
Two Papers:

1. A Comprehensive Study of Jailbreak Attack versus Defense for Large
Language Models

2. Constitutional Classifiers: Defending against Universal Jailbreaks
across Thousands of Hours of Red Teaming

UVA GenAI Overview
Couse 2025 Spring

First Half

A Comprehensive Study of Jailbreak Attack versus
Defense for Large Language Models

Presented by: Swakshar Deb (swd9tc)

What is LLM Jailbreak?

• Jailbreak attack means modifying the prompt to generate malicious content from LLM

Types of Jailbreak Attacks

• Generative Technique

• Includes attacks that are dynamically produced

• Template Technique

• Compromised attacks conducted via pre-defined template

• Training Gap Technique

• Focuses on exploiting weakness due to insufficient
safeguards in safe training practices

Continue…

Generative Technique

Continue...

Template Technique

Utilize a predefined template-based prompt for the jailbreak .

Continue...

Training Gap Technique

Exploit the weakness due to insufficient safeguards in training practices.

Continue...

Types Jailbreak Defense

• Self-Processing Defense

• Rely on the LLM’s own capabilities

• Additional Helper Defense

• Require support from additional helper for the verification

• Input Permutation Defense

• Manipulate the input prompt and verify the target LLM
multiple times

Continue…

Self Processing Defense

Wrap the user query with build in self

reminder to remind the LLM to act

responsibly

.

Self Processing Defense

Wrap the user query with build in

self-reminder to remind the LLM

to act responsibly

.

Additional Helper Defense

• In the intermediate block, the color indicates the
perplexity of each token.

• In the output block, the color indicates the likelihood

 of it being part of an adversarial prompt

Input Permutation Defense

Continue…

Study Design

• RQ1 (Effectiveness of Jailbreak Attack)

• How effective are jailbreak attack techniques across various LLMs?

• RQ2 (Effectiveness of Jailbreak Defenses)

• How effective are jailbreak techniques against various attack techniques

Study workflow

Baseline Selection

• For RQ1, selected total of 9 attack techniques

• 5 Generative techniques: DAN, PAIR, TAP, GPTFuzz, GCG

• 4 Template based techniques, includes 78 templates

• For RQ2, examine 4 defense techniques

• Bergeron and Baseline for additional helper technique

• RALLM and SmoothLLM for input permutation technique

LLMs Under Test

• Evaluate 3 distinguish LLM models

• Llama 2-7b, Vicuna-v1.5-7b and GPT 3.5 Turbo 1106

Second Half of the paper: A
Comprehensive Study of

Jailbreak Attack versus Defense
for Large Language Models

Presented By : Md. Mahir Ashhab (ftm2nu)

Experimental Configuration

• Two Nvidia RTX 6000 Ada GPU
• Each with 48 GB of VRAM

• For addressing RQ1
• Each query is executed 5 times

• For evaluating generative models
• Process capped at a maximum 75 iterations

23

Benchmark Construction: OpenAI’s
Disallowed Usage

24

Benchmark Construction: Taxonomy of
Jailbreak Prompts

25

Evaluation Metrics: RQ1

• Attack Success Rate (𝑨𝑺𝑹 =
𝒄

𝒏
)

• Ratio of successfully compromised question 𝒄 to the total number of
questions n.

• Measures the effectiveness of an attack

• Efficiency (𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 = 𝒒

𝒐
)

• Ratio of the number of individual queries q that successfully compromise
the model to the total number of query attempts o

• Quantifies the effectiveness of attack queries

26

Evaluation Metrics: RQ2

• Defense Passing Rate (𝑫𝑷𝑹 =
𝒇

𝒎
)

• Ratio of prompts f that incorrectly bypass the defense mechanism to the
total number of malicious inputs m

• Benign Success Rate 𝑩𝑺𝑹 =
𝐬

𝐭
• Assesses the proportion of non-malicious inputs s that successfully

navigate through the defense filter relative to the total number of inputs t.
• Generated Response Quality (GRQ)

• evaluates the quality of responses generated by defense mechanisms
compared to a standard reference.

• Rely of Human feedback

27

Effectiveness of Jailbreak Attacks (RQ1)

• Evaluating the success rates of different jailbreak attacks across
LLMs.

