
CONTEXT
CONSTRUCTION
VIA
RAG AND AGENT

Team 6
Fengyu Gao, Shunqiang Feng, Wei Shen, Zihan Zhao

3 PAPERS
• ReAct Framework:

ReAct: Synergizing Reasoning and Acting in Language Models

• Google Vertex AI White Paper on Agents

https://www.kaggle.com/whitepaper-agents

• Survey on RAG

Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG

2

https://www.kaggle.com/whitepaper-agents

ReAct: Synergizing
Reasoning and Acting
in Language Models

Zihan Zhao (rxy6cc)

4

ReAct = Reason + Act

5

DeepSeek is reasoning about a grade school math problem

A robot is doing a series of actions: squat, roll, jump, etc.

BUT, actions must be in the text form for now

An Example

Q: Aside from the Apple Remote, what

other device can control the program

Apple Remote was originally designed

to interact with?

6

Thought-Action-Observation Loop

7

Question

(Thought)

ActionObservation

𝜋 𝑎𝑡 𝑐𝑡 ,
𝑐𝑡 = (𝑜1, 𝑎1, ⋯ , 𝑜𝑡−1, 𝑎𝑡−1, 𝑜𝑡)

• Time 𝑡
• Action 𝑎

• Context 𝑐
• Observation 𝑜

𝜋(ෝ𝑎𝑡|𝑐𝑡)

• Augmented action ො𝑎 includes
“thoughts”

ReAct Trajectory

Results

8

• ReAct → CoT-SC when ReAct fails to return

an answer within given steps

• CoT-SC → ReAct when the majority answer

among n CoT-SC samples occurs less than

n/2 times

• Not confident to do the task with internal

knowledge

Results (Limitations)

9

How is ReAct “learned”?

10

• Randomly select a couple of cases from

HotpotQA and Fever datasets

• 6 cases from HotpotQA

• 3 cases from Fever

• Manually compose ReAct-format trajectories

to use as few-shot exemplars

ReAct is … ReAct is NOT …

• A prompting method

• A few-short learning technique

• Based on Chain-of-Thought (CoT)

• Intuitive

• Easy to use

• Flexible

11

• Just CoT

• A replacement for RL

• Free from error propagation

White Paper – Agents

What is an Agent?

• A Generative AI agent is an application that attempts to achieve a goal by observing the world and

acting upon it using tools that it has at its disposal.

o Autonomous

o Independent

o Proactive

o General

13

Cognitive Architecture

Cognitive Architecture

• Model: One or more language models

• Tools: Bridge to connect to the external world

• Orchestration: Action planning

14

A Comparison

• Agents have

o Extended knowledge

o Both long-term and short-term memory

o Natively supported tools

o Thinking

15

Agent Workflow

16

Shunqiang Feng (mpp7ez)

17

18

Tools: keys to the outside world

Model

Training
Data

Outside
World

? Regardless of how much data we throw at
a model, it still lacks the fundamental
ability to interact with the outside world,
which means, the model lacks the ability
to directly perceive and influence the
real world.

19

Google Vertex AI Agent Tools:
keys to the outside world

Model

Training
Data

Outside
World

• Tools are what create a link between our foundational models and the outside world

❖ Tools

• Tools enable the agent to perform a wider variety of tasks in 4 ways

Agent

Tools

adjust smart home settings

update calendars

send emails

…

1. Extensions

2. Functions

3. Data Stores

4. Plugins

20

Google Vertex AI Tool1. Extensions
Bridging Agents & APIs

• What are Extensions?

▪ Standardized connectors between Agents & APIs

▪ Enable seamless API execution without custom code

• Why use Extensions?

Think about this scenario: in a flight booking use case, a user might state “I want to book a flight from Austin
to China.”

Without Extensions:

• Requires custom code for extracting flight details.

• Fails if key info (e.g., departure city) is missing.

• Hard to scale across different API providers.

With Extensions:

• Automates API interactions without extra
coding.

• Handles missing information intelligently.

• Scalable for different airlines & travel services.

21

Agent Extension API

[1] “The get_flights method can be used to get the latest…”
[2] ”When the user wants to search for flights, call get_flights…”
[3] ”Input args for get_flights are arg1, arg2, …”

• How Extensions Work?

1. Teach the agent how to use
APIs with examples.

2. Define necessary
parameters for successful
API calls.

• Dynamic Selection of Extensions

✓ Independent & Configurable

Extensions are crafted separately but included in the agent’s setup.

✓ Smart Selection at Runtime

The agent analyzes user queries and picks the best-fit Extension.

✓ Built-in Example Types

Enables dynamic adaptation, improving flexibility & accuracy.

Tool1. Extensions
Bridging Agents & APIs

22

Agent

Reasoning Loop

Model

To
o

ls

Fights Extension

Maps Extension

Weather Extension

Flights API

Maps API

Weather API

Figure: 1-to-many relationship between Agents, Extensions & APIS

• How Agents Select the Right Extension

Just like a developer picks the right API, an agent selects the best Extension for a query.

• Examples:

 Flight Booking? → Uses Google Flights API

 Find a Coffee Shop? → Uses Google Maps API

• Try it in Gemini

Go to Settings > Extensions, enable Google Flights, and ask:
"Show me flights from Austin to China next Friday."

Tool1. Extensions
Bridging Agents & APIs

23

Google Vertex AI Tool2. Functions
Client-side API execution

• Starting with Software Engineering

• Like in Software Engineering, functions are defined as self-contained modules of code that
accomplish a specific task and can be reused as needed.

• In the world of agents, instead of the software developer, functions are created by a
language model.

• Difference from Extensions

• Model outputs a function & arguments but does not make live API calls.

• Client-side execution, not agent-side.

UI/Middleware Agent Extension
Google Flights

API

UI/Middleware Agent Function
Google Flights

API

24

• Functions are needed when:

• API calls need to happen outside the agent’s
architecture (e.g., middleware, frontend).

• Security restrictions prevent direct agent API
calls.

• Timing constraints require delayed or batch
processing …

Figure: A sample usage of Function

• Key Points of Function Calling

• Function calling gives developers greater
control over API execution and overall data flow.

• The developer decides the best approach
based on the specific application needs. For
example, the developer may choose not to
return API response data to the agent since it
was irrelevant to future actions.

Tool2. Functions
Client-side API execution

25

Google Vertex AI Tool3. Data Store
Dynamic knowledge storage

• Why we need Data Store in LLM

• The model doesn’t acquire new information after training

• However, Real-world knowledge evolves constantly

• As a result, the model's knowledge becomes outdated

• Data Store: providing access to dynamic, up-to-date information

• Data Stores allow developers to add data in its original format without retraining the model.

• The data is converted into vector embeddings, which the agent uses to improve its responses.

Agent Data Store

Private Docs

Websites

(Un)Structured Data

26

• Retrieval Augmented Generation (RAG)

• One of the most prolific examples of Data Store usage with language models in recent times
has been the implementation of RAG based applications.

• These applications seek to extend the breadth and depth of a model’s knowledge beyond
the foundational training data by giving the model access to data in various formats like:

• Website content

• Structured Data in formats like PDF, Word Docs, CSV, Spreadsheets, etc.

• Unstructured Data in formats like HTML, PDF, TXT, etc.

Agent

Reasoning Loop

Model

To
o

ls

unstructured_data_store

website_data_store

structured_data_store

Onboarding PDFs

https://shunqiang.site

Financial Spreadsheet

Figure: 1-to-many relationship between Agents and data stores

Tool3. Data Store
Dynamic knowledge storage

27

• Retrieval Augmented Generation (RAG)

Agent

Vector
Database

Retrieved
Content

User Query Embeddings

Response

1

2

4

3

5

Figure: The lifecycle of a RAG based application

1. A user query is sent to an embedding model to
generate embeddings for the query

2. The query embeddings are then matched against the
contents of the vector database using a matching
algorithm like SCaNN

3. The matched content is retrieved from the vector
database in text format and sent back to the agent

4. The agent receives both the user query and retrieved
content, then formulates a response or action

5. A final response is sent to the user

Tool3. Data Store
Dynamic knowledge storage

28

• Retrieval Augmented Generation (RAG)

“What’s our
parental leave

policy?”

Google’s leave policy is covered here

Figure: Sample RAG based application w/ ReAct reasoning/planning

Tool3. Data Store
Dynamic knowledge storage

29

Google Vertex AI Agent Tools Recap

Extensions Functions Data Stores

Execution Agent-Side Client-Side Agent-Side

Use Case

o Agent manages API
calls.

o Uses built-in tools
(e.g., Vertex Search).

o Supports multi-step
API actions.

o API blocked by
security/auth.

o Timing/order
constraints (e.g., batch
jobs).

o API not internet-
accessible.

o Supports RAG.

o Uses website data.

o Handles structured files (PDF,
Word, CSV).

o (Non-) Relational Databases

o Reads unstructured text (HTML,
TXT).

30

Targeted learning
❑ Approaches to enhance model’s performance in specific task.

1. In-Context Learning [Example: ReAct framework]

Uses prompts, tools, and few-shot examples at inference time & Learns 'on the fly' how to use tools for specific
tasks.

 Analogy: A chef receives a recipe, key ingredients, and sample dishes, then figures out the dish in real-time.

2. Retrieval-Based In-Context Learning [Example: RAG-based architectures]

Dynamically retrieves relevant information from external memory & Enhances model by pulling in real-time
knowledge.

 Analogy: A chef selects ingredients and cookbooks from a stocked pantry to refine a dish.

3. Fine-Tuning Based Learning [Best for: Domain-specific knowledge enhancement]

Trains the model with a larger dataset before inference & Helps the model understand tool usage before receiving
queries.

 Analogy: A chef attends culinary school to master a cuisine before serving customers.

❑ Optimized Performance via Hybrid Approach

By integrating these approaches, we enhance model adaptability, ensuring efficient and scalable AI performance.

31

Vertex AI Simplifies Agent Creation

Highlights:

• Simplified Development: Vertex AI
integrates agents with tools for UI,
evaluation, and continuous improvement.

• Natural Language Interface: Developers
can define agent goals, tasks, tools, and
sub-agents quickly.

• Development Tools: Includes testing,
evaluation, debugging, and performance
measurement tools.

• Production-Ready Architecture: Built
using features like Vertex Agent Builder and
Vertex Extensions.

32

Summary of Google Agents Whitepaper
1. Agent Capabilities

• Extend language models with real-time tools and complex task execution.

2. Orchestration Layer

• Structures reasoning, planning, and decision-making using techniques like ReAct and Chain-of-
Thought.

3. External Tools

• Extensions: Bridge agents to external APIs, enabling real-time data access.

• Functions: Parameter generation for client-side API execution.

• Data Stores: Access structured/unstructured data for data-driven applications.

4. Future of Agents

• Increasing reasoning capabilities & Agent Chaining empower agents to solve complex problems.

• Building complex agent architectures requires iterative experimentation and refinement.

Agentic Retrieval-Augmented
Generation: A Survey on
Agentic RAG

Fengyu Gao (wan6jj)

34

Retrieval-Augmented Generation (RAG)

Overview: RAG systems combine the capabilities of LLMs with retrieval mechanisms to generate

contextually relevant and accurate responses.

35

Retrieval-Augmented Generation (RAG)

Overview: RAG systems combine the capabilities of LLMs with retrieval mechanisms to generate

contextually relevant and accurate responses.

Core Components:

1. Retrieval: Query external sources using advanced search techniques.

2. Augmentation: Extract and summarize the most relevant information to align with query context.

3. Generation: Combine retrieved data with LLM knowledge for coherent responses.

36

Example of traditional RAG

37

Limitations: contextual integration, multi-step reasoning, and scalability and latency issues.

Agentic RAG

Overview: Agentic Intelligence enables RAG to handle complex reasoning tasks, adapt to dynamic

environments, and collaborate effectively.

Agentic Patterns:

1. Reflection

2. Planning

3. Tool Use

4. Multi-Agent Collaboration

38

1. Reflection

Definition: Agents evaluate their own decisions and outputs,

identifying errors and areas for improvement.

Benefits:

• Enables iterative refinement of results.

• Enhances accuracy in multi-step reasoning tasks.

Example: In a medical diagnostic system, agents refine

diagnoses based on iterative feedback from retrieved data.

39

2. Planning

Definition: Agents create structured workflows and task

sequences to solve problems efficiently.

Benefits:

• Facilitates multi-step reasoning by breaking down tasks.

• Reduces computational overhead through optimized task

prioritization.

Example: A financial analysis system retrieves relevant market

data, analyzes risks step by step, and then generates

recommendations.

40

3. Tool Use

Definition: Agents interact with external tools, APIs, and

knowledge bases to retrieve and process data.

Benefits:

• Expands the system's capabilities beyond pre-trained
knowledge.

• Enables domain-specific applications by integrating external
resources.

Example: A legal assistant agent retrieves clauses from contract

databases and applies domain-specific rules for compliance

analysis.

41

4. Multi-Agent Collaboration

Definition: Multiple agents collaborate to divide and conquer

complex tasks, sharing information and results.

Benefits:

• Handles large-scale and distributed problems efficiently.

• Combines specialized agent capabilities for better outcomes.

Example: In customer support, agents collaborate to retrieve

knowledge from FAQs, generate responses, and provide follow-

ups.

42

Agentic Workflow Patterns

43

Overview: Agentic workflow patterns help structure LLM-based applications to optimize performance,

accuracy, and efficiency. Different approaches are suitable depending on task complexity and processing

requirements.

Approaches:

1. Prompt Chaining: Enhancing Accuracy Through Sequential Processing

2. Routing: Directing Inputs to Specialized Processes

3. Parallelization: Speeding Up Processing Through Concurrent Execution

4. Orchestrator-Workers: Dynamic Task Delegation

5. Evaluator-Optimizer: Refining Output Through Iteration

1. Prompt Chaining

44

Definition: Prompt chaining decomposes a complex task into multiple steps, where each step builds
upon the previous one. This approach improves accuracy by simplifying each subtask before moving
forward, but may increase latency due to sequential processing.

When to Use: A task can be broken down into fixed subtasks, each contributing to the final output,

e.g., step-by-step reasoning.

Example: Structuring document creation by first generating an outline, verifying its completeness,

and then developing the full text.

2. Routing

45

Definition: Routing classifies inputs and directs them to specialized prompts or processes, ensuring
distinct tasks are handled separately for better efficiency and response quality.

When to Use: Different types of input require distinct handling strategies, ensuring optimized

performance for each category.

Example: Assigning simple queries to smaller models for cost efficiency, while complex requests go

to advanced models.

3. Parallelization

46

Definition: Parallelization divides a task into independent processes that run simultaneously, reducing
latency and improving throughput. It can be categorized into sectioning (independent subtasks) and
voting (multiple outputs for accuracy).

When to Use: Useful when tasks can be executed independently to enhance speed or when multiple

outputs improve confidence.

Example:

Sectioning: Splitting tasks like content moderation, where one model screens input while another
generates a response.

Voting: Using multiple models to cross-check code for vulnerabilities or analyze content moderation
decisions.

4. Orchestrator-Workers

47

Definition: This workflow features a central orchestrator model that dynamically breaks tasks into
subtasks, assigns them to specialized worker models, and compiles the results. Unlike parallelization,
it adapts to varying input complexity.

When to Use: Best suited for tasks requiring dynamic decomposition and real-time adaptation,

where subtasks are not predefined.

Example: Automatically modifying multiple files in a codebase based on the nature of requested

changes.

5. Evaluator-Optimizer

48

Definition: The evaluator-optimizer workflow iteratively improves content by generating an initial
output and refining it based on feedback from an evaluation model.

When to Use: Effective when iterative refinement significantly enhances response quality, especially

when clear evaluation criteria exist.

Example: Improving literary translations through multiple evaluation and refinement cycles.

Wei Shen (zyy5hb)

49

Agenda

50

• Taxonomy of Agentic RAG Systems
• Applications of Agentic RAG

RAG(retrieval-augmented generation)

51

Taxonomy of Agentic RAG Systems

52

1. Single-Agent RAG

2. Multi-Agent RAG

3. Hierarchical Agentic RAG

4. Corrective Agentic RAG

5. Adaptive Agentic RAG

6. Graph-Based Agentic RAG

Single-Agent RAG

54

Key Idea: A single autonomous agent manages the retrieval and generation process.

Workflow:

• Query is submitted to the agent.

• The agent retrieves relevant data from external
sources.

• Data is processed and synthesized into a response.

Advantages:

• Simple architecture for basic use cases.

• Easy to implement and maintain.

Limitations:

• Limited scalability.

• Ineffective for multi-step reasoning or large datasets.

Multi-Agent RAG

55

Workflow:

• Agents dynamically divide tasks (e.g., retrieval,
reasoning, synthesis).

• Each agent specializes in a specific sub-task.

• Results are aggregated and synthesized into a
coherent output.

Advantages:

• Better performance for distributed, multi-step
tasks.

• Increased modularity and scalability.

Limitations:

• Coordination complexity increases with the
number of agents.

• Risk of redundancy or conflicts between agents.

Key Idea: A team of agents collaborates to perform complex retrieval and reasoning tasks.

