@i UniversiTy,Vireinia. [

Mastering AI Agents

Presented by:
Aditya Kakkar (zjg5mr), Aryan Sawhney (ryd2fx), Yagnik Panguluri (yye7pm),
Nina Chinnam (ths9af), Anisha Patrikar (gjq2yf), Mihika Rao (xsw5kn)

@i UniversiTyVireNia. [

Aditya Kakkar (zjqSmr)

Presentation Outline

% Introduction
% Background & Motivation
% What are Al agents?

% Types of Al Agents & Use Cases

Presentation Outline

% Introduction
« Background & Motivation
% What are Al agents?

% Use Cases & Types of Agents

@i UniversiTyy VireNa. [

Chapter 1 - What are AI Agents?

Introduction

Mastering Al Agents: From Theory to
Real-World Implementation

Background

LLM Agent

Framework

e Companies have quickly adapted,
adopted, and integrated Al agents into
their workflows.

e (Capgemini’s research found that over
50% of companies plan to use Al
Agents in 2025 and 82% plan to
integrate them within the next three
years.

What are AI Agents?

How do we use LLMs to
accomplish end-to-end tasks?

e Al agents take LLMs to the next
level by adding decision-making and
action-taking capabilities—like
making API calls.

e Think of an LLM as the brain that
understands and generates text,
while an Al agent is the body that
takes action based on that

intelligence.

When should I use an AI Agent?

= ot Agem They’re incredibly useful for tasks that demand complex
e il : MYl ” : decision-making, autonomy, and adaptability, especially
Pyl wote LO?ES:) ———| LLM |[«—| Memory helpful in dynamic environments where the workflow
€| mstcrsem o "";;_“‘f* ; involves multiple steps or interactions that
e enecite = wine| WONDE) 4 could benefit from automation.
. € Action —| '

Salesforce estimates that salespersons
Sa|e5f orce spend 71% of their time on non-selling
tasks (like

administrative tasks and manually
entering data).

Use Cases

1. Customer Interaction
A customer messages your service asking, “When will my order ship?”

2. Data Retrieval
The Al agent accesses the order management system to find the specific order details.

3. Response Generation

Based on the data retrieved, the agent automatically provides an updates to the customer,
such as sending “Your order will ship tomorrow and you’ll receive a tracking link via email
once it’s on its way.”

Eval Environment

Use Cases(code)

Actions

Repository

G

1

Conversation

Switch to Backup User
Write <file> <content>
Al Agent

Run test

Error <failure log>

E
[OpenAl GPT-4
—>

Retrieval signature

Content result

Write <file> <fix>

Run test

Success

Types of AI Agents

seme stihe = Key eheracteristies

Fixed Automation: The
Digital Assembly Line

LLM-Enhanced:
Smarter, but Not
Einstein

ReAct: Reasoning
Meets Action

ReAct + RAG:
Grounded Intelligence

Tool-Enhanced: The
Multi-Taskers

Self-Reflecting: The
Philosophers

Memory-Enhanced:
The Personalized
Powerhouses

Environment
Controllers: The World
Shapers

Self-Learning: The
Evolutionaries

No intelligence, predictable

behavior, limited scope

Context-aware, rule-
constrained, stateless

Multi-step workflows,
dynamic planning, basic
problem-solving

External knowledge

access, low hallucinations,

real-time data

Multi-tool integration,
dynamic execution, high
automation

Meta-cognition,
explainability, self-
improvement

Long-term memory,
personalization, adaptive
learning

Active environment control,

autonomous operation,
feedback-driven

Autonomous learning,
adaptive/scalable,
evolutionary behavior

RPA, email
autoresponders, basic
scripts

Email filters, content
moderation, support
ticket routing

Travel planners, Al
dungeon masters,
project planning tools

Legal research tools,
medical assistants,
technical support

Code generation tools,
data analysis bots

Self-evaluating systems,
QA agents

Project management Al,
personalized assistants

AutoGPT, adaptive
robotics, smart cities

Neural networks, swarm
Al, financial prediction
models

Repetitive tasks,
structured data, no need
for adaptability

Flexible tasks, high-
volume/low-stakes, cost-
sensitive scenarios

Strategic planning, multi-
stage queries, dynamic
adjustments

High-stakes decisions,
domain-specific tasks,
real-time knowledge
needs

Complex workflows
requiring multiple tools
and APls

Tasks requiring
accountability and
improvement

Individualized
experiences, long-term
interactions

System control, loT
integration, autonomous
operations

Cutting-edge research,
autonomous learning
systems

Fixed Automation Agent

Intelligence No learning, adaptation, or memory.
Behavior Predictable and consistent, follows pre-defined rules.
Scope Limited to repetitive, well-defined tasks. Struggles with unexpected scenarios.
Best Use Cases Routine tasks, structured data, situations with minimal need for adaptability.
AUTORESPONDER
” N
Fixed Automation Agent Er—
SUBMIT
: Predefined Execute Send QOutput /
Input Trigge

Rule Action Result

LLM-Enhanced — Smarter, but Not Exactly Einstein

Intelligence

Behavior

Scope

Best Use Cases

Context-aware; leverages LLMSs to process ambiguous inputs with contextual
reasoning.

Rule-constrained; decisions are validated against predefined rules or thresholds.

Stateless; no long-term memory; each task ils processed independently.

Tasks requiring flexibility with ambiguous inputs, high-volume/low-stakes
scenarios, and cost-sensitive situations where “close enough” is sufficient.

LLM-Enhanced Agent

[Input Data

LLM Rule-based Output /
(contextual analysis) Constraint Action

®

@J Telephone @

Support "-
Live Chat & .
Social

@ — media

L2
Email
0]

"8
=0
-
Digital Customer SO';%'CO
‘% Service

———r
Virtual

assistants @ ,@,

. Chat Bot
Video Chat

“Press 1 for English, Press 2 for Spanish,
Press 3 for Billing...” — that’s a basic
rule-based IVR (Interactive Voice Response)
system.

“I need help with my bill” — classified as a billing
inquiry
“My internet is down” — classified as a technical issue

Intelligence

Behavior
Scope

Best Use Cases

Input Trigge

ReAct - Reasoning Meets Action

Reasoning and action; mimics human problem-solving by thinking through a
problem and executing the next step.

Handles multi-step workflows, breaking them down into smaller, actionable parts.
Dynamically adjusts strategy based on new data.

Assists with basic open-ended problem-solving, even without a direct solution path.

Strategic planning, multi-stage queries, tasks requiring dynamic adjustments, and
re-strategizing.

T ——
Reasoning
 C—
repeat until desired outcome achieved O“‘P“t 4
Action
¢ §
Action Phase

N —

ReAct + RAG — Grounded Intelligence

Employs a RAG workflow, combining LLMs with external knowledge sources

HIEN Kiee (databases, APls, documentation) for enhanced context and accuracy.
- Uses ReAct-style reasoning to break down tasks, dynamically retrieving information
Behavior : . 5 :
as needed. Grounded in real-time or domain-specific knowledge.
Scope Designed for scenarios requiring high accuracy and relevance, minimizing

hallucinations.

High-stakes decision-making, domain-specific applications, tasks with dynamic

besl e Cones knowledge needs (e.q., real-time updates).

ReAct + RAG Agent

Reasoning .
Input Query }—) repeat until desired outcome achieved = O:égg;/ perplex Ity

Knowledge
Retrieval

Action Phase e

Tool-Enhanced — The Multi-Taskers

Leverages APls, databases, and software tools to perform tasks, acting as a multi-

IS e tool integrator.

Hckavior Handles multi-step workflows, dynamically switching between tools based on task
requirements.

Scope Automates repetitive or multi-stage processes by integrating and utilizing diverse

tools.

Jobs requiring diverse tools and APls in tandem for complex or multi-stage

Best Use Cases ;
automation.

Tool Enhanced Agent

Reasoning
] P
H ‘o]®
[Input Query J—) repeat until desired outcome achieved 5. [Output/ J @ Glt Ub et

Action

Tool Execution <_

Tool Selection J

Self-Reflecting — The Philosophers

Exhibits meta-cognition, evaluating its own thought processes and decision

Intelligence
outcomes.

Bohdior Provides explanations for actions, offering transparency into its reasoning. Learns
from mistakes and improves performance over time.

Scope Suited for tasks requiring accountability and continuous improvement.

Quality assurance, sensitive decision-making where explainability and self-

Best Use Cases : g
improvement are crucial.

3 2
Execution
7]
(+)
When ()
. desired Output / :
Input Query Reasoning outcome 7 Action ks A for Software Developers
achived \ J

T

Feedback Loop

Memory-Enhanced — The Personalized Powerhouses

Possesses long-term memory, storing and recalling past interactions, preferences,
and task progress.

Intelligence

Behavior

Scope

Best Use Cases

Provides context-aware personalization, adapting decisions and actions based on
user-specific data and history. Learns and improves over time.

Excels at tasks requiring individualized experiences, tailored recommendations, and
maintaining consistency across multiple interactions.

Personalized assistance, long-term interactions, tasks spanning multiple sessions.

Reasoning Action /
Phase Execution
H&M Virtual
" " Shopping
emory emory .
Input:Guery Recall Update Oulipre Assistant

Updates Long-term Memory

[masterof.code

Environment Controllers — The World Shapers

Autonomous learning; refines models and processes based on feedback, data, or

RSt environmental changes without manual updates.

Betavior Adaptive and scalable, adjusting to changing conditions and new tasks. Exhibits
evolutionary behavior, improving performance over time.

Scope Suited for cutting-edge research and autonomous learning systems, offering high

potential but requiring careful monitoring.

Situations where autonomous learning and adaptation are crucial, such as complex

Best Use Cases . . s ¢
research, simulation, or dynamic environments.

Environment Control Loop

\E lterate until goal met
Perception Feedback
IBpuESeny Phase Action Phase

Phase

‘ Reasoning ;
Phase Goal achieved
Qutput +
Changed State

@i UniversiTyVireNia. [

Aryan Sawhney (ryd2£x)

22

Self-Learning — The Evolutionaries

m

Intelligence

Behavior

Scope

Best Use Cases

Examples

Autonomous learning; refines models and processes based on feedback, data, or
environmental changes without manual updates.

Adaptive and scalable, adjusting to changing conditions and new tasks. Exhibits
evolutionary behavior, improving performance over time.

Suited for cutting-edge research and autonomous learning systems, offering high
potential but requiring careful monitoring.

Situations where autonomous learning and adaptation are crucial, such as complex
research, simulation, or dynamic environments.

Environment Control Loop

Neural networks with evolutionary capabilities, swarm Al systems, autonomous)
. 4 ; et Action Phase
robotics, financial prediction models. _l

Feedback
Phase

Reasoning
Phas

F

Learning Evolution Soluti

olution Read
IRpt Gty Phase Phase \L y
NEURAL NET-B ARTIFICIAL INTELLIGENCE L Continuous lteration Output +

Evolved Agent

Fig 1.10: Workflow of a self-learning agent

When to Use Agents?

