
Mastering AI Agents

Presented by:
Aditya Kakkar (zjq5mr), Aryan Sawhney (ryd2fx), Yagnik Panguluri (yye7pm),
Nina Chinnam (fhs9af), Anisha Patrikar (gjq2yf), Mihika Rao (xsw5kn)

1

Aditya Kakkar (zjq5mr)

2

Presentation Outline

❖ Introduction

❖ Background & Motivation

❖ What are AI agents?

❖ Types of AI Agents & Use Cases

3

Presentation Outline

❖ Introduction

❖ Background & Motivation

❖ What are AI agents?

❖ Use Cases & Types of Agents

4

Chapter 1 - What are AI Agents?

5

Introduction

Mastering AI Agents: From Theory to
Real-World Implementation

Background

Motivation

● Companies have quickly adapted,
adopted, and integrated AI agents into
their workflows.

● Capgemini’s research found that over
50% of companies plan to use AI
Agents in 2025 and 82% plan to
integrate them within the next three
years.

What are AI Agents?

How do we use LLMs to
accomplish end-to-end tasks?

● AI agents take LLMs to the next
level by adding decision-making and
action-taking capabilities—like
making API calls.

● Think of an LLM as the brain that
understands and generates text,
while an AI agent is the body that
takes action based on that
intelligence.

When should I use an AI Agent?

They’re incredibly useful for tasks that demand complex
decision-making, autonomy, and adaptability, especially
helpful in dynamic environments where the workflow
involves multiple steps or interactions that
could benefit from automation.

Salesforce estimates that salespersons
spend 71% of their time on non-selling
tasks (like
administrative tasks and manually
entering data).

Use Cases

Use Cases(code)

Types of AI Agents

Fixed Automation Agent

LLM-Enhanced – Smarter, but Not Exactly Einstein

“Press 1 for English, Press 2 for Spanish,
Press 3 for Billing…” – that’s a basic
rule-based IVR (Interactive Voice Response)
system.

“I need help with my bill” → classified as a billing
inquiry
“My internet is down” → classified as a technical issue

ReAct - Reasoning Meets Action

ReAct + RAG – Grounded Intelligence

Tool-Enhanced – The Multi-Taskers

Self-Reflecting – The Philosophers

Memory-Enhanced – The Personalized Powerhouses

Environment Controllers – The World Shapers

Aryan Sawhney (ryd2fx)

22

Self-Learning – The Evolutionaries

When to Use Agents?

● AI Agents excel at tasks that
require:

○ Complex decision-making
○ Autonomy
○ Adaptability

● AI Agents excel at environments
where workflow is dynamic and
involves multiple steps or
interactions

When Not to Use Agents?

● Tasks are too simple or infrequent
○ Minimal automation needed; traditional

software is more efficient
○ Complexity and cost of AI agents may

not be justified

● Requires deep domain expertise
○ Legal analysis, medical diagnosis, and

high-stakes decision-making are better
handled by professionals

○ Sole reliance on AI can lead to
suboptimal or harmful outcomes

● Human emotion and creativity are essential
○ Fields like psychotherapy, counseling,

and creative writing require a human
touch

○ AI lacks the depth to fully understand
emotions and creativity

● High implementation costs
○ Small businesses and

budget-constrained projects may find AI
agents too expensive

○ Development and maintenance costs
may outweigh benefits

● Regulatory and compliance challenges
○ Highly regulated industries impose strict

security and legal constraints
○ Ensuring AI agents meet compliance

standards is resource-intensive

10 Questions to Ask Before You Consider an AI Agent

3 Interesting Real-World Use Cases of AI Agents

Wiley and Agentforce

Oracle Health and Clinical AI agent

Magid and Galileo

Nina Chinnam (fhs9af)

31

Chapter 2 - Frameworks for Building AI Agents

32

Presentation Outline

❖ Importance of AI Agent Frameworks

❖ Overview of Frameworks

❖ Deep Dive of 3 Frameworks

❖ Feature Comparison

33

Why do we need AI agent frameworks?