• Vicuna, LLaMa, and GPT-3.5 Turbo performance comparison
• Attack effectiveness under different prompt conditions
• Key vulnerabilities observed in tested models

28

Comparative Analysis of Attack Techniques

• Success rates across models:
• White-box attacks: High success but require internal knowledge
• Universal attacks: More transferable but less effective
• Instruction tuning attacks: Highly adaptable

29

Comparative Analysis of Attack Techniques:
GPT-3.5-turbo

30

Comparative Analysis of Attack Techniques:
Vicuna

31

Comparative Analysis of Attack Techniques:
Llama

32

Comparative Analysis of Attack Techniques

33

Top 5 template-based Attack Strategies

34

For each method of attack applied on GPT-3.5-turbo, the count
of questions from relevant categories that are successfully
breached

35

For each method of attack applied on Vicuna, the count of
questions from relevant categories that are successfully
breached

36

For each method of attack applied on Llama, the count of questions
from relevant categories that are successfully breached

37

Targeted Experiment result: Influence of Loss
Metrics to jailbreak

38

Impact of Special Tokens in Prompts

39

Effectiveness of Defense Strategies (RQ2)

• How well do defenses mitigate jailbreak attacks?
• Evaluating adversarial training, filtering, and fine-tuning
• Success rates of models after applying defenses
• Patterns in robustness across different architectures

40

Comparative Analysis of Defense Techniques:
Llama-2

41

Comparative Analysis of Defense Techniques:
Vicuna

42

Comparative Analysis of Defense Techniques:
GPT-3.5-turbo

43

Comparative Analysis of Defense Techniques

44

Comparative Analysis of Defense Techniques

45

Comparative Analysis of Defense
Techniques

46

Key Findings and Insights for Defense
mechanism
• Detection Constraints

• Lack of uniform evaluation methodology

• Cost concerns
• Bergeron method; effective yet substantial operational cost

• Latency and Scalability issue

47

Conclusion

• Template methods highly effective; 78 templates technique
strongest.

• GPTFuzz is the best generative attack within budget.
• LLMs show resilience to unlawful and harmful content queries.
• Most current defenses are ineffective, with Bergeron performing

best.
• Need for a uniform jailbreak detection baseline and improved

defenses.
• Observed impact of ‘[/INST]’ marker in LLaMa model.
• Future work: Integrating evolving attack and defense techniques.

48

Q&A

• Open discussion and audience questions.

49

Constitutional Classifiers: Defending
against Universal Jailbreaks across
Thousands of Hours of Red Teaming

Presenter-
Radowan Mahmud Redoy (snf4za)
Rishov Paul (vst2hb)

Radowan Mahmud Redoy (snf4za)

2

Example

“Do Anything Now” (Shen et al., 2023)

3

Background on Jailbreaking

More concerning as the chemical, biological, radiological, or nuclear (CBRN) capabilities of
LLMs increase

Universal jailbreak strategies:

❑ Could allow non-experts to execute complex scientific processes

❑ Defenses must be practically viable for deployment

❑ Flexible enough to adapt to evolving threat models

Large language model (LLM) safety mechanisms can be circumvented by “jailbreaks” that
elicit harmful information from models

"Attacks that reliably extract detailed harmful
information across the vast majority of queries in

a domain"

4

Why Jailbreaking Happens?

Reliable Access
to Accurate
Information

Comprehensive
Coverage Across
Queries

Provision of
Detailed Specific
Information

5

Introduction to Proposed Framework

To defend LLMs against universal
jailbreaks,

Classifier safeguards that monitor inputs and outputs.

To train these safeguards,

A constitution defining categories of harmful and
harmless content

Enabling rapid adaptation to new threat models.

The constitution is used to generate
synthetic data for use in training

Constitutional Classifiers, a framework that trains classifier safeguards using explicit
constitutional rules

6

Objectives - Key Constraints

Output classifiers support streaming
prediction

Assess the potential harmfulness of the complete
model output at each token

Immediately halt generation, preserving both safety
and user experience

Allows to rapidly adapt to new threat
models through constitution updates,

including those related to model misalignment

To enhance performance, Employ extensive data augmentation and leverage
pool sets of benign data.

7

Developing practically viable safeguards to
defend against universal jailbreaks.

Desideratum 3: Flexibility. Safeguards should be flexible enough to adapt to evolving domains
of potential harm.

Desideratum 2: Practical deployment viability.

Maintain reasonable inference overhead and
latency to be cost-effective in production

Preserve time-to-first-token and streaming
capabilities for user experience

Keep false-positive rates low to avoid
frustrating legitimate users.

Desideratum 1: Robustness to universal jailbreaks

Goal is to develop safeguards that enable the wide deployment of LLMs with advanced scientific capabilities

8

Overview

9

Constitutional Classifiers

Constitution-Guided Synthetic
Data: Trains classifiers using
synthetic data based on rules
defining harmful and permissible
content.

Adaptable & Scalable: Enables
rapid updates for evolving threats
and large-scale data generation.

False Positive Reduction: Uses
data augmentation and benign
input/output pools to enhance
accuracy.

Input Classifier: Blocks harmful
prompts.

Streaming Output Classifier:
Monitors outputs in real-time,
halting harmful responses.

Robust Against Jailbreaks:
Defends against many-shot
jailbreaking and GCG attacks,
preventing safeguard bypasses.

10

Specifying a constitution

Table : Example harmful and harmless constitution. Using a constitution of natural-language
rules to specify restricted and permitted categories. This example shows categories of harmful and
harmless content in the context of chemical weapons. See Appendix B for full constitutions.

11

Generating Synthetic Data to train Classifiers

• Stage I: constitution-based synthetic-data generation.

• Use a helpful-only model to generate queries that span the
constitutional categories,

• Use the helpful-only model to generate harmful and harmless
outputs for each synthetic input.

• Use a prompted language model to filter out any inadvertent
refusals

• Stage II: data augmentation.

• These “transformations” preserve semantic content while
expanding the diversity of inputs and outputs

12

Automated
red teaming

Figure: Automated-red-teaming pipeline. Uses a prompted
language model to automatically red team a given system.
Successful attacks from this pipeline can then added to
training datasets to improve classifiers.

13

Classifier types

Figure: Classification-task setup for training classifiers. For both input and output classifiers,

formulating the classification task as a next-token-prediction task outperforms a value-head
setup. Error bars are computed from 95% confidence intervals.

In light of these
results, next-

token prediction
is selected for
input classifier.

For the output classifier, however, the value-
head setup is selected despite its lower
performance because of the simplified

implementation of allowing token streaming

14

Input classifiers

The input-classification task is
framed as a next-token-

prediction problem and they
fine-tune a language model to

perform this task

Train the classifier to block
inputs that attempt to

establish coded
communication or otherwise

obfuscate the output such
that it cannot be understood

without seeing the input.

Include pool sets of harmless
queries to help minimize

false-positive rates for
legitimate inputs

15

Output
classifiers

To preserve output-streaming capabilities, a key
requirement for the output classifiers is continuous
token streaming.

Fine-tune a language model with a linear value head that
predicts the harmfulness of a full sequence of tokens of
length T from a prefix of T˜ ≤ T token.

If the classifier’s predicted score for a given token
exceeds a given threshold, we block the output and stop
streaming.

This approach allows to cache intermediate activations
during sampling and token-wise prediction, and is thus a
particularly efficient approach for streaming
classification.

16

Training Loss for Output Classifiers

Here LNTP is the standard next-token-prediction loss, λ is a regularization hyperparameter, and LBCE is binary-
cross-entropy loss. To predict the harmfulness p at each token position, there are two natural choices:

1. Directly using each value-head probability as the predictor for the full sequence label.
2. Using the cumulative-maximum value-head probability as the predictor for the full sequence label.
They combine the benefits of these choices by linearly interpolating between them throughout training.

17

Output classifiers

Figure: Example output-classifier predictions. Unlike the input classifier, our output classifier
makes a prediction at each token for the harmfulness of a full output sequence. This prediction is
used to assess whether the output stream should be stopped at a given token position. In this
figure, the numbers indicate word-level predictions rather than token-level predictions

18

Rishov Paul (vst2hb)

20

Constitutional classifiers defend against universal jailbreaks by
human red teaming

Bug-bounty program:
Parterned with HackerOne

Target Queries:

10 harmful Chemical,
Biological, Radiological,
Nuclear (CBRN) queries

Applications: 800 Invited participants: 405

Active participants: 183

21

Recruiting
Red Teamers

22

Experience levels of red teamers

23

Evaluating jailbreak success

Objective: Measure
effectiveness of

universal jailbreaks.

multi-stage LLM-
based rubric-grading

pipeline

Step 1: Generate
baseline outputs from

helpful-only models
(no safeguards).

Step 2: Create query-
specific rubrics with
key information from

baseline outputs.

Step 3: Use LLM grader
to score candidate
jailbreak outputs

against rubric criteria.

Assessment:
Compare candidate
jailbreak scores to
average baseline

scores.

Effectiveness
Criteria: Higher scores

indicate successful
extraction of detailed
harmful information.

24

Rubric-
based

Grading
Example

25

Red-teaming
results

26

Report Severity
(Graph A)

• Measures how many out of 10 sensitive
questions were successfully answered in
each attack attempt

• Attackers generally answered fewer
than 3 out of 10 questions

• No attempt was succeeded fully (10/10)

27

Red-teamer Severity
(Graph B)

• Focuses each participant’s best
performance across all their submitted
reports

• Nobody managed more than 6
questions at the stricter standard (red
bars)

28

Questions Vulnerability
(Graph C)

• Analysis of per-question vulnerability

• Q2 being most resistant with 4 reports

• Q9 being most vulnerable with near 40
reports

29

Robustness
Comparison

HHH model: Harmlessness training

30

Red-teaming evaluation limitations

High Refusal Rate:
Prioritizing AI robustness caused excessively cautious responses, resulting in frequent unnecessary refusals.

Incomplete Vulnerability Detection:
Attackers still found vulnerabilities, indicating room for strengthening AI defenses further.

Limited Attacker Representation:
Evaluations involved only a subset of possible attackers; real-world attackers may differ in skill and approach.

Insufficient Incentives:
Attackers were rewarded upon minimal success (half-detail), possibly limiting exploration of more potent attack
strategies.

Narrow Context Scope:
Evaluations only focused on chatbot interactions and fixed queries, raising questions about robustness in
broader or different real-world deployments.

31

Enhanced classifier methodology

Significantly expanded
the harmless

constitution to reduce
false positives

Enhanced robustness
and performance by

increasing the number
and variety of data

augmentations and
training data

Reduced inference
overhead by using

Claude 3.5 Haiku instead
of Claude 3.5 Sonnet for

classifier training

32

Constitutional
classifier
performance

33

Scaling
trends for
constitutional
classifiers

34

Extracting Keywords from
Helpful-Only Model
Outputs to Harmful
Queries

35

36

37

38

39

40

Conclusion

Constitutional classifiers offer a promising
foundation for deploying advanced, high-risk AI
systems securely.

Successfully prevented human testers from
consistently tricking AI into giving inappropriate
answers.

Enhanced robustness while significantly reducing
unnecessary refusals and computational overhead.

Easily adaptable to new threats by updating the rules
("constitutions").

However, additional protective measures (rapid
jailbreak patching, continuous monitoring) remain
essential for safe deployment.

41

Thanks

42

	Slide 1: Two Papers:
	Slide 2: First Half A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models
	Slide 3: What is LLM Jailbreak?
	Slide 4: Types of Jailbreak Attacks
	Slide 5: Continue…
	Slide 6: Generative Technique
	Slide 7: Continue...
	Slide 8: Template Technique
	Slide 9: Continue...
	Slide 10: Training Gap Technique
	Slide 11: Continue...
	Slide 12: Types Jailbreak Defense
	Slide 13: Continue…
	Slide 14: Self Processing Defense
	Slide 15: Self Processing Defense
	Slide 16: Additional Helper Defense
	Slide 17: Input Permutation Defense
	Slide 18: Continue…
	Slide 19: Study Design
	Slide 20: Baseline Selection
	Slide 21: LLMs Under Test
	Slide 22: Second Half of the paper: A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models
	Slide 23: Experimental Configuration
	Slide 24: Benchmark Construction: OpenAI’s Disallowed Usage
	Slide 25: Benchmark Construction: Taxonomy of Jailbreak Prompts
	Slide 26: Evaluation Metrics: RQ1
	Slide 27: Evaluation Metrics: RQ2
	Slide 28: Effectiveness of Jailbreak Attacks (RQ1)
	Slide 29: Comparative Analysis of Attack Techniques
	Slide 30: Comparative Analysis of Attack Techniques: GPