not emphasized
This Paper	LLM-centric deep analysis	Comprehensive coverage	Yes	Emphasizes human factors

Matthew Nguyen (ttn5cv)

Methodologies

Overview of Methods

- Three progressive levels:
 - **Prompting frozen LLMs**
 - Strategies enhancing frozen LLMs
 - Fine-tuning LLMs
- Focus on improving math problem solving

Prompting Frozen LLMs

- Direct prompting with models like:
 - **GPT-3**: Used for classification, equation extraction, and question generation.
 - ChatGPT: Evaluated on MWP.
 - **GPT-4**: Explored with vanilla, Program-of-Thought, and Program Synthesis prompts.
 - **Multimodal Models**: GPT4V and Bard evaluated on visual contexts.

An Independent Evaluation of ChatGPT on MWP

Figure 2: Overall results on the 1,000 MWPs in DRAW-1K based on ChatGPT's response.

Shakarian et al. (2023)

An Independent Evaluation of ChatGPT on MWP

Figure 4: Additional finding specific to the February, 2023 experiment where ChatGPT displayed its work relating number of multiplications to probability of failure, $R^2 = 0.802, 95\%$ confidence intervals.

Shakarian et al. (2023)

MATHVISTA: Evaluating Mathematical Reasoning Of Foundation Models In Visual Contexts

Model	Input	ALL	FQA	GPS	MWP	TQA	VQA	ALG	ARI	GEO	LOG	NUM	SCI	STA
Heuristics baselines														
Random chance		17.9	18.2	21.6	3.8	19.6	26.3	21.7	14.7	20.1	13.5	8.3	17.2	16.3
Frequent guess	-	26.3	22.7	34.1	20.4	31.0	24.6	33.1	18.7	31.4	24.3	19.4	32.0	20.9
			Large	Langi	uage M	odels (LLMs)							
Zero-shot ChatGPT	Q only	23.5	21.9	26.9	9.1	38.6	23.5	27.7	15.9	25.7	21.6	9.9	41.5	20.5
Zero-shot GPT-4	Q only	26.1	22.3	37.0	7.0	39.2	27.4	33.6	17.4	35.6	16.2	9.2	45.8	19.5
Zero-shot Claude-2	Q only	26.4	21.9	34.1	13.4	36.1	29.1	32.8	20.4	33.3	13.5	12.1	36.4	20.5
2-shot CoT Claude-2	Q only	24.4	18.6	29.8	9.7	33.5	34.1	29.2	19.0	28.0	5.4	13.9	36.9	18.9
2-shot CoT ChatGPT	Q only	26.8	20.1	36.5	8.6	44.9	28.5	35.6	17.0	33.5	21.6	14.6	45.9	17.9
2-shot CoT GPT-4	Q only	29.2	20.1	44.7	8.6	46.2	31.3	41.6	19.3	41.0	18.9	13.9	47.5	18.9
2-shot PoT ChatGPT	Q only	25.1	19.0	30.8	16.1	38.0	25.7	29.9	19.8	29.3	24.3	19.4	38.5	16.9
2-shot PoT GPT-4	Q only	26.0	20.1	33.2	8.1	44.9	28.5	32.7	16.7	31.0	24.3	13.2	48.4	18.3
	Augn	nented	Large	Langi	uage Me	odels (.	Augme	nted-L	LMs)					
2-shot CoT Claude-2	Q, I_c, I_t	33.2	26.0	31.7	35.5	48.1	30.2	32.4	32.3	33.0	16.2	17.4	54.9	36.2
2-shot CoT ChatGPT	Q, I_c, I_t	33.2	27.5	29.3	36.0	49.4	29.1	31.0	32.9	31.0	16.2	17.4	50.8	37.2
2-shot CoT GPT-4	Q, I_c, I_t	33.2	27.9	31.7	31.2	51.9	28.5	33.5	30.9	32.2	13.5	12.5	58.2	37.9
2-shot PoT ChatGPT	Q, I_c, I_t	26.8	24.5	26.4	23.7	33.5	27.9	27.8	26.1	28.0	18.9	13.2	33.6	29.9
2-shot PoT GPT-4	Q, I_c, I_t	33.9	30.1	39.4	30.6	39.9	31.3	37.4	31.7	41.0	18.9	20.1	44.3	37.9
		L	arge I	Aultim	odal M	odels	LMMs)						
IDEFICS-9B-Instruct	Q,I	19.8	21.6	21.1	6.5	25.9	24.0	22.1	15.0	19.8	18.9	9.9	24.6	18.1
mPLUG-Owl-LLaMA-7B	Q. I	22.2	22.7	23.6	10.2	27.2	27.9	23.6	19.2	23.9	13.5	12.7	26.3	21.4
miniGPT4-LLaMA-2-7B	\dot{Q}, I	23.1	18.6	26.0	13.4	30.4	30.2	28.1	21.0	24.7	16.2	16.7	25.4	17.9
LLaMA-Adapter-V2-7B	Q, I	23.9	21.2	25.5	11.3	32.3	31.8	26.3	20.4	24.3	24.3	13.9	29.5	18.3
LLaVAR	Q, I	25.2	21.9	25.0	16.7	34.8	30.7	24.2	22.1	23.0	13.5	15.3	42.6	21.9
InstructBLIP-Vicuna-7B	Q, I	25.3	23.1	20.7	18.3	32.3	35.2	21.8	27.1	20.7	18.9	20.4	33.0	23.1
LLaVA-LLaMA-2-13B	Q, I	26.1	26.8	29.3	16.1	32.3	26.3	27.3	20.1	28.8	24.3	18.3	37.3	25.1
Multimodal Bard	Q, I	34.8	26.0	47.1	29.6	48.7	26.8	46.5	28.6	47.8	13.5	14.9	47.5	33.0
GPT-4V (Playground)	Q, I	49.9	43.1	50.5	57.5	65.2	38.0	53.0	49.0	51.0	21.6	20.1	63.1	55.8
Human														
Human performance	Q, I	60.3	59.7	48.4	73.0	63.2	55.9	50.9	59.2	51.4	40.7	53.8	64.9	63.9

