@i UniversTy7Vireivia. [

Al Agents 2024 Rewind: A Year of Building and Learning

Presented by:
Nina Chinnam (ths9af) Mihika Rao (xsw5kn)

@ UnNiversiTYVireiNia. [

Mihika Rao (xsw5kn)

Presentation Outline

s Enterprise Adoption of Agents in Products

R/
L X4

“Agent Native” Foundation Models

K/
%

Interface Agents Take Center Stage

K/
%

Shift to Complex Tasks and Rise of Frameworks

7
o

Realizations from Benchmarks
Looking Forward to 2025

K/
L X4

@i UniversTy7Vireivia. [

Enterprise Adoption of Agents in Products .. With Caveats

Enterprise Adoption of Al Agents - Trends and Challenges 2024

TR,

Growing Adoption of AI Agents in Enterprises

Microsoft
Copilot

Agentforce

Google
orkspace

Company

Microsoft

Salesforce

Google

SAP Al
Assistants

OpenAl API
Adoption

Al Agent
System
Copilot
Agents

Agentforce

Workspace Al

Business
Process
Automation

Embedded
into various
SaaS

products

Functionality

Automates
document writing,
summarization, and
Excel analysis

Enhances CRM
tasks, customer
support automation

Helps with email
drafts, meeting
setups, and
documentation

Al-driven insights in
enterprise resource
planning

Automates text-
based tasks

Limitations

Still needs
human review

for accuracy

Lacks deep
decision-

making abilities

Primarily text-
based, no
complex
workflow
automation

Limited to
predefined

functions

Does not
perform
complex
decision-

making

Al Agents as Orchestration Layers: Key Caveat

Al Agents enhance
efficiency but don’t
replace human
workflows

Not fully autonomous Al
agent - these agents
don’t decide which tasks
need to be done without
being explicitly told

https://newsletter.victordibia.com

Before 2024 Trend
App: built by calling many APIs App > Agent (LLMs call the apis)

@ UnNiversiTYVireiNia. [

“Agent-Native” Foundation Models

What are Agent-Native Foundation Models

Agent

e Designed specifically for

Al Agents An entity that can

reason, act, ———

e Handle Iong-term and and adapt to AT -
memory & planning solve tasks J—

e Enable autonomous task
execution

Key Features of Agent-Native Models

Feature

Response

Generation

Memory &

Context

Tool & API

Integration

Autonomy

Traditional LLMs
(e.g., GPT-4,
Claude)

One-time text-based

outputs

Limited, forgets past

conversations

Requires external

plugins

Requires human input

for every step

Agent-Native Models (o1,
Gemini 2.0, OpenAgent)

Plans multi-step tasks

autonomously

Retains long-term memory

for better decision-making

Built-in ability to call APIs &

use external tools

Can act independently
after receiving an initial

command 10

Shift Towards Agent-Native

e Before: Language modeling -
generating text-based responses

O

O

Can’t plan or break down
complex tasks

Could not use tools without
external help

e Trend: Capabilities are built in.

O

Have memory for long-term
interactions

Can interact with APls
Better for autonomous Al
agents

Before

Models focused on language modeling

-

—-_—

.0
https://newsletter.victona

2024 Trend

More capabilities (reasoning, planning, tool use
etc) “lifted” into Models

11

@ UnNiversiTYVireiNia. [

Interface Agents Take Center Stage

12

What are Interface Agents?
e Interface agents can control
% _‘[o

and interact with Uls

e Automation techniques
e Real-world actions

e Ex:AutoGPT, Adept ACT-1,
and OpenAl’s Code
Interpreter

13

Real-World Examples of Interface Agents

Kura Al - Al Agents for Web
Automation

Microsoft OmniParser - Al
for GUI Interactions

AutoGPT WebSurfer Agent

driver.get("https://www.google.com")

search_box = driver.find_element(By.NAME, "q")
search_box.send_keys("Latest Al research papers")
search_box.submit()

first_result = driver.find_element(By.XPATH, "//h3")
print("Top Result:", first_result.text)

client = OpenAl(api_key="YOUR_API_KEY")
response = client.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "system", "content":
f"Summarize this article: {first_result.text}"}]

)

print("Summary:",
response["choices"]|[0]["message"]["content"])

driver.quit() 14

Anthropic Claude Computer Use

Virtual computer

Plase vt th andor e - 5 n
s |) ST - o
e R GO0
pmi;u.:;;mmw s T s o wn. VO W O0- @@ Acme inc. Vendor Request Form

Please fill out the vendor request form for e ominwindow s, 20000 i 0 S0 : i

X ; X Campary fomatn

'Ant Equipment Co.' using data from either e -

the vendor spreadsheet or search portal tabs fom o At Eaulpment o Lot =

in window one. List & verify each field as you s " e oostEntty Adoess

complete the form in window two. Seeennt =

LIRS

Vendor Form x + -
T'll help you fill out the vendor L] L a
form for 'Ant Equipment Co'. Let ene messy-vendor-data - Google X [l Vendor Search Portal
o . 3
me start by taking a screenshot G @ localhost:3001 A L0
to see the current state of the € 2 C O localhost:3000 Ca L O
windows.
@ Acme Inc. * Welcome, Admin | A

Vendor Database

@ Screenshot

Open vendor search portal Search by company name, tax ID, or email

I notice that 'Ant Equipment Co'
is not visible in the spreadsheet.
Let me check the vendor search
portal. First, I'll need to click on

the vendor search portal tab. Submission Successful!

Q Your vendor request has been successfully submitted.

W& Move to 495, 42 Search for a Company We'll review your information and get back to you

R Left click Enter a company name, tax ID, or contact email to begin shortly.

Submit Another Request

Close 1 5

@ Screenshot

Search for ‘Ant Equipment Co’
Great, now I can see the vendor
search portal. Let me search for
‘Ant Equipment Co':

Shift Towards Interface Agents

Before: Programmatic
Tools & Code Execution

Trend: Al Agents Now
Directly Manipulate User
Interfaces

https://newsletter.victordibia“

Before 2024 Trend

Agents act via code (functions/apis) Agents act by driving interfaces (web, OS etc)

16

@ UnNiversiTYVireiNia. [

Nina Chinnam (fths9af)

17

Presentation Outline

% Enterprise Adoption of Agents in Products

s “Agent Native” Foundation Models

% Interface Agents Take Center Stage

% Shift to Complex Tasks and Rise of Frameworks
% Realizations from Benchmarks

% Looking Forward to 2025

18

Presentation Outline

7
L X4

Enterprise Adoption of Agents in Products

K/
L X4

“Agent Native” Foundation Models

K/
%

Interface Agents Take Center Stage
% Shift to Complex Tasks and Rise of Frameworks
% Realizations from Benchmarks

% Looking Forward to 2025

19

@ UnNiversiTYVireiNia. [

Shift to Complex Tasks and Rise of Frameworks

20

The Evolution of AI Agents

Before 2024 Trend
Simple chains, single agents Complex tasks and multiagent frameworks
Tasks most
companies need
to address. —>

Tasks that benefit from
an autonomous

< multi-agent approach

What is your biggest limitation of putting more agents in production?

Performance quality

Safety concerns

Latency

Other

41%

18.4%

18.4%

15.1%

7%

21

Shift To Complex Tasks: Transition to Complexity

Simple Al Chains Multi-Agent Systems
4) 4))
Basic Tool Execution — Agents collaborating on
interdependent tasks
& J & J
4) 4)
Sequential Workflows — Dynamic, adaptive workflows
& J & J
4) 4)
Limited-Decision Making —) Multi-step problem solving

Challenge: Selecting the right Multi-Agent Pattern
e Branching logic
e Reflection

e Metacognition
22

Framework
Autogen
Magnetic One
Autogen Studio
LangGraph
OpenAl Swarm
CrewAl

Pydantic Al

Solution: Multi-Agent Frameworks

Key Features

open-source framework for building Al agent systems

General-purpose agentic system using an orchestrator model

No-code tool for working with multi-agentic frameworks

Graph-based for structured workflows

Lightweight framework focused on multi-agent collaboration and orchestration
Multi-agent, role-based collaboration

Develop production-grade Al applications through Python

23

Multi-Agent Frameworks: Magnetic One

3 ¥)
© Task S e e %)Q ComputerTerminal
The attached image : 27 .
contains a Python script. bbb bbb bbb »[["</> Coder Execute code

Run the Python code) ; o

against an array of strings, ----»][B FileSurfer https://web.archive.org/ueb/
. 20230609112831/https://roset
listed below. OUtPUt of the tacode.org/wiki/sorting_algo
script is a URL containing

Access Image, extract code

rithms/Quicksort#C++

& archive_prefix = "https://web.archive.org/web/20230¢
C++ source code, compile, url_indices = [33, 4, 8, 9, 10, 14, 17, 18, 19, 20, 21, 22,
run and return the sum Of ::Iin;;ilr;ive;preﬁx " join(arr(i] for i in url_indices)
the third and fifth integers ..
E 4) l 5 Y) 6 \ \
v ‘ --=-»|l © WebSurfer »[] <> Coder ~*][” @ ComputerTerminal
i Orchestrator Navigate to url, extract C++ code ! Analyze C++ code ! Execulecode
; 8 rosettacode.org e ©® + E E
! g = s !
Orchestrator creates a : T : : 58 12 21 35 99
dynamic/task-specific pmemet e = :#:mzzt;“lz‘j e i
plan :

Return final result

d © Task Complete! 24

Multi-Agent Frameworks: Autogen Studio

A & Vacation planner

5]
& Userproxy & Travel plan group chat
8 Receive message from user and ... E | Plan the vacation details by providing activities on each day
| B 6Pr4Turbo
& Planner & Fun engineer
AEEEHpe Propose activities for each day Check if the plans are fun
l B 6P 4Turbo l B 6pr4Turbo
2. Web search 2. Web search
8 Critic & Executive assistant
Citicize the plans and give feedback Make sure to meet all the important
l B 6PT4Turbo I B P14 Turbo
@
&
£ 0y Library

<% Skill setting X

General Advanced

skill name * ©

Search the Web

What does this Skill do? * ©

Let an agent conduct a web search, review
results, view web pages, parse information on
the web pages, and aggregates information.

160/2000 maximum characters

Python Code * ®

ting UR

® Test

Update s

25

Multi-Agent Frameworks: OpenAl Swarm

Problem: User needs real-time weather updates and wants system to automatically send alerts via email

from swarm import Swarm, Agent

Define agent functions
def get_weather(location, time="now"):
Function to get weather information
return f"The weather in {location} at {time} is sunny."
def send_email(recipient, subject, body):
Function to send an email
return "Email sent successfully."
Define agents
weather_agent = Agent(
name="Weather Agent",
instructions="Provide weather updates.",
functions=[get_weather, send_email],
)
Initialise Swarm client and run conversation
client = Swarm()
response = client.run(
agent=weather_agent,
messages=[{"role": "user", "content": "What's the weather in New York?"}],

)

print(response.messages[-1]["content"])

Solution:
1. Defining Specialized Agent
Functions

2. Creating an Al Weather Agent
3. Run the Agent
4. Display Response

Key Features of OpenAl Swarm
e seamless Al task delegation
e scalable, efficient, and modular

26

Multi-Agent Frameworks: Pydantic Al

Problem: Bank wants to automate its customer support

@dataclass
class SupportDependencies:

e Solution:

Create dependencies
Define structured Al output
Create Al Agent
Add context awareness
Define Al Balance Tool

s SupportResult(BaseModel)

support_advice: str = Field(description='Advice returned to the customer')
block_card: bool = Field(description="Whether to block the customer's card")
risk: int = Field(description='Risk level of query', ge=0, le=10)

support_agent = Agent(
'openai:gpt-40',
deps_type=SupportDependencies,
result_type=SupportResult,
system_prompt=(
'You are a support agent in our bank, give the '
‘customer support and judge the risk level of their query.'

a0~

RIS LT o Key Features of Pydantic Al

Y ef add_customer_name(ctx: RunContext[SupportDependencies]) —> str:
customer_name = await ctx.deps.db.customer_name(id=ctx.deps.customer_id) Y |dea| for- StrUCtU red productlon_grade Al
1)

return f"The customer's name is {customer_name!r}"

application
el e Prevents unpredictable Al behavior
async def customer_balance
ctx: RunContext [SupportDependencies], include_pending: bool through enforC|ng StrlCt Val|dat|on

) —> float:
""Returns the customer's current account balance."""
return await ctx.deps.db.customer_balance(
id=ctx.deps.customer_id,
include_pending=include_pending, 27