● State Management
● Tool Integrations
● Multi-Agent Coordination

Three AI Agent Frameworks

High Level Comparison of Frameworks

Feature LangGraph Autogen CrewAI

Execution Model DAG-based execution Conversational AI
Modeling

Role-based multi
agent system

Best For Structured,
DAG-based workflows

Chat-driven AI
applications

Teams of agents
working together

Memory Handling Long-term, short-term,
entity

Moderate,
Conversation-based
tracking

Shared-multi agent
memory

Tool Support Deep LangChain
integration

Code execution,
function calls

Customizable tools &
LangChain support

Scalability Highly scalable Scales well for
chat-bot like systems

Scales for teams &
delegation

LangGraph Overview

DAG-based execution flow

Structured, deterministic
task execution

Core Features
Data processing pipelines

Automated research workflows

Ideal Use Cases

AI-driven decision making systems

Example: Automating Research Pipelines

Workflow

LangGraph’s DAG Approach

Autogen Overview

Enables AI agents to interact
via conversations
Ideal for AI assistants and
chat-driven workflows

Core Features
Conversational AI for customer
support

AI Research Assistants

Ideal Use Cases

Collaborative Q&A Systems
Function calling and code
execution

Example: AI Coding Assistant

Give me a Python
function to compute
Fibonacci Sequence Code Generator

Agent

Debugger Agent

Optimizer Agent● Iterative improvements through
conversation

● Code execution & debugging are
built-in

● Agents engage in dynamic
problem-solving

Key Autogen Features

CrewAI Overview

Multiple AI agents work
together with assigned roles
Structured Teamwork

Core Features

AI-powered research teams

Automated content generation

Ideal Use Cases

Decision-making systemsAgents can be assigned
hierarchical roles

Example: AI-Based Newsroom Workflow

Specific Workflow Roles

CrewAI Implementation

Feature Comparison

Multi-Agent Support CrewAI

Ease of Use Autogen

Memory Handling LangGraph & CrewAI

Scalability All

Customization All

Tool Support LangGraph & CrewAI

Choosing the Right Framework

Structured
execution and
task control

LangGraph

AI agents to
reason via
conversations

Multiple AI
agents working
in roles

Autogen CrewAI

Mihika Rao (xsw5kn)

45

Chapter 3 - How to Evaluate Agents

46

Presentation Outline

❖ Why Evaluate AI Agents?

❖ Case Study

❖ AI plan execution

❖ Galileo Callback

47

Why Evaluate AI Agents?

48

● Tasks are performed correctly and
reliably

● Ensure accurate, relevant, and
efficient responses

Case Study: Building a Financial Research Agent

49

● Approach:
○ Break down research into smaller steps
○ Search for external data (Tavily)
○ Analyze findings with ReAct (Reasoning + Action)

Understanding State Management in AI Agents

50

● How agent keeps track of its progress while solving a task.
● (action, result_action)
● Store input and response
● Benefits:

○ Avoids redundant work
○ Helps agent replan efficiently
○ Helps track progress to final answer

Creating the Plan

51

Re-planning - Adjusting the Agent’s Strategy

52

● Original question
● Initial Plan
● Completed Steps

Executing the Plan

53

State Graph

54

Galileo Callback - Debugging and Optimizing

55

Galileo Callback - Example

56

● Problem: AI agent has context adherence
issues

● Trace view shows 33.33% context
adherence score

● System explanation: AI correctly cited some
recent figures (Q3 2024, Q4 2023), earlier
figures lacked explicit supporting evidence

Anisha Patrikar (gjq2yf)

57

Chapter 4 - Metrics for Evaluating AI Agents

58

Presentation Outline

❖ Key Performance Dimensions

❖ 5 Case Studies

❖ Common Challenges in AI Evaluation

❖ Best Practices for AI Optimization

59

Key Performance Dimensions

60

Case Study 1: Advancing the Claims Processing Agent

61

AI deployed for automating claims processing

❌ Struggled with complex claims

❌ Increased compliance risks due to errors in
complex cases

Challenges & Solutions
1. LLM Call Error Rate
2. Task Completion Rate
3. Human Intervention Requests
4. Token Usage per Interaction

Outcomes
• Faster claims processing
• Higher compliance accuracy
• Improved resource utilization
• Reduced rejection rates

Case Study 2: Optimizing the Tax Audit Agent

62

AI deployed for tax document processing

❌ Lengthy turnaround times for complex audits

❌ High computing costs from inefficient processing

❌ A backlog of partially completed audits requiring manual
review

Challenges & Solutions

1. Tool Success Rate
2. Context Window Utilization
3. Steps per Task

Outcomes

• Faster audit completion
• Enhanced discrepancy detection
• Optimized processing efficiency