Hierarchical Agentic RAG

56

Key Idea: Organizes agents in a hierarchy for better task prioritization and delegation.

Workflow:

• A top-level agent orchestrates subtasks among lower-
level agents.

• Each lower-level agent handles a specific part of the
process.

• Results are iteratively refined and integrated at higher
levels.

Advantages:

• Scalable for large and complex tasks.

• Modular design facilitates specialization.

Limitations:

• Requires sophisticated orchestration mechanisms.

• Potential bottlenecks at higher levels of the hierarchy.

Corrective Agentic RAG

57

Key Idea: Feedback loops enable agents to evaluate and refine their outputs iteratively.

Workflow:

• Initial response is generated by the agent.

• A critic module evaluates the response for
errors or inconsistencies.

• The agent refines the response based on
feedback.

• Steps 2-3 repeat until the output meets quality
standards.

Advantages:

• High accuracy and reliability through iterative improvements.

• Useful for error-prone or high-stakes tasks.

Limitations:

• Increased computational overhead.

• Feedback mechanisms must be well-designed to avoid infinite
loops.

Adaptive Agentic RAG

58

Key Idea: Dynamically adjusts retrieval strategies and workflows based on task requirements.

Workflow:

• For straightforward queries, the system avoids
unnecessary retrieval, directly leveraging the
LLM for response generation.

• For simple queries, it employs a single-step
retrieval process to fetch relevant context.

• For complex queries, it activates multi-step
retrieval to ensure iterative refinement and
enhanced reasoning.

Advantages:

• High flexibility for varied tasks and dynamic environments.

• Improves context relevance and user satisfaction.

Limitations:

• Challenging to design robust adaptation mechanisms.

• Computational overhead for real-time adjustments.

Graph-Based Agentic RAG

60

Key Idea: Dynamically assigns tasks to specialized agents using graph knowledge bases and feedback
loops.

Workflow:

• Extract relationships from graph knowledge
bases (e.g., disease-to-symptom mappings).

• Complement with unstructured data from
external sources.

• Use a critic module to validate results and
iteratively improve.

Advantages:

• Combines structured (graph) and
unstructured (text) data.

• Modular and scalable for complex tasks.

• Ensures high accuracy through iterative
refinement.

Agenda

65

• Taxonomy of Agentic RAG Systems
• Applications of Agentic RAG

Applications of Agentic RAG

66

1. Customer Support and Virtual Assistants

2. Healthcare and Personalized Medicine

3. Legal and Contract Analysis

4. Finance and Risk Analysis

5. Education and Personalized Learning

6. Graph-Enhanced Applications in Multimodal Workflows

Customer Support and Virtual Assistants

67

Problem: Providing contextually relevant and dynamic responses to customer queries.

Use Case: Twitch Ad Sales Enhancement

For instance, Twitch leveraged an agentic workflow with RAG on Amazon Bedrock to streamline ad sales.

The system dynamically retrieved advertiser data, historical campaign performance, and audience

demographics to generate detailed ad proposals, significantly boosting operational efficiency.

Key Benefits:

• Improved Response Quality: Personalized and context-aware replies enhance user engagement.

• Operational Efficiency: Reduces the workload on human support agents by automating complex
queries.

• Real-Time Adaptability: Dynamically integrates evolving data, such as live service outages or pricing
updates.

Healthcare and Personalized Medicine

68

Problem: Rapid retrieval and synthesis of medical knowledge for diagnostics, treatment planning, and
research.

Use Case: Patient Case Summary

Agentic RAG systems have been applied in generating patient case summaries. For example, by
integrating electronic health records (EHR) and up-to-date medical literature, the system generates
comprehensive summaries for clinicians to make faster and more informed decisions.

Key Benefits:

• Personalized Care: Tailors recommendations to individual patient needs.

• Time Efficiency: Streamlines the retrieval of relevant research, saving valuable time for healthcare
providers.

• Accuracy: Ensures recommendations are based on the latest evidence and patient-specific
parameters.

Legal and Contract Analysis

69

Problem: Analyzing complex legal documents and extracting actionable insights.

Use Case: Contract Review

A legal agentic RAG system can analyze contracts, extract critical clauses, and identify potential risks. By
combining semantic search capabilities with legal knowledge graphs, it automates the tedious process
of contract review, ensuring compliance and mitigating risks.

Key Benefits:

• Risk Identification: Automatically flags clauses that deviate from standard terms.

• Efficiency: Reduces the time spent on contract review processes.