Table 2: Accuracy scores on the *testmini* subset of MATHVISTA. Input: Q: question, I: image, I_c : image caption, I_t : OCR text detected in the image. ALL: overall accuracy. Task types: FQA: figure question answering, GPS: geometry problem solving, MWP: math word problem, TQA: textbook question answering, VQA: visual question answering. Mathematical reasoning types: ALG: algebraic reasoning, ARI: arithmetic reasoning, GEO: geometry reasoning, LOG: logical reasoning, NUM: numeric commonsense, SCI: scientific reasoning, STA: statistical reasoning. The highest scores among models in each section and overall are highlighted in blue and red, respectively.

Strategies Enhancing Frozen LLMs

- **Preprocessing:** Replacing numerical expressions with English words
- Advanced Prompting:
 - Self-Consistency techniques
 - Code-based self-verification (especially for GPT-4 Code Interpreter)
- Using External Tools: Python REPL and symbolic solvers
- Interactive Frameworks: e.g., MathChat for simulated conversation
- Evaluation Beyond Accuracy: Incorporating confidence levels and verifiable explanations

LPML: LLM-Prompting Markup Language For Mathematical Reasoning

- One of the most essential challenges in employing LLMs for mathematical reasoning is the management of calculation and reasoning errors in LLMs' outputs
- External tools like Python REPL have been used to handle calculations, but integration with CoT is not seamless.
- Reasoning and computation are often treated as separate modules, leading to inconsistent results.

LPML: LLM-Prompting Markup Language For Mathematical Reasoning

- Introduces LPML, an XML-like markup language that structures outputs (using tags like <THINK>, <PYTHON>, <OUTPUT>) for better control and parsing.
- Creates an interactive loop where the LLM generates both CoT reasoning and executable Python code, with a system feeding back verified results.
- Enhances accuracy by having the LLM prioritize computed results over its own internal reasoning.

LPML: LLM-Prompting Markup Language For Mathematical Reasoning

(LPML definition and instructions to the LLM.) system <PROBLEM> Tom plants 10 trees a year. Every year he also chops down 2 trees a year. He starts with 50 trees. After 10 years 30% of the trees die. How many trees does he have left? #### 91 </PROBLEM> assistant <THINK> Let's break down the problem into steps: 1. Tom plants 10 trees a year. 2. Every year he also chops down 2 trees a year. 3. He starts with 50 trees. 4. After 10 years, he has (50 + 10*10 - 2*10) = 138 trees. 5. 30% of the trees die, so he is left with 0.7*138 = 96.6 trees. </THINK> <PYTHON> trees = 50for i in range(10): Python code. trees ± 10 The system runs the code and trees -= 2 feeds back results. final trees = int(trees * 0.7) print(final trees) </PYTHON> <OUTPUT>96.6</OUTPUT> Invalid outputs. Automatically removed. <ANSWER>96.6 trees.</ANSWER> <OUTPUT tool="PYTHON"> system 91 </OUTPUT> <ANSWER> assistant Tom has 91 trees left. </ANSWER>

Figure 1: An example of the reasoning process: *assistant* (LLM) outputs CoT and Python code, while the *system* (computer) provides feedback on the code's execution results. Since *assistant* may output invalid elements, *system* removes them.