@ UnNiversiTYVireiNia. [

Realizations from Benchmarks

28

Key Benchmarks introduced in 2024

Benchmark Purpose Findings

CORE-Bench Measures computational reproducibility in | Al models struggle with consistent
Al-generated outputs output generation across different runs

WebArena Evaluates web-based task completion Al agents complete structured tasks

well but fail at adaptive reasoning

Windows Agent | Tests Al capabilities within desktop Low success rates for multi-step
Arena environments workflows
ARC-AGI Measures general intelligence against OpenAl’'s 03 model scored 87.5,

Benchmark human cognition nearing the human benchmark of 85

29

@ UnNiversiTYVireiNia. [

Looking Forward into 2025

30

Future of AI Agents

—)
icE 1&

More improvements in models Patterns drive reliability Agent Marketplace

31

@i UniversiTyy VireNa. [———

Agent Codebases

Presented by:
Anisha Patrikar (gjq2yf) and Yagnik Panguluri (yye7pm)

@ UniversiTyVireNia. .

Anisha Patrikar (gjq2yf)

Presentation Outline

< Introduction of Codebases

% Why are they important?
% LangGraph
% Hugging Face Transformer Agents
% AG2
% OpenAl Operator

« Comparison of Codebases

LangGraph

— w Hugging Face
Hia:z
@ OpenAl Operator

Feature

Primary
Purpose

Workflow Type

Multi-Agent
Support

Tool Use (e.g.,
search, code

Scalability

Ease of Use

LangGraph

Multi-agent
workflows in
LangChain

Graph-based

Yes

No

High

Requires setup

Transformer
Agents

Single-agent Al
with tool
support

Linear

No

Yes

Moderate

Easy

AG2

Multi-agent
coordination

Dynamic Al
collaboration
Yes

Yes

High

Complex

High Level Comparison

OpenAl
Operator

Managing
OpenAl API
workloads

Containerized
execution

No

No

High

Easy

Why Are They Important?

O = 4

Automate workflows Enable Scale Al
with intelligent LLM-powered applications
agents reasoning and across industries

collaboration

LangGraph

e Framework for building multi-agent workflows

e Uses graph-based execution to define interactions between Al
components

e Ideal Use Case: structured, modular, and scalable Al systems

Translator:
Converts the

Chatbot: Summarizer:
Receives the Condenses the

input response P’ summary to into

another language

LangGraph - Key Concepts

StateGraph: Defines Al interactions
Nodes: Individual Steps in workflow
Edges: Define execution order
State Management: Tracks
messages between nodes

S .,
 \ e \
/ 3 » : Node T —lpd BND \

Node 2 > g T . / \
P s, S S dode 6)
/'/ \ 4
R »l e 1 | v —a| WNod _—— de € »/rsl;

\. N\

LangGraph Example

(1

messages:
graph_builder = StateGraph(5t

llm = ChatOpenAI(
openai_api_key=os.getenv("OPENAI_AF
model="gpt-4"

chatbot(state:)
response = Llm.invoke(state("messages"])

{"messages": [response]}

graph_builder.add_node("chatbot", chatbot)
graph_builder.add_edge(START, “chatbot")
graph_builder.add_edge("chatbo END)

graph = graph_builder.compile()

user_input = "Hello, how can I
for event in graph.stream({"messa
for value in event.values():

print{(("Assistant:", valuel“"messages"] (-1 .content”

r'*, user_input)]}):

Transtformer Agents - Purpose

@ Hugging Face

e Allows LLMs to use tools (Python execution, search, image
generation)

e Built on Hugging Face’s Inference API
e (Good for single-agent Al reasoning

Search
/ Tool \

LLM Image LLM Final
User Input ‘ (Hugging . Generation Aggregates . Response
Face Agent) Tool Results to User

Python
Execution

Tool 10

Transformer Agents - Key Features

e Natural Language API
e Multimodal Capabilities (text, code, images)
e Agent-Oriented Execution

Available Tools for Transformer Agents

Tool Functionality
Python Execution Runs Python code dynamically and returns results
Image Generation Generates images using Stable Diffusion models
Document Q&A Answers questions based on a given document
Web Search Fetches relevant information from the web
Text-to-Speech Converts text into speech using Al voices
Translation Translates text into different languages 11