Al Agents excel at tasks that
require:
o Complex decision-making
o Autonomy
o Adaptability

Al Agents excel at environments
where workflow is dynamic and
involves multiple steps or
interactions

Customer Support

Research and Data
Analysis

Financial Trading

Education

Software
Development

Handling queries, providing
real-time assistance, issue
escalation

Gathering, processing, and
analyzing data

Real-time data processing

Personalized learning
experiences

Code generation, debugging,
and testing

Agents enhance the efficiency and customer
experience by offering timely and accurate
responses, allowing human staff to focus on more
complex issues.

They autonomously provide deep insights from
large datasets, helping you understand patterns
without manual effort.

Agents excel in making quick decisions based on
rapidly-changing market conditions.

These agents adapt to each student’s learning
pace, offering tailored feedback and supporting
unique learning journeys effectively.

Agents streamline the development process by
handling repetitive tasks like coding and testing,
improving code quality, and reducing development
time. They also learn and improve over time, which
continually enhances their assistance.

Table 1.11: Domains and applications that can benefit from the use of Al agents

When Not to Use Agents?

High implementation costs

e Tasks are too simple or infrequent

(@)

Minimal automation needed; traditional
software is more efficient

Complexity and cost of Al agents may
not be justified

e Requires deep domain expertise

(@)

Legal analysis, medical diagnosis, and
high-stakes decision-making are better
handled by professionals

Sole reliance on Al can lead to
suboptimal or harmful outcomes

e Human emotion and creativity are essential

(@)

Fields like psychotherapy, counseling,
and creative writing require a human
touch

Al lacks the depth to fully understand
emotions and creativity

(@)

Small businesses and
budget-constrained projects may find Al
agents too expensive

Development and maintenance costs
may outweigh benefits

Regulatory and compliance challenges

(@)

Highly regulated industries impose strict
security and legal constraints

Ensuring Al agents meet compliance
standards is resource-intensive

10 Questions to Ask Before You Consider an AI Agent

What is the complexity
of the task?

02 How often does the
task occur?
What is the
03 expected volume of
data or queries?
Does the task require
adaptability?
o 5 Can the task benefit

from learning and
evolving over time?

What level of accuracy
is required?

Is human expertise or
o ’ emotional intelligence

essential?

What are the
privacy and security
implications?

What are the regulatory
and compliance
requirements?

What is the cost-
benefit analysis?

3 Interesting Real-World Use Cases of AI Agents

Agentforce

,l i
L

LT

gl

Magid empowers its
clients with Galileo

St. John’s
Physicians
Benefit from
Oracle Health
Clinical Al Agent

Wiley and Agentforce

Company: Al Agent: Use Case:

Wiley Agentforce by Salesforce Customer service automation
Problem: Need:

Wiley faced challenges handling The company needed an
spikes in service calls during peak efficient customer service
times, particularly at the start of new system to manage the
semesters when thousands of students increased volume and maintain
use Wiley’s educational resources. positive customer experiences.
Solution:

ROI:

A 40%+ increase in case
resolution compared to
their previous chatbot, a
213% ROI, and $230K
in savings

Wiley invested in Salesforce’s Agentforce, an Al agent
designed to enhance customer service operations.
This integration has significantly improved case
resolution rates and faster resolution of customer
queries, especially during peak times, such as the
start of new semesters when demand spikes.

Oracle Health and Clinical AI agent

Company:
Oracle Health

Al Agent:
Clinical Al Agen

Problem:

Healthcare providers faced
documentation and time
management challenges during
patient visits, leading to burnout
and reduced patient engagement.

Solution:

Oracle Health developed its

Clinical Al Agent, which automates
documentation processes and
enhances patient-provider interactions
through a multimodal voice user
interface. This allows providers to
access patient information quickly and
generate accurate notes efficiently.

Use Case:
Enhancing patient-
provider interactions

Need:

There was a need for a solution that
could streamline clinical workflows
and improve documentation
accuracy while allowing providers
more time to interact with patients.

ROI:

AtlantiCare, using the Clinical Al
Agent, reported a 41% reduction
in total documentation time,
saving approximately 66 minutes
per day, which translates to
improved productivity and
enhanced patient satisfaction.

Magid and Galileo

Company: Al Agent:

Magid RAG-based system
powered with real-time
observability capabilities

Problem:

Magid, a leader in consumer intelligence
for media brands, needed to ensure
consistent, high-quality content in a fast-
paced news environment. The complexity
of diverse topics made it challenging

to uphold accuracy, and errors could

potentially lead to significant repercussions.

Solution:

Magid integrated Galileo’s real-time
observability capabilities into their
product ecosystem. This integration
provided production monitoring,
relevant metrics for tracking tone
and accuracy, and customization
options tailored to Magid’s needs.

Use Case:
Empowering newsrooms
with generative Al technology

Need:

A robust observability system
was essential for monitoring Al-
driven workflows and ensuring
the quality of outputs across
various clients. This scalability
was crucial for managing the daily
production of numerous stories.

ROI:

With Galileo, Magid achieved 100%
visibility over inputs and outputs,
enabling customized offerings

as they scale. This visibility helps
identify trends and develop client-
specific metrics, enhancing the
accuracy of news delivery.

@i UniversiTyVireNia. [

Nina Chinnam (ths9af)

31

@i UniversiTyy VireNa. [

Chapter 2 - Frameworks for Building AI Agents

32

Presentation Outline

% Importance of Al Agent Frameworks
% Overview of Frameworks
% Deep Dive of 3 Frameworks

% Feature Comparison

33

Why do we need Al agent frameworks?