MathChat: Converse To Tackle Challenging Math Problems With LLM Agents

- While LPML is effective, the rigid markup can limit flexibility and natural dialogue flow in complex reasoning tasks.
- We need a more dynamic, interactive framework that adapts to iterative problem solving.
- MathChat adopts a conversational, multi-turn dialogue model where an LLM agent collaborates with a user proxy agent instead of a predefined system, leveraging the chat-optimized feature of state-of-the-art LLMs
MathChat: Converse To Tackle Challenging Math Problems With LLM Agents

Let's use Python… Problem: Fake gold bricks are made by covering concrete cubes with gold paint, so the cost of the paint is proportional to their surface area while the cost of the concrete is proportional to their volume. If a 1 inch cube costs \$1.30 to make while a 2 inch cube costs \$6.80, then how much would a 3 inch cube cost?

we can write the cost equation as Agent	To continue solving the problem, we will first Agent	Let me correct Agent	···· I will correct the code Agen
follows:	solve the system of linear equations to find the	this and provide the	and provide the proper
$cost = k_1 * surface_area + k_2 * volume$	values of k_1 and k_2 . Then, we will calculate the	correct result.	result.
···We are given:	cost of a 3 inch cube using the cost equation.		
1 inch cube costs \$1.30	r	k1_value,	k_values =
surface area $1 = 6 * (1)^2$	import sympy as sp	k2_value =	<pre>sp.solve((eq1, eq2),</pre>
$volume \ 1 = (1)^3$	k1, k2 = sp.symbols('k1 k2',	<pre>sp.solve((eq1,</pre>	(k1, k2), dict=True)
13 - k * curface area $1 + k$ * polyme 1	positive=True)	eq2), (k1, k2),	k1_value =
$1.5 = \kappa_1$ surface_area_1 + κ_2 volume_1 2 inch cube costs \$6.80		dict=True)	k_values[0][k1]
2 Incir cube costs \$0.80	surface_area_2 = 6 * (2)**2		k2_value =
$surface_area_2 = 6 + (2)^2$	volume_2 = (2)**3	cost_3 =	k_values[0][k2]
$volume_2 = (2)^3$	eq2 = sp.Eq(6.8, k1 * surface_area_2 + k2	k1_value[k1] *	-
$6.8 = k_1^* surface_area_2 + k_2^* volume_2$	* volume_2)	surface_area_3 +	<pre>cost_3 = k1_value *</pre>
··· We will solve these equations to find	<pre>k1_value, k2_value = sp.solve((eq1, eq2),</pre>	k2_value[k2] *	surface_area_3 +
k1 and k2. Afterwards, we will find the	(k1, k2))	volume_3	k2_value *
cost of the 3 inch cube using the same	surface_area_3 = 6 * (3)**2		volume_3
cost equation.	volume_3 = (3)**3	Lat's power in the	-
$surface_area_3 = 6 * (3)^2$	<pre>cost_3 = k1_value* surface_area_3 +</pre>	corrected code to get	Let's rup the corrected
volume $3 = (3)^3$	k2_value * volume_3	the cost of a 2 inch	code to get the corrected
$cost 3 = k_1 * surface area 3 + k_2 * polyme 3$	1 ····································	une cost of a 5-men	2 inch subs
		[cube.]	S-Incri cube.
① Ask to contin	nue 7 (2) Return valid result	3 Return	error A Correct!
Continue Please keep sol	ving the		\neg
User problem until you pood to		ValueError: not enou	ligh
Agent and to the approver put it in	$54k_1 + 27k_2$	values to unpack	18.90
get to the answer, put it in	1.)	(expected 2, got 1)	JUJ

Solving Challenging Math Word Problems Using GPT-4 Code Interpreter With Code-Based Self-Verification

- GPT-4 Code Interpreter is a variant of GPT-4 that integrates natural language reasoning with the capability to generate and execute code.
- The model is able to evaluate the outcomes of code execution and automatically adjust reasoning steps of solutions when needed.
- However, despite these advantages, GPT4-Code falls short in assuring final solution correctness.