Case Study 3: Elevating the Stock Analysis Agent

63

AI deployed for investment analysis

❌ Redundant analysis requests
❌ Inconsistent reporting formats
❌ Failed to adjust analysis to market conditions

Challenges & Solutions
1. Total Task Completion Time
2. Output Format Success Rate
3. Token Usage per Interaction

Outcomes

• More precise market analysis

• Faster processing times

• Optimized resource utilization

Case Study 4: Upgrading the Coding Agent

64

AI deployed to enhance developer productivity

❌ Frequent disruptions during sprint deadlines
❌ Struggled with large codebases, providing irrelevant
suggestions
❌ Rising infrastructure costs due to inefficient resource usage

Challenges & Solutions
1. LLM Call Error Rate
2. Task Success Rate
3. Cost per Task Completion

Outcomes

• More accurate code analysis

• Improved suggestion relevance

• Optimized resource utilization

Case Study 5: Enhancing the Lead Scoring Agent

65

AI deployed to enhance lead qualification efficiency

❌ Misclassification of prospects led to declining conversion rates
❌ Sales reps pursued low-quality leads due to inaccurate scoring
❌ Increased costs per qualified lead, impacting growth targets

Challenges & Solutions
1. Token Usage per Interaction
2. Latency per Tool Call
3. Tool Selection Accuracy

Outcomes

• Faster prospect analysis

• Higher lead qualification accuracy

• Optimized resource utilization

Common Challenges in AI Evaluation

66

Identifying
model

weaknesses

Improving
real-time

adaptation

Ensuring
consistency

across test runs

Best Practices for AI Agent Optimization

67

Adaptive
Evaluation
Methods

Strategic
Performance
Adjustments

Continuous
Monitoring

Yagnik Panguluri (yye7pm)

68

Chapter 5 - Why Most AI Agents Fail and How To Fix Them

69

AI Agents are becoming widely used in industries like finance, healthcare, and customer support. Despite
their potential, many fail due to poor design, lack of adaptability, and high operation costs.

Why Do AI Agents Fail?

70

● Key failure points in AI agent development
● Evaluation and debugging challenges
● Performance, cost, and ethical concerns
● Practical solutions to improve AI agent reliability

Development Issues

71

Poorly Defined Task or
Persona

Evaluation Issues

A well-defined task or persona is essential for effectively operating your AI agents. Without it, agents
may struggle to make appropriate decisions, leading to suboptimal performance.

Development Issues - Poor Persona

72

Define Clear Objectives Craft Detailed Personas Prompting

You should specify the
goals, constraints, and
expected outcomes for

each agent.

Develop personas that
outline the agents role,

responsibilities, and
behavior for you

Use research-backed
prompting techniques to
reduce hallucinations for

your agents

Evaluation helps you identify weaknesses and ensures your agents operate reliably in dynamic
environments. Unlike traditional software, agents operate in dynamic environments which make it
difficult to establish clear metrics for success

Development Issues - Evaluation Issues

73

Continuous Evaluation Use Real-World Scenarios Feedback Loops

Implement an ongoing
evaluation system to
assess your agents

performance and identify
areas for improvement

Test your agents in
real-world scenarios to

understand their
performance in dynamic

environments

Incorporate feedback loops
to allow for continuous
improvement based on

performance data

LLM Issues

74

Difficult to Steer High Cost of
Running

Planning Failures Reasoning Failures Tool Calling
Failures

You can steer LLMs towards specific tasks or goals for consistent and reliable performance. LLMs are
influenced by vast amounts of training data which can lead to unpredictable behavior, and fine-tuning
them for specific tasks require expertise and compute

LLM Issues - Difficult to Steer

75

Specialized Prompts - Use specialized
prompts to guide the LLM toward specific
tasks

Hierarchical Design - Implement a
hierarchical design where specialized agents
handle specific tasks, reducing the
complexity of steering a single agent

Fine-Tuning - Continuously fine-tune the
LLM based on task-specific data to improve
performance

LLM Issues - High Cost of Running

76

Running LLMs, especially in production environments can be prohibitively expensive. This makes it
difficult for organizations to scale their agent deployments cost-effectively.