T N
o I 1)
s i : S | e

U j ‘ = ‘ I ||

g1 5 1 e . 121} e State Management

Sl om | e B o - T - cI Tool Int ti

:'; ! m;mlrn_m'vum-r | ‘ > < @ @ : v L L OO n eg ra |OnS

£ | B8 TS iall e Multi-Agent Coordination
i yput embeddings ‘ reaéomng “ plannin% i 3 l i
Nt s o o /

Interaction
o —————
Z
&

2
i3
i
)

3
2
{!',

2
5
=
=2
(]

2
e ——

LangGraph

High Level Comparison of Frameworks

Feature

Execution Model

Best For

Memory Handling

Tool Support

Scalability

LangGraph

DAG-based execution

Structured,
DAG-based workflows

Long-term, short-term,
entity

Deep LangChain
integration

Highly scalable

Autogen

Conversational Al
Modeling

Chat-driven Al
applications

Moderate,
Conversation-based
tracking

Code execution,
function calls

Scales well for
chat-bot like systems

CrewAl

Role-based multi
agent system

Teams of agents

working together

Shared-multi agent
memory

Customizable tools &
LangChain support

Scales for teams &
delegation

LangGraph

ooy
Core Features @ Ideal Use Cases

Data processing pipelines

DAG-based execution flow

Structured, deterministic Automated research workflows

task execution Al-driven decision making systems

Example: Automating Research Pipelines

Workflow

User inputs a research Al retrieves papers from

Al extracts insights from Al combines findings into

each source a final structured report

topic multiple sources

LangGraph’s DAG Approach

query_input = graph.add_node("User Inputs Topic") .add_edge(query_input, fetch_arxiv)
.add_edge(query_input, fetch_ieee)

fetch_arxiv = graph.add_node("Fetch P -add_edge(query_input, fetch_google)

fetch_ieee = graph.add_node("Fetch Pa
Scholar") .add_edge(fetch_arxiv, analyze_arxiv)

.add_edge(fetch_ieee, analyze_ieee)
.add_edge(fetch_google, analyze_google)

analyze_arxiv = graph.add_node("Ar
analyze_ieee = graph.add_node("Anal

analyze_google = graph.add_node("Ana e Google Scholar Papers") . . .
yze_0000 arep - S .add_edge(analyze_arxiv, aggregate_findings)

.add_edge(analyze_ieee, aggregate_findings)
aggregate_findings = graph.add_node("Aggregate Insights & Generate Report") .add_edge(analyze_google, aggregate_findings)

Autogen Overview

= Q3]
Core Features @ Ideal Use Cases

Conversational Al for customer

Enables Al agents to interact

via conversations support
Ideal for Al assistants and Al Research Assistants
chat-driven workflows Collaborative Q&A Systems

Function calling and code
execution

Example: AI Coding Assistant

Give me a Python
function to compute

g Fibonacci Sequence Code Generator
Agent

[

Optimizer Agent

Debugger Agent

Key Autogen Features

e |terative improvements through
conversation

e Code execution & debugging are
built-in

e Agents engage in dynamic
problem-solving

CrewAl Overview

O]
Core Features @ Ideal Use Cases

Multiple Al agents work Al-powered research teams
together with assigned roles

Structured Teamwork Automated content generation

Agents can be assigned Decision-making systems

hierarchical roles

Example: AI-Based Newsroom Worktlow

Specific Workflow Roles

Fact-Checking
Agent: Ensures
accuracy before
publishing

Research Agent: Writing Agent: Editing Agent:
Gathers news Generates draft Fixes grammair,
stories articles refines the draft

CrewAl Implementation

from crewai import Agent, Task, Crew

writing_agent
editing_agent
fact_checker = Agent(role="Fact-Checker", goal="Verify information accuracy")

gather_news = Task(name="Find breaking news", agent=research_agent)
write_news = Task(name="W
edit_article = Task(name=

newsroom_crew = Crew(tasks=[gather_news, write_news, edit_article, verify_infol)
newsroom_crew.kickoff()

Feature Comparison

Ease of Use Autogen

Multi-Agent Support CrewAl

Tool Support LangGraph & CrewAl
Memory Handling LangGraph & CrewAl
Scalability All

Customization All

Choosing the Right Framework

Multiple Al
agents working
in roles

Al agents to
reason via
conversations

Structured
execution and
task control

LangGraph

@i UniversiTyVireNia. [

Mihika Rao (xsw5kn)

45

@i UniversiTyy VireNa. [

Chapter 3 - How to Evaluate Agents

46

Presentation Outline

K/
L X4

Why Evaluate Al Agents?
Case Study

/7
%

K/
%

Al plan execution
Galileo Callback

7
**

47

Why Evaluate AI Agents?

e Tasks are performed correctly and
reliably

e Ensure accurate, relevant, and
efficient responses

48

Case Study: Building a Financial Research Agent

e Approach:
o Break down research into smaller steps
o Search for external data (Tavily)
o Analyze findings with ReAct (Reasoning + Action)

from langchain_openai import ChatOpenAl
from langchain_community.tools.tavily_search import TavilySearchResults
from langgraph.prebuilt import create_react_agent

system_prompt = "You are a helpful finance expert named Fred in year 2024. First of all you
create a plan to get answer to the research query. Then you use tools to get answers to the
questions. Finally you use the answers to each question in the plan to give your final
verdict."