Solving Challenging Math Word Problems Using GPT-4 Code Interpreter With Code-Based Self-Verification

- Explicit Code-Based Self-Verification (CSV): This method explicitly prompts the model to generate additional code dedicated to verifying its final answer.
- Iterative Correction: If the verification code indicates that the answer is incorrect (returns "False"), the model is prompted to revise and re-verify its solution.

$$\mathbf{C} \rightarrow \mathbf{V} = \begin{cases} \text{True} & \rightarrow \text{ final answer} \\ \text{False} & \rightarrow \mathbf{C}_{\text{new}} \rightarrow \mathbf{V} \rightarrow \cdots \rightarrow \text{True} \rightarrow \text{ final answer} \\ \text{Uncertain} & \rightarrow \text{ final answer} \end{cases}$$

Solving Challenging Math Word Problems Using GPT-4 Code Interpreter With Code-Based Self-Verification

Ouestion (b) Example: w/ self verifications **Ouestion:** We can firstly change the inequality into $x > \sqrt[4]{100000000}$. What is the smallest positive integer solution Then let's evaluate the fourth root of 100.000.000. to $\left(\frac{100,000,000}{x^4}\right) < 1?$ code Answer: 101 import math root = math.pow(10000000, 1/4) smallest_integer = math.ceil(root) >>> (100.0, 100) (a) Example: w/o self verification Thus, the smallest positive integer x is 100. Let's verify this solution. Breaking this down into subproblems, the first step is to rearrange the inequality to isolate x. code We can do this by multiplying both sides of the inequality by x^4 and then taking the fourth root of both sides. verification = $1e8 / (smallest_integer ** 4) < 1$ >>> False This gives us $x > \sqrt[4]{100000000}$ Let's solve for x. The smallest integer x should be the next integer greater than 100, not 100 itself. code Let's calculate that next integer. import math code root = math.pow(10000000, 1/4) >>> 100 $smallest_integer = 100 + 1$ verification = $1e8 / (smallest_integer ** 4) < 1$ >>> (101, True) Since 100 is already a positive integer, the smallest positive integer Upon substituting x = 101 back, it holds true, which verifies our solution to the inequality $\frac{100,000,000}{4} < 1$ is x = 100. solution. The final answer is 100 The final answer is 101

Figure 3: Question from the 712th intermediate algebra problem in the MATH dataset. (a) Without self-verification, the model generates a wrong answer. (b) With self-verification, the model corrects the error and generates the correct answer. The CSV prompt: *To solve the problem using code interpreter step by step, and please verify your answer using code interpreter.*

Solving Challenging Math Word Problems Using GPT-4 Code Interpreter With Code-Based Self-Verification

 Verification-Guided Voting: Combines multiple solution paths by assigning different weights based on their verification outcomes

Solving Challenging Math Word Problems Using GPT-4 Code Interpreter With Code-Based Self-Verification

Table 1: Accuracy (%) on MATH dataset. **VW-voting** is the abbreviation for the verification-guided weighted majority voting. (**Overall:** The results across various MATH subtopics (Hendrycks et al., 2021))

	Code-based Verification	VW- Voting	Intermediate Algebra	Precalculus	Geometry _	Number Theory	Counting & Probability	PreAlgebra	Algebra	Overall MATH
GPT-4	×	×	040	-	-	-	(-)	2	-	42.20
GPT-3.5	×	×	14.6	16.8	22.3	33.4	29.7	53.8	49.1	34.12
GPT-4 (CoT)	×	×	23.4	26.7	36.5	49.6	53.1	71.6	70.8	50.36
GPT-4 (PHP)	×	×	26.3	29.8	41.9	55.7	56.3	73.8	74.3	53.90
GPT4-Code	×	×	50.1	51.5	53.4	77.2	70.6	86.3	83.6	69.69
GPT4-Code + CSV Improvement	✓	×	56.6 +6.5	53.9 +2.4	54.0 +0.6	85.6 +7.6	77.3 +6.7	86.5 +0.2	86.9 +3.3	73.54 +3.85
GPT4-Code + CSV + Voting Improvement	\checkmark	√ (k=16)	74.4 +24.3	67.8 +16.3	64.9 +11.5	94.1 +16.9	89.0 +18.4	91.6 +5.3	95.6 +12.0	84.32 +14.63

Fine-tuning LLMs

- Selecting In-Context Examples: e.g., PROMPTPG learns which examples work best
- Generating Intermediate Steps: "Scratchpad" approaches for step-by-step reasoning
- Answer Verifiers: Fine-tuning models to assess their own solutions (pseudo-dual learning)
- Enhanced Datasets & Knowledge Distillation:
 - Training on error-correction pairs
 - Teacher-student frameworks
- Solver Ensembles: Combining multiple approaches for robust performance

- **Generation:** First, a generator model (finetuned on the GSM8K dataset) is used to produce multiple candidate solutions for a given problem.
- Verification: A separate verifier model is then trained to assess the correctness of these candidate solutions. The verifier judges each solution (either at the full-solution level or at each token, with token-level predictions found to be more effective) based solely on whether the final answer is correct.

Figure 4: A diagram of the verification training pipeline.