Reduce Context - Introduce mechanisms to
use as low context as possible to reduce the
tokens

Use Smaller Models - Where possible, use
smaller models or distill larger models to
reduce costs

Cloud Solutions - Use cloud-based
solutions to manage and scale
computational resources efficiently

LLM Issues - Planning Failures

77

Planning enables agents to anticipate future states, make informed decisions, and execute tasks in a
structured manner. However, LLMs often struggle with planning, as it requires strong reasoning
abilities.

Task Decomposition - Break down tasks
into smaller, manageable subtasks

Multi-Plan Selection - Generate multiple
plan and select the most appropriate one
based on the context

Reflection and Refinement - Continuously
refine plans based on new information and
feedback, and scale computational
resources efficiently

LLM Issues - Reasoning Failures

78

Reasoning is a fundamental capability that enables agents to make decisions, solve problems, and
understand complex environments. LLMs lacking strong reasoning skills may struggle with tasks that
require multi-step logic or nuanced judgement.

Enhance Reasoning Capabilities - Use
prompting techniques like Reflexion to
enhance the reasoning capabilities

Finetune LLM - Establish training with data
generated with a human in the loop

Use Specialized Agents - Develop
specialized agents that focus on specific
reasoning tasks to improve overall
performance

LLM Issues - Tool Calling Failures

79

Robust tool calling mechanisms ensure agents can perform complex tasks by leveraging various tools
accurately and efficiently. Tool calling failures can occur due to incorrect parameter passing,
misinterpretation of tool outputs, or failures in integrating tool results into the agent’s workflow.

Define Clear Parameters Validate Tool Outputs Tool Selection Verification

Ensure that tools have
well-defined parameters
and usage guidelines for

you

Implement validation
checks to ensure that tool
outputs are accurate and

relevant

Use a verification layer to
check if the tool selected is

correct for the job

Production Issues

80

Guardrails Agent Scaling Fault Tolerance Infinite Looping

Production Issues - Guardrails

81

Guardrails help ensure that agents adhere to safety protocols and regulatory requirements. Guardrails
define the operational limits within which agents can function.

Rule-Based Filters &
Validation

Human-in-the-Loop
Oversight

Ethical & Compliance
Frameworks

● Use predefined rules to
filter offensive, harmful, or
inappropriate content.

● Before processing, inputs
received by the agent must
be validated to meet
criteria

● Allow humans to provide
feedback on the agent’s
performance and outputs

● Establish protocols for
escalating complex or
sensitive tasks to human
operators

● Establish ethical guidelines
that outline the principles
and values the agent must
adhere to

● Implement compliance
checks to ensure the
agents actions align with
regulation

Production Issues - Agent Scaling

82

Scaling agents to handle increased workloads or more complex tasks is a significant challenge. As the
number of agents or the complexity of interactions grows, the system must efficiently manage
resources, maintain performance, and ensure reliability.

Scalable Architectures - Implement a
microservice architecture where each agent
or group of agents operates as an
independent service

Resource Management - Integrate load
balancers to distribute incoming requests
evenly across multiple agents

Monitor Performance - Implement real-time
monitoring tools to track each agent’s
performance

Production Issues - Fault Tolerance

83

AII agents need to be fault-tolerant to ensure that they can recover from eros and continue operating
effectively. Without robust fault tolerance mechanisms, agents may fail to handle unexpected
situations, leading to system crashes or degraded performance.

Redundancy - Deploy multiple instances of
AI agents running in parallel

Automated Recovery - Incorporate
intelligent retry mechanisms that
automatically attempt to recover from
transient errors

Stateful Recovery - Ensure the AI agents
can recover their state after a failure

Production Issues - Infinite Looping

84

Looping mechanisms are essential for agents to perform iterative tasks and refine their actions based
on feedback. Agents can sometimes get stuck in loops, repeatedly performing the same actions
without progressing toward their goals.

Clear Termination Conditions - Implement
clear criteria for success and mechanisms to
break out of loops

Enhance Reasoning and Planning -
Improve the agents reasoning and planning
capabilities to prevent infinite looping

Monitor Agent Behavior - Monitor agent
behavior and adjust to prevent looping
issues

● Better task structuring and decomposition
● Continuous evaluation and monitoring
● Resource optimization and caching
● Security and compliance frameworks

Key Takeaways

85

Paper Reference

86

Questions?

87