Transformer Agents - Example

port HfAgent

agent = HfAgent("https://api-inference.huggin

response = agent.run("Generate a Python function to cal
print(response)

def factorial(n):
if n = @:
return 1
else:
return n * factorial(n-1)

print(factorial(5))

@i UniversiTyy VireNa. [———

Yagnik Panguluri (yye7pm)

13

AG2 and OpenAl Operator

Autogen Operator

=]
AGZ

A framework for multi-agent A Kubernetes-based solution for
coordination where Al agents managing OpenAl models at
collaborate to solve tasks scale

efficiently

14

AG2

In traditional Al workflows, a single model is responsible for completing a task. However, real-world
problems are complex and often require a distributed intelligence approach.

e Decentralized decision-making - Agents
operate independently but coordinate
when needed

e Scalability- The framework support
hundreds or even thousands of agents
working together

e Modularity - Different agents can be
designed for different sub-tasks, making
the system more flexible

e Efficiency - Collaboration leads to faster
problem solving and improved Al
performance

E1N
_@ J

Autonomous Research Real-Time Al
Agents N Teamwork

Al-Assisted Decision
Making 15

How AG2 Works

L] ¥ &
_ _ _
Q@ 7 i)
evYS
Agent Initialization =~ Communication and Decision-Making Feedback and
Knowledge Sharing and Execution Adaptation

16

AG2 - Code

from autogen import ConversableAgent

Create an AI agent

assistant = ConversableAgent(
name="assistant",
system_message="You are an assistant that responds concisely.",
1lm_config=11lm_config

Create another AI agent

fact_checker = ConversableAgent(
name=""fact_checker",
system_message="You are a fact-checking assistant.",
1lm_config=1lm_config

Start the conversation

assistant.initiate_chat(
recipient=fact_checker,
message="What is AG2?",
max_turns=2

17

AG2 - Code (Human in the Loop)

from autogen import ConversableAgent

Create an AI agent

assistant = ConversableAgent(
name="assistant",
system_message="You are a helpful assistant.",
1lm_config=11m_config

Create a human agent with manual input mode
human = ConversableAgent(

name="human",

human_input_mode="ALWAYS"
)

or

human = UserProxyAgent(name="human", code_execution_config={"work_dir":

Start the chat

human. initiate_chat(
recipient=assistant,
message="Hello! What's 2 + 27"

"coding", "use_docker"

18

AG2 - Code (Multiple Operators)

from autogen import ConversableAgent, GroupChat, GroupChatManager i

Create AI agents

teacher = ConversableAgent(name="teacher", system_message="You suggest lesson topics.")
planner = ConversableAgent(name="planner", system_message="You create lesson plans.")
reviewer = ConversableAgent(name="reviewer", system_message="You review lesson plans.")

Create GroupChat
groupchat = GroupChat(agents=[teacher, planner, reviewer], speaker_selection_method="auto")

Create the GroupChatManager, it will manage the conversation and uses an LLM to select the n
manager = GroupChatManager(name="manager", groupchat=groupchat)

Start the conversation
teacher.initiate_chat(manager, "Create a lesson on photosynthesis.")

19

Comparison

Feature

LangGraph(LangChain)

HF Transformers Agents

AG2

OpenAl Operator

Purpose

Multi-agent workflows in LangChain

LLM-powered agents for reasoning

Multi-agent coordination & decision
making

Al model deployment & scaling in
Kubernetes

Core Functionality

Creates directed acyclic graphs
(DAGs) for agent interactions

Enables Transformers-based agents
to use external tools

Enables agents to collaborate and
optimize decision-making

Deploys, scales, and manages Al
models efficiently

Use Case Examples

Task automation, Al-driven workflows

Al-powered assistants, chatbots,
agent-based automation

Financial analysis, robotics,
multi-agent simulations

Chatbots, large-scale Al APIs,
real-time analytics

Scalability

Supports chaining multiple agents but
not inherently multi-agent

Designed for single-agent use cases

Supports thousands of Al agents
collaborating in parallel

Dynamically scales Al workloads

Interaction with Al Models

Works well with LLMs but focuses on
workflow structuring

Uses LLMs directly for intelligent task
execution

Uses Al models to enhance
multi-agent decision-making

Manages infrastructure to serve Al
models at scale

25

@ UniversiTyVireNia. .

Questions?

26