Cobbe et al. (2021)

- The verifier is trained using a joint objective: it learns both to predict correctness (using a mean squared error loss on a scalar value for each token) and to perform language modeling.
- By sampling many solutions (typically 100 per problem) and labeling them as correct or incorrect, the verifier learns to rank candidate solutions reliably.

Figure 5: A comparison between finetuning and verification using 6B and 175B model sizes. Verification considers 100 solutions per problem. Mean and standard deviation is shown across 3 runs, except for 175B verification which shows only a single run.

Cobbe et al. (2021)

Challenges, Analysis, and Implications

Challenges, Analysis, and Implications

- **Robustness & Vulnerabilities:** While instruction-tuned LLMs (e.g., GPT-4) have enhanced sensitivity and can maintain robustness even against distractions, they still struggle with complex or adversarially modified math problems, highlighting inherent vulnerabilities.
- **Critical Influencing Factors:** Key elements such as tokenization strategies, pre-training content (including code and LATEX), prompt design, and model scale fundamentally determine LLMs' arithmetic and reasoning performance.
- Educational Implications: Beyond raw problem-solving, LLMs impact math education by providing detailed, conversational, and step-by-step solutions that foster critical thinking, yet they also risk misinterpreting student needs and overcomplicating explanations, which can hinder effective learning.

Conclusion

Conclusion & Future Directions

- **Comprehensive Overview:** The survey reviews the landscape of large language models in mathematical reasoning, covering various types of math problems, associated datasets, and inherent challenges in the domain.
- Advancements and Limitations: It highlights recent progress in LLMs—including their improved problem-solving capabilities and applications in educational contexts—while also noting the current limitations and vulnerabilities of these models.
- **Future Directions:** The authors advocate for a more human-centric approach in math education and call for continued research to address persistent challenges and expand the practical applications of LLMs in diverse mathematical settings.

DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Zeqiang Ning (avr7qy)

Introduction to DeepSeekMath

Background

LLMs have revolutionized mathematical reasoning, but current open-source models fall short compared to cutting-edge models like GPT-4 and Gemini-Ultra, but DeepSeekMath outperform open-source models in math capabilities

Contributions

- Math Pre-Training at Scale
 - DeepSeekMath Corpus: 120B tokens, 7x Minerva, 9x OpenWebMath.
 - DeepSeekMath-Base 7B: Performs comparably to Minerva540B, showing data quality is key.
 - Code Training: Improves math problem-solving, with or without tools.
 - arXiv Training: No significant improvement in math benchmarks.

Data Collection—DeepSeekMath

- Construct a large-scale mathematical corpus from Common Crawl
- Approach: Iterative pipeline starting with a seed corpus
- FastText Model

Validating the Data Quality

Math Corpus Comparison

DeepSeekMath	MathPile	OpenWebMath	Proof-Pile-2
120.2B	8.9B	13.6B	51.9B

Training Set

- Model: DeepSeekLLM 1.3B
- Training 150B tokens per corpus
- Optimizer: AdamW
- Batch size: 4M tokens

• Learning rate: Warm-up for 2,000 steps Decrease to 31.6% after 80% of training Further decrease to 10.0% after 90% of training

Evaluation of Corpus Results

			English	Bench	marks	Chinese Benchmarks			
Math Corpus	Size	GSM8K	MATH	OCW	SAT	MMLU STEM	CMATH	Gaokao MathCloze	Gaokao MathQA
No Math Training	N/A	2.9%	3.0%	2.9%	15.6%	19.5%	12.3%	0.8%	17.9%
MathPile	8.9B	2.7%	3.3%	2.2%	12.5%	15.7%	1.2%	0.0%	2.8%
OpenWebMath	13.6B	11.5%	8.9%	3.7%	31.3%	29.6%	16.8%	0.0%	14.2%
Proof-Pile-2	51.9B	14.3%	11.2%	3.7%	43.8%	29.2%	19.9%	5.1%	11.7%
DeepSeekMath Corpus	120.2B	23.8%	13.6%	4.8%	56.3%	33.1%	41.5%	5.9%	23.6%

-0----

Evaluation of Corpus Results

- High-quality: few-shot chain-of-thought prompting
- Multilingual: Chinese and English
- Large-scale

Training DeepSeekMath-Base

- Model: Initialized with DeepSeek-Coder-Base-v1.5 7B, trained on 500B tokens.
- Data Distribution
- Capabilities:
 - Problem-solving with tools
 - Formal theorem proving
 - Natural language understanding
 - Reasoning and programming skills