• Scalability: Handles large volumes of contracts simultaneously.

Finance and Risk Analysis

70

Problem: Analyzing large-scale financial datasets and identifying trends, risks, and opportunities.

Use Case: Auto Insurance Claims Processing

In auto insurance, Agentic RAG can automate claim processing. For example, by retrieving policy details
and combining them with accident data, it generates claim recommendations while ensuring
compliance with regulatory requirements.

Key Benefits:

• Real-Time Analytics: Delivers insights based on live market data.

• Risk Mitigation: Identifies potential risks using predictive analysis and multi-step reasoning.

• Enhanced Decision-Making: Combines historical and live data for comprehensive strategies.

Education and Personalized Learning

71

Problem: Delivering personalized and adaptive learning experiences for diverse learners.

Use Case: Research Paper Generation

In higher education, Agentic RAG has been used to assist researchers by synthesizing key findings from
multiple sources. For instance, a researcher querying, “What are the latest advancements in quantum
computing?” receives a concise summary enriched with references, enhancing the quality and efficiency
of their work.

Key Benefits:

• Tailored Learning Paths: Adapts content to individual student needs and performance levels.

• Engaging Interactions: Provides interactive explanations and personalized feedback.

• Scalability: Supports large-scale deployments for diverse educational environments.

Graph-Enhanced Applications in
Multimodal Workflows

72

Problem: Tackling tasks requiring relational understanding and multi-modal data integration.

Use Case: Market Survey Generation

GEAR enables the synthesis of text, images, and videos for marketing campaigns. For example,
querying, “What are the emerging trends in eco-friendly products?” generates a detailed report
enriched with customer preferences, competitor analysis, and multimedia content.

Key Benefits:

• Multi-Modal Capabilities: Integrates text, image, and video data for comprehensive outputs.

• Enhanced Creativity: Generates innovative ideas and solutions for marketing and entertainment.

• Dynamic Adaptability: Adapts to evolving market trends and customer needs.

Thank you!

	Slide 1: Context construction via RAG and Agent
	Slide 2: 3 Papers
	Slide 3: ReAct: Synergizing Reasoning and Acting in Language Models
	Slide 4: Zihan Zhao (rxy6cc)
	Slide 5: React = Reason + Act
	Slide 6: An Example
	Slide 7: Thought-Action-Observation Loop
	Slide 8: Results
	Slide 9: Results (Limitations)
	Slide 10: How is ReAct “learned”?
	Slide 11: ReAct is … ReAct is NOT …
	Slide 12: White Paper – Agents
	Slide 13: What is an Agent?
	Slide 14: Cognitive Architecture
	Slide 15: A Comparison
	Slide 16: Agent Workflow
	Slide 17: Shunqiang Feng (mpp7ez)
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG
	Slide 34: Fengyu Gao (wan6jj)
	Slide 35: Retrieval-Augmented Generation (RAG)
	Slide 36: Retrieval-Augmented Generation (RAG)
	Slide 37: Example of traditional RAG
	Slide 38: Agentic RAG
	Slide 39: 1. Reflection
	Slide 40: 2. Planning
	Slide 41: 3. Tool Use
	Slide 42: 4. Multi-Agent Collaboration
	Slide 43: Agentic Workflow Patterns
	Slide 44: Prompt Chaining
	Slide 45: 2. Routing
	Slide 46: 3. Parallelization
	Slide 47: 4. Orchestrator-Workers
	Slide 48: 5. Evaluator-Optimizer
	Slide 49: Wei Shen (zyy5hb)
	Slide 50: Agenda
	Slide 51: RAG(retrieval-augmented generation)
	Slide 52: Taxonomy of Agentic RAG Systems
	Slide 54: Single-Agent RAG
	Slide 55: Multi-Agent RAG
	Slide 56: Hierarchical Agentic RAG
	Slide 57: Corrective Agentic RAG
	Slide 58: Adaptive Agentic RAG
	Slide 60: Graph-Based Agentic RAG
	Slide 65: Agenda
	Slide 66: Applications of Agentic RAG
	Slide 67: Customer Support and Virtual Assistants
	Slide 68: Healthcare and Personalized Medicine
	Slide 69: Legal and Contract Analysis
	Slide 70: Finance and Risk Analysis
	Slide 71: Education and Personalized Learning
	Slide 72: Graph-Enhanced Applications in Multimodal Workflows
	Slide 73: Thank you!