1lm = ChatOpenAI(model="gpt-40-mini")
tools = [TavilySearchResults(max_results=3)]
agent_executor = create_react_agent(llm, tools, state_modifier=system_prompt) 49

Understanding State Management in AI Agents

How agent keeps track of its progress while solving a task.
(action, result_action)
Store input and response
Benefits:
o Avoids redundant work
= o Helps agent replan efficiently
[Helps track progress to final answer

import operator

from pydantic import BaseModel, Field
from typing import Annotated, List, Tuple
from typing_extensions import TypedDict

class PlanExecute(TypedDict):
input: str
plan: List[str]
past_steps: Annotated[List[Tuplel, operator.add]
response: str

class Plan(BaseModel):
"""pPlan to follow in future"""

steps: List[str] = Field(
description="different steps to follow, should be in sorted order"

: 50

L

Creating the Plan

from langchain_core.prompts import ChatPromptTemplate

planner_prompt = ChatPromptTemplate.from_nessages(

[

"systen",

"""You are a finance research agent working in Oct 2024, For the given
objective, come up with a simple step by step plan, \
This plan should involve individual tasks, that if executed correctly will yield the
correct answer. Do not add any superfluous steps. The result of the final step should be
the final answer, Make sure that each step has all the information needed - do not skip
steps. At the end use the info collected to give the final answer to the main question
containing the facts.""",

)

("placeholder", "{messages}"),

planner = planner_prompt | ChatOpenAI(
model="gpt-40-mini", temperature=0
) .with_structured_output(Plan)

planner.invoke(
{
"messages": [

("user", "Should we invest in Tesla given the current situation of EV?")

Fig. 3.3: Guiding the agent to create a step-by-step plan that should lead to the correct
answer for a given objective

Fig. 3.4: Testing the agent with a question

51

Re-planning

- Adjusting the Agent’s Strategy

PLAN B .

Original question
Initial Plan
Completed Steps

replanner_prompt = ChatPromptTemplate.from_template(

“"""Eor the given objective, come up with a simple step by step plan. \
This plan should involve individual tasks, that if executed correctly will yield the
correct answer. Do not add any superfluous steps. \
The result of the final step should be the final answer. Make sure that each step has all

the information needed - do not skip steps.
Your objective was this:

{input}

Your original plan was this:
{plan}

You have currently done the follow steps:
{past_steps}

Update your plan accordingly. If no more steps are needed and you can return to the user,
fill out the plan. Only add steps to the plan that still
Do not return previously done steps as part of the plan."""

then respond with that.
NEED to be done.
)

Otherwise,

52

Executing the Plan

async def plan_step(state: PlanExecute): async def replan_step(state: PlanExecute):
plan = await planner.ainvoke({"nessages": [("user", state["input"])]}) output = await replanner.ainvoke(state)
if isinstance(output.action, Response):
return {"response”: output.action.response}
else:
return {"plan": output.action.steps}

return {"plan": plan,steps}

async def execute_step(state: PlanExecute):
plan = state["plan"]
plan_str = "\n".join(f"{i+1}. {step}" for i, step in enumerate(plan))
task = plan[0@]
task_formatted = f"""For the following plan:
{plan_str}\n\nYou are tasked with executing step {1}, {task}."""

agent_response = await agent_executor.ainvoke(def ShOUld end(state. PlanEXECUte)'
{"messages": [("user", task_formatted)]} = ' !
) if "response" in state and state["response"]:
return {
"past_steps": [(task, agent_response["messages"][-1].content)], return END
}
else:

return "agent"

v

State Graph

start

Il

planner

agent

h

start,

agent

tools

{

_end

replan «—

end

54

Galileo Callback - Debugging and Optimizing

{'plan': ['Research the current market trends in the electric vehicle (EV) industry as of October 2024. "Analyze Tesla's current financial |
{'past_steps': [('Research the current market trends in the electric vehicle (EV) industry as of October 2024.', "### Current Market Trends ii
{'plan ["Analyze Tesla's current financial performance, including revenue, profit margins, and growth rates.", "Evaluate Tesla's competitiv(
{'past_steps': [("Analyze Tesla's current financial performance, including revenue, profit margins, and growth rates.", "### Step 1: Analysis
{'plan': ["Evaluate Tesla's competitive landscape, identifying key competitors in the EV market and their market shares.", 'Assess the risks i
{'past_steps': [("Evaluate Tesla's competitive landscape, identifying key competitors in the EV market and their market shares.", "### Step 1
{'plan ['Assess the risks associated with investing in Tesla, including regulatory risks, market volatility, and technological changes.',
{'past_steps': [('Assess the risks associated with investing in Tesla, including regulatory risks, market volatility, and technological chang
{'plan': ['Gather stock price forecast information for Tesla for 1 year, 3 years, and 5 years from reputable financial analysts and sources.'
{'past_steps': [('Gather stock price forecast information for Tesla for 1 year, 3 years, and 5 years from reputable financial analysts and soi|
{'plan': ['Compile the findings from the market analysis, financial performance, competition, risks, and stock forecasts into a comprehensive
{'past_steps': [('Compile the findings from the market analysis, financial performance, competition, risks, and stock forecasts into a comprel
{'plan ['Make a final recommendation on whether to invest in Tesla based on the compiled data.']}

{'past_steps': [('Make a final recommendation on whether to invest in Tesla based on the compiled data.', "Based on the gathered data regardii
{'response': 'The analysis and recommendation process for investing in Tesla has been completed. Based on the comprehensive overview and fina
Initial job complete, executing scorers asynchronously. Current status:

cost: Done @

toxicity: Computing %%

pii: Computing %%

protect_status: Done ¥

latency: Done ¥

groundedness: Computing %%

> View your prompt run on the Galileo console at:

/7 Console gev.runganlec 1c 2
finance-research-agent (# / Al Runs Configure Annotations « Share Project
<+ Filter by Ranking Criteria
New
J t em Met
e Rank Run Neme g Latenc T Total Metrics C Avg Cos Total Responses
Fabunte
4 0.501 210,623 ms $0.9242 $0.1959 $0.004 7
A
Observe 1 test-3 0844 84,039 ms $0.1361 $0.003 $0.0025 3
-
o=t 2 0778 134,085 ms $0.0408 $0.0008 $0.002 1
Fine-Tune
3 test-0 0.819 226,920 ms $0.0881 $0.0009 $0.0035 1
tost-1 0.858 228,209 ms s$o10m $0.001 $0.0046 1 55
\. J

Galileo Callback - Example

e Problem: Al agent has context adherence . =
issues -
e Trace view shows 33.33% context B ===
adherence score
e System explanation: Al correctly cited some
recent figures (Q3 2024, Q4 2023), earlier
figures lacked explicit supporting evidence

56

@i UniversiTyVireNia. [

Anisha Patrikar (gjq2yf)

57

@i UniversiTyy VireNa. [

Chapter 4 - Metrics for Evaluating AI Agents

58

Presentation Outline

% Key Performance Dimensions
% 5 Case Studies
% Common Challenges in Al Evaluation

% Best Practices for Al Optimization

59

Key Performance Dimensions

® B

v

System Metrics Task Completion

Focus on technical performance and Measure overall effectiveness of agent

resource utifzation

Agent Success Rate
Latency per Tool Call

" Task Completion Rate
Total Task Completion Time

Ste| r Task
AP Call Frequency P pe

X Number of Human Requests
Token Usage per Interaction
Cost per Task Completion

Context Window Utilization

LLM Call Error Rate

g
Quality Control Tool Interaction
Evaluate output accuracy and adharence Assess how effectively the agent uses
10 reguirements svailable tools
Instruction Adherence Tool Selection Accuracy
Output Format Success Rate Tool Argument Accuracy
Context Adherence Tool Success Rate

e Galileo

Fig 4.1: Four key performance dimensions to evaluate Al agents

Case Study 1: Advancing the Claims Processing Agent

Claim Processing System Overview

Al deployed for automating claims processing

Y Struggled with complex claims [escacams | [possne | [oo |
I [I
Y Increased compliance risks due to errors in * v v
Coverage Check Network Check Eligibility Check

complex cases ‘

Valdate

Challenges & Solutions 3 y <_J
Claim Validator
|

1. LLM Call Error Rate

2. Task Completion Rate iy

3. Human Intervention Requests Payment Calcuator
4.

Token Usage per Interaction |

Outcomes ‘

* Faster claims processing e laaoaei i
. . i J J
* Higher compliance accuracy
. . Auto Pay Manual Check Appeal Queue
* Improved resource utilization
* Reduced rejection rates

Fig 4.2: An overview of the Claims Processing System 31

Case Study 2: Optimizing the Tax Audit Agent

Al deployed for tax document processing e e o
X Lengthy turnaround times for complex audits [B] f::m;ﬁ] [—]
X High computing costs from inefficient processing i :m (_Jm

X A backlog of partially completed audits requiring manual w:il-u

review A Engne

Challenges & Solutions

/\
1. Tool Success Rate \r/

2. Context Window Utilization v 3 v
3. Steps per Task .
Outcomes E— —
[1
* Faster audit completion g -
* Enhanced discrepancy detection Acprove st Cuee

* Optlmlzed processmg efﬁCIenCy Fig 4.3: An overview of the Tax Auditing System 62

Case Study 3: Elevating the Stock Analysis Agent

Al deployed for investment analysis

X Redundant analysis requests
X Inconsistent reporting formats
X Failed to adjust analysis to market conditions

Challenges & Solutions
1. Total Task Completion Time
2. Output Format Success Rate
3. Token Usage per Interaction

Outcomes
* More precise market analysis
* Faster processing times

» Optimized resource utilization

Stock Analysis System Overview

Marke! Dats

(== (== (==

Fig 4.4: An ovenview of the Stock Analysis System

Case Study 4: Upgrading the Coding Agent

Al deployed to enhance developer productivity e e
Code Analysis
% Frequent disruptions during sprint deadlines [mewcose | [attsoy | [pocswes |
X Struggled with large codebases, providing irrelevant e =N s
. ¥ N ¥
SuggeStlons Syntax Check Pattarn Analysis Context Bulding

X Rising infrastructure costs due to inefficient resource usage l I ’

Process Process Process
¥
Challenges & Solutions ‘\—> Market Context <J
1. LLM Call Error Rate e
v
2. Task Success Rate
. Suggestion Engine
3. Cost per Task Completion l
Outcomes
Code Review
* More accurate code analysis
Optma Nocds Rovew Compilax
* Improved suggestion relevance -
Auto Apply Dev Chack Team Review

* Optimized resource utilization

Fig 4.5: An overview of the Development Assistant System

Case Study 5: Enhancing the Lead Scoring Agent

Al deployed to enhance lead qualification efficiency Lead Scoring System Overview
Digital Signals
X Misclassification of prospects led to declining conversion rates [o ok } [Emll Opans] [Sockel Cicka J
X Sales reps pursued low-quality leads due to inaccurate scoring A A or
X Increased costs per qualified lead, impacting growth targets

¥
[=
Behavior Score Intarest Score £ngagament

Score
Challenges & Solutions | {

Combne Combing Combing
L 4
1. Token Usage per Interaction L > (ol Procn | € J
|

2. Latency per Tool Call
3. Tool Selection Accuracy

Feod

Outcomes

 Faster prospect analysis h S

* Higher lead qualification accuracy e i -
» Optimized resource utilization Sales Ready Nurture Track Keep Warm

Fig 4.6: An ovenview of the Lead Scoring System

Common Challenges in AI Evaluation

\ /
/@\

Ensuring |[dentifying Improving
consistency model real-time

across test runs weaknesses adaptation

66

Best Practices for AI Agent Optimization

Continuous
Monitoring

O

Adaptive
Evaluation
Methods

Strategic
Performance
Adjustments

67

@i UniversiTyy VireNa. [

Yagnik Panguluri (yye7pm)

68

@i UniversiTyy VireNa. [

Chapter 5 - Why Most Al Agents Fail and How To Fix Them

69

Al Agents are becoming widely used in industries like finance, healthcare, and customer support. Despite

Why Do Al Agents Fail?

their potential, many fail due to poor design, lack of adaptability, and high operation costs.