Evaluating on Mathematical Problem Solving

Model	Size		Englisł	n Bench	Chinese Benchmarks				
		GSM8K	MATH	OCW	SAT	MMLU STEM	CMATH	Gaokao MathCloze	Gaokao MathQA
2			Closed-	Source	Base M	odel			
Minerva	7B	16.2%	14.1%	7.7%		35.6%	-	2	11 2 1
Minerva	62B	52.4%	27.6%	12.0%	1	53.9%	-	2	8 1
Minerva	540B	58.8%	33.6%	17.6%	-	63.9%	-	2	-
2			Open-S	Source E	Base Mo	odel			
Mistral	7B	40.3%	14.3%	9.2%	71.9%	51.1%	44.9%	5.1%	23.4%
Llemma	7B	37.4%	18.1%	6.3%	59.4%	43.1%	43.4%	11.9%	23.6%
Llemma	34B	54.0%	25.3%	10.3%	71.9%	52.9%	56.1%	11.9%	26.2%
DeepSeekMath-Base	7B	64.2%	36.2%	15.4%	84.4%	56.5%	71.7%	20.3%	35.3%

Evaluating on Mathematical Problem Solving

Model	Size	Problem Solv	ing w/ Tools	Informal-to-Formal Proving		
	oize	GSM8K+Python	MATH+Python	miniF2F-valid	miniF2F-test	
Mistral	7B	48.5%	18.2%	18.9%	18.0%	
CodeLlama	7B	27.1%	17.2%	16.3%	17.6%	
CodeLlama	34B	52.7%	23.5%	18.5%	18.0%	
Llemma	7B	41.0%	18.6%	20.6%	22.1%	
Llemma	34B	64.6%	26.3%	21.0%	21.3%	
DeepSeekMath-Base	7B	66.9%	31.4%	25.8%	24.6%	

Evaluating on Natural Language

Model	Size	MMLU	BBH	HumanEval (Pass@1)	MBPP (Pass@1)
Mistral	7B	62.4%	55.7%	28.0%	41.4%
DeepSeek-Coder-Base-v1.5 [†]	7B	42.9%	42.9%	40.2%	52.6%
DeepSeek-Coder-Base-v1.5	7B	49.1%	55.2%	43.2%	60.4%
DeepSeekMath-Base	7B	54.9%	59.5%	40.9%	52.6%

DeepSeekMath-Base 7B significantly outperforms DeepSeek-Coder-Base-v1.5 on MMLU, BBH, and coding benchmarks (HumanEval and MBPP), and surpasses the general model Mistral 7B, demonstrating the positive impact of math training on language understanding, reasoning, and coding abilities.

Supervised Fine-Tuning

- Constructing a mathematical instruction-tuning dataset covering English and Chinese problems from different mathematical fields and of varying complexity levels.
- **DeepSeekMath-Instruct 7B** is a model that undergoes mathematical instruction tuning based on DeepSeekMath-Base and a mathematical instruction tuning dataset
 - evaluating on four quantitative reasoning benchmarks
 - Comparing with leading models.

Evaluating

- 1. In the evaluation where tool use is disallowed, DeepSeekMath-Instruct 7B surpasses all open-source models and most proprietary models (e.g., Inflection-2 and Gemini Pro) on the MATH dataset, but still underperforms GPT-4 and Gemini Ultra.
- 2. In the evaluation where tool use is allowed, DeepSeekMath-Instruct 7B achieves an accuracy of nearly 60% on MATH, surpassing all open-source models and competing with DeepSeek-LLM-Chat.

Model	Size	English B	lenchmarks	Chinese Benchmarks		
	onde	GSM8K	MATH	MGSM-zh	CMATH	
Cha	ain-of	f-Thought	Reasoning			
	Clos	ed-Source	Model			
Gemini Ultra	-	94.4%	53.2%	-	-	
GPT-4	-	92.0%	52.9%	-	86.0%	
Inflection-2	-	81.4%	34.8%	-	-	
GPT-3.5	2	80.8%	34.1%	-	73.8%	
Gemini Pro	3	86.5%	32.6%	-	-	
Grok-1	-	62.9%	23.9%	≂	. :	
Baichuan-3	-	88.2%	49.2%	-	-	
GLM-4	-	87.6%	47.9%	2	-	
	Ope	en-Source	Model			
InternLM2-Math	20B	82.6%	37.7%	-	-	
Owen	72B	78.9%	35.2%	-	-	
Math-Shepherd-Mistral	7B	84.1%	33.0%	-	-	
WizardMath-v1.1	7B	83.2%	33.0%	-	-	
DeepSeek-LLM-Chat	67B	84.1%	32.6%	74.0%	80.3%	
MetaMath	70B	82.3%	26.6%	66.4%	70.9%	
SeaLLM-v2	7B	78.2%	27.5%	64.8%	-	
ChatGLM3	6B	72.3%	25.7%	-	-	
WizardMath-v1.0	70B	81.6%	22.7%	64.8%	65.4%	
DeepSeekMath-Instruct	7B	82.9%	46.8%	73.2%	84.6%	
DeepSeekMath-RL	7B	88.2%	51.7%	79.6%	88.8%	
To	ol-In	tegrated I	Reasoning			
	Clos	ed-Source	Model			
GPT-4 Code Interpreter	-	97.0%	69.7%	-	-	
	Ope	en-Source	Model			
InternLM2-Math	20B	80.7%	54.3%	-	-	
DeepSeek-LLM-Chat	67B	86.7%	51.1%	76.4%	85.4%	
ToRA	34B	80.7%	50.8%	41.2%	53.4%	
MAmmoTH	70B	76.9%	41.8%	-	-	
DeepSeekMath-Instruct	7B	83.7%	57.4%	72.0%	84.3%	
DeepSeekMath-RL	7B	86.7%	58.8%	78.4%	87.6%	

Wenhao Xu (wx8mcm)

Reinforcement Learning

Reinforcement Learning Intro

- Purpose of RL Post-SFT
 - Enhance model reasoning abilities beyond supervised training limits.
- Reinforcement Learning Phases
 - Fine-tuning through iterative feedback and reward-based optimization.
- In-Domain vs. Out-of-Domain Tasks
 - RL improves performance on both familiar and new benchmarks.

From PPO to GRPO

- PPO uses actor-critic models, high resource usage.
- GRPO eliminates the critic model.
- Baseline estimated from group scores.
- Reduces training resources significantly.

GRPO Methodology

- Samples multiple outputs per question.
- Uses average reward as baseline.
- Regularizes with KL divergence between policy and reference models.

GRPO vs PPO

- Computational Efficiency
 - GRPO significantly reduces memory requirements compared to PPO.
- Performance Boosts
 - GRPO led to improvements from 46.8% to 51.7% on MATH benchmark.
- Unified Paradigm for RL Techniques
 - GRPO fits into a broader framework of reinforcement learning strategies like RFT and DPO.

Training Process

- Outcome Supervision RL
- Process Supervision RL
- Iterative RL

Evaluation

- Benchmarked against leading models (GPT-4, Gemini Ultra, etc.).
- Without Tool Use:
 - Surpasses all open-source models on MATH.
 - Outperforms many proprietary models.
- With Tool Use:
 - Approaches 60% accuracy on MATH.
 - Competitive with larger models like DeepSeek-LLM-Chat 67B.

Model	Size	English B	enchmarks	Chinese Benchmarks		
Woder	Size	GSM8K	MATH	Chinese Be MGSM-zh - - - - - - - - - - - - - - - - - -	CMATH	
	Clos	ed-Source	Model			
Gemini Ultra	-	94.4%	53.2%	-	-	
GPT-4	-	92.0%	52.9%	-	86.0%	
Inflection-2	-	81.4%	34.8%		-	
GPT-3.5	-	80.8%	34.1%	-	73.8%	
Gemini Pro	-	86.5%	32.6%	-	-	
Grok-1	-	62.9%	23.9%	-	-	
Baichuan-3	2	88.2%	49.2%	3 <u>12</u> 2	12	
GLM-4	2	87.6%	47.9%	12	12	
	Ope	en-Source	Model			
InternLM2-Math	20B	82.6%	37.7%	-	-	
Qwen	72B	78.9%	35.2%	-	-	
Math-Shepherd-Mistral	7B	84.1%	33.0%	-	-	
WizardMath-v1.1	7B	83.2%	33.0%	85 7 3	8 7 8	
DeepSeek-LLM-Chat	67B	84.1%	32.6%	74.0%	80.3%	
MetaMath	70B	82.3%	26.6%	66.4%	70.9%	
SeaLLM-v2	7B	78.2%	27.5%	64.8%	-	
ChatGLM3	6B	72.3%	25.7%	-	-	
WizardMath-v1.0	70B	81.6%	22.7%	64.8%	65.4%	
DeepSeekMath-Instruct	7B	82.9%	46.8%	73.2%	84.6%	
DeepSeekMath-RL	7B	88.2%	51.7%	79.6%	88.8%	
Tc	ool-In	tegrated I	Reasoning			
	Clos	ed-Source	Model			
GPT-4 Code Interpreter		97.0%	69.7%	-		
	Ope	en-Source	Model			
InternLM2-Math	20B	80.7%	54.3%	-	-	
DeepSeek-LLM-Chat	67B	86.7%	51.1%	76.4%	85.4%	
ToRA	34B	80.7%	50.8%	41.2%	53.4%	
MAmmoTH	70B	76.9%	41.8%	-	-	
DeepSeekMath-Instruct	7B	83.7%	57.4%	72.0%	84.3%	
DeepSeekMath-RL	7B	86.7%	58.8%	78.4%	87.6%	

Discussion

Pre-Training Insights

- Code Training Benefits:
- Enhances mathematical reasoning both with and without tool use.
- Mixed code/math training mitigates catastrophic forgetting.
- Two-stage training: Code followed by math training yields best results.

Impact of Code Training

- Code training boosts program-aided mathematical reasoning.
- Enhances efficiency of subsequent math training.
- Mixed training improves reasoning and coding performance.

Training Setting No Continual Training Stage 1: General Training Stage 2: Math Training	Training Tokens			w/o Tool Use			w/ Tool Use		
manning setting	General	Code	Math	GSM8K	MATH	CMATH	GSM8K+Python	MATH+Python	
No Continual Training	-	-	÷	2.9%	3.0%	12.3%	2.7%	2.3%	
			Two-	Stage Tra	ining				
Stage 1: General Training	400B	<u> </u>		2.9%	3.2%	14.8%	3.3%	2.3%	
Stage 2: Math Training	-	-	150B	19.1%	14.4%	37.2%	14.3%	6.7%	
Stage 1: Code Training		400B		5.9%	3.6%	19.9%	12.4%	10.0%	
Stage 2: Math Training	-	-	150B	21.9%	15.3%	39.7%	17.4%	9.4%	
			One-	Stage Tra	ining				
Math Training	_		150B	20.5%	13.1%	37.6%	11.4%	6.5%	
Code & Math Mixed Training	-	400B	150B	17.6%	12.1%	36.3%	19.7%	13.5%	

ArXiv Papers and Mathematical Reasoning

- Limited improvement from arXiv paper pre-training.
- No notable gains on GSM8K, MATH, and other benchmarks.
- Potential factors:
 - ArXiv content may not align with problem-solving tasks.
 - Impact may vary with model scale or specific tasks.

	1.172			English	Bench	marks	Chinese Benchmarks			
Model	Size	ArXiv Corpus	GSM8K	MATH	OCW	SAT	MMLU STEM	CMATH	ese Benchm Gaokao MathCloze 0.8% 0.0% 0.8% 5.9% 4.2% 7.6%	Gaokao MathQA
		No Math Training	2.9%	3.0%	2.9%	15.6%	19.5%	12.3%	0.8%	17.9%
DeepSeek-LLM	1.3B	MathPile	2.7%	3.3%	2.2%	12.5%	15.7%	1.2%	0.0%	2.8%
		ArXiv-RedPajama	3.3%	3.4%	4.0%	9.4%	9.0%	Chinese Benchma J Gaokao CMATH Gaokao MathCloze 12.3% 0.8% 1.2% 0.0% 1.2% 0.0% 7.4% 0.8% 45.9% 5.9% 37.9% 4.2% 42.6% 7.6% 7.6%	2.3%	
	Carlins Pr	No Math Training	29.0%	12.5%	6.6%	40.6%	38.1%	45.9%	5.9%	21.1%
DeepSeek-LLM 1.3 DeepSeek-Coder-Base-v1.5 7E	7B	MathPile	23.6%	11.5%	7.0%	46.9%	35.8%	37.9%	4.2%	25.6%
		ArXiv-RedPajama	28.1%	11.1%	7.7%	50.0%	35.2%	42.6%	7.6%	24.8%

Conclusion, Future Work

Conclusion

- DeepSeekMath significantly outperforms all open-source models on competition-level MATH benchmarks.
- Approaches the performance of leading closed-source models like GPT-4 and Gemini-Ultra.
- Key Findings:
 - Public web data can serve as a high-quality resource for mathematical reasoning.
 - Code training prior to math training enhances reasoning capabilities.
 - Group Relative Policy Optimization (GRPO) improves reasoning with optimized memory usage.

Limitations

- DeepSeekMath underperforms in geometry and formal theorem proving compared to closed-source models.
- Struggles with problems involving specific geometric shapes like triangles and ellipses.
- Model scale limitations hinder few-shot learning capabilities.
- Reliance on publicly available data may introduce quality and coverage gaps

Future Work

- Enhancing RL Techniques
 - Further refining GRPO and exploring hybrid RL approaches for better performance.
- Expanding Multilingual Datasets
 - Incorporate more languages to broaden model applicability in global benchmarks.
- Combining Code and Math Training
 - Explore deeper integration of code and math data to enhance both reasoning and computational skills.

Questions?

Thank you!