DEVELOPMENT LLM ’
ISSUES ISSUES l

Poorly Defined Prompts

¢ Define Clear
Objectives

e Craft Detailed
Personas

e Use Effective
Prompting

Evaluation Challenges

e Continuous
Evaluation

¢ Use Real-World
Scenarios

* Incorporate
Feedback Loops

Difficult to Steer

® Specialized Prompts
* Hierarchical Design
* Fine-Tuning Models

High Cost of Running

* Reduce Context Size

* Use Smaller Models

* Cloud-Based Solutions

Planning Failures

e Task Decomposition

® Multi-Plan Selection

* Reflection and
Refinement

Reasoning Failures

* Enhance Reasoning
Capabilities

® Fine-Tune LLMs with
Feedback

* Use Specialized Agents

Tool Calling Failures

* Define Clear Parameters

e Validate Tool Outputs

* Tool Selectio
VerificationLoops

Guardrails

* Rule-Based Filters &
Validation

® Human-in-the-Loop
Oversight

e Ethical & Compliance
Frameworks

Agent Scaling

® Scalable Architectures
* Resource Management
* Monitor Performance

Fault Tolerance

* Redundancy

e Automated Recovery
e Stateful Recovery

Infinite Looping

e Clear Termination
Conditions

e Enhance Reasoning &
Planning

* Monitor Agent Behavior

Key failure points in Al agent development
Evaluation and debugging challenges
Performance, cost, and ethical concerns
Practical solutions to improve Al agent reliability

70

Development Issues

-[=]

Poorly Defined Task or Evaluation Issues
Persona

71

Development Issues - Poor Persona

‘ ‘ A well-defined task or persona is essential for effectively operating your Al agents. Without it, agents
may struggle to make appropriate decisions, leading to suboptimal performance.

Define Clear Objectives

You should specify the

goals, constraints, and

expected outcomes for
each agent.

FE

Craft Detailed Personas

Develop personas that
outline the agents role,
responsibilities, and
behavior for you

Prompting

Use research-backed
prompting techniques to
reduce hallucinations for

your agents

72

Development Issues - Evaluation Issues

‘ ‘ Evaluation helps you identify weaknesses and ensures your agents operate reliably in dynamic

environments. Unlike traditional software, agents operate in dynamic environments which make it
difficult to establish clear metrics for success

Continuous Evaluation

Implement an ongoing
evaluation system to
assess your agents

performance and identify
areas for improvement

¢

Use Real-World Scenarios

Test your agents in
real-world scenarios to
understand their
performance in dynamic
environments

ol

Feedback Loops

Incorporate feedback loops
to allow for continuous
improvement based on

performance data

73

LLM Issues

N anses Y
i it ©f

Difficult to Steer High Cost of Planning Failures Reasoning Failures Tool Calling
Running Failures

74

LLM Issues - Difficult to Steer

‘ ﬁ You can steer LLMs towards specific tasks or goals for consistent and reliable performance. LLMs are
influenced by vast amounts of training data which can lead to unpredictable behavior, and fine-tuning
them for specific tasks require expertise and compute

Specialized Prompts - Use specialized
prompts to guide the LLM toward specific

tasks
I—[Controller Agent]ﬁ
Hierarchical Design - Implement a
H hA PI A . H
[lesearc geIt] [\Lannlng 961 [E)Iacutlon Agefit] hierarchical dGSIgn where SpGClallzed agents
Data Analvsis Task Resource Task Quality handle SpeC|f|C taSkS, reducmg the
Collection i Breakdown || Allocation Implementation|| Control Complexity Of ste erin g a single agen t

Fig 5.1: Hierarchical design with specialized agents performing specific tasks

Fine-Tuning - Continuously fine-tune the
LLM based on task-specific data to improve
performance

75

LLM Issues - High Cost of Running

‘ ‘ Running LLMs, especially in production environments can be prohibitively expensive. This makes it
difficult for organizations to scale their agent deployments cost-effectively.

Reduce Context - Introduce mechanisms to
use as low context as possible to reduce the
tokens

Use Smaller Models - Where possible, use
smaller models or distill larger models to
reduce costs

Cloud Solutions - Use cloud-based
solutions to manage and scale
computational resources efficiently

API| Gateway

SQS Queue

. . 4 —w— 4 &

Lambda - Small Lambda - Medium Model Lambda -
Small Tasks Model API Medium Tasks

API Complex Tasks
[CloudWatch 1

Fig 5.2: A serverless architecture where Lambda Controller makes
intelligent decisions about request handling

Large Model
‘ API } { Model Cache

Components of Fig 5.2

The SQS Queue acts as our request buffer.

The Lambda Controller makes intelligent decisions about request handling.
Small Model API for simple completions and basic tasks

Medium Model API for moderate complexity tasks

Large Model API for complex reasoning tasks

Model Cache for storing frequently used responses to reduce API calls
CloudWatch to monitor system health and costs

76

LLM Issues - Planning Failures

‘ ‘ Planning enables agents to anticipate future states, make informed decisions, and execute tasks in a
structured manner. However, LLMs often struggle with planning, as it requires strong reasoning

abilities.
Task Decomposition - Break down tasks
into smaller, manageable subtasks
¢ Tesk Aratys | ¢—
— Multi-Plan Selection - Generate multiple
plan and select the most appropriate one

Subtask 1 Subtask 1 Subtask 1

based on the context
Feedback

e Reflection and Refinement - Continuously
refine plans based on new information and

feedback, and scale computational
resources efficiently

Success

Fig 5.3: A simple illustration of how an agent
plans and executes complex task decomposition,
multi-plan selection, and continuous refinement Task Complete 77

LLM Issues - Reasoning Failures

‘ ﬁ Reasoning is a fundamental capability that enables agents to make decisions, solve problems, and
understand complex environments. LLMs lacking strong reasoning skills may struggle with tasks that
require multi-step logic or nuanced judgement.

Enhance Reasoning Capabilities - Use

prompting techniques like Reflexion to
enhance the reasoning capabilities Fig 5.4: A simple lustration
of how you can enhance

the capabilities of an LLM

v

Finetune LLM - Establish training with data
generated with a human in the loop Needs Improvement

Use Specialized Agents - Develop [ufe',‘;b;?fﬁgn'j%"j;j:;’es]
specialized agents that focus on specific i P,
reasoning tasks to improve overall _ J

Final Answer

performance
Human Feedback
% Galileo 85

Looks Good

L - Buwee

78

LLM Issues - Tool Calling Failures

‘ ‘ Robust tool calling mechanisms ensure agents can perform complex tasks by leveraging various tools
accurately and efficiently. Tool calling failures can occur due to incorrect parameter passing,
misinterpretation of tool outputs, or failures in integrating tool results into the agent’s workflow.

* o'

u
Define Clear Parameters Validate Tool Outputs Tool Selection Verification
Ensure that tools have Implement validation Use a verification layer to
well-defined parameters checks to ensure that tool check if the tool selected is
and usage guidelines for outputs are accurate and correct for the job

you relevant

79

Production Issues

o /AN ()

Guardrails Agent Scaling Fault Tolerance Infinite Looping

80

Production Issues - Guardrails

‘ ‘ Guardrails help ensure that agents adhere to safety protocols and regulatory requirements. Guardrails
define the operational limits within which agents can function.

| O -

v

9
Rule-Based Filters & Human-in-the-Loop Ethical & Compliance
Validation Oversight Frameworks
e Use predefined rules to e Allow humans to provide e Establish ethical guidelines
filter offensive, harmful, or feedback on the agent’s that outline the principles
inappropriate content. performance and outputs and values the agent must
e Before processing, inputs e Establish protocols for adhere to
received by the agent must escalating complex or e Implement compliance
be validated to meet sensitive tasks to human checks to ensure the
criteria operators agents actions align with

: 81
regulation

Production Issues - Agent Scaling

‘ ﬁ Scaling agents to handle increased workloads or more complex tasks is a significant challenge. As the
number of agents or the complexity of interactions grows, the system must efficiently manage
resources, maintain performance, and ensure reliability.

[User Requests } Scalable Architectures - Implement a
v . . .
microservice architecture where each agent
Load Balancer

| or group of agents operates as an
Al A etiRoo independent service

Al Agent 1 Al Agent 2 Al Agent 3

Ie

Resource Management - Integrate load
balancers to distribute incoming requests
evenly across multiple agents

Monitoring
Vv

Performance Tracker

— Auto Scaler

Scale Up/Down . .
Monitor Performance - Implement real-time

monitoring tools to track each agent’s
performance

t

Fig 5.5: An illustration that shows
how you can add monitoring and load
balancers for easy scale-up and down

82

Production Issues - Fault Tolerance

‘ ﬁ All agents need to be fault-tolerant to ensure that they can recover from eros and continue operating
effectively. Without robust fault tolerance mechanisms, agents may fail to handle unexpected
situations, leading to system crashes or degraded performance.

Redundancy - Deploy multiple instances of
Al agents running in parallel

Automated Recovery - Incorporate Ha..ureSuccess» Process Task

intelligent retry mechanisms that & 1
automatically attempt to recover from iy Eror 5
tra nS|ent errors [Backup Agent 1] [Backup Agent 2] f\\l]l:) Y\(lle/s gi
Stateful Recovery - Ensure the Al agents et i o F LI Periodic
v
H H uic recover from errors an
can recover thelr State after a fallure gont'i(r:\ﬁe operating effecti\?elyd [Task Complete] (Persistent Storage]

83

Production Issues - Infinite Looping

‘ ﬁ Looping mechanisms are essential for agents to perform iterative tasks and refine their actions based
on feedback. Agents can sometimes get stuck in loops, repeatedly performing the same actions
without progressing toward their goals.

°

Receive Task

Task Analysis

Define Goal & Steps

e

Generate Solution

Reasoning

Check Progress

Progress
No Progress

Goal Achieved

Loop Check

Under Max Steps

New Approach

Fig 5.7: A simple
strategy to prevent
infinite looping

{ Success] [Reasoning Adjust]

1

Exceeds Max Steps

v

Return Result

Return Best Solution

Clear Termination Conditions - Implement
clear criteria for success and mechanisms to
break out of loops

Enhance Reasoning and Planning -
Improve the agents reasoning and planning
capabilities to prevent infinite looping

Monitor Agent Behavior - Monitor agent
behavior and adjust to prevent looping
issues

84

Key Takeaways

Better task structuring and decomposition
Continuous evaluation and monitoring
Resource optimization and caching
Security and compliance frameworks

85

Paper Reference

86

Questions?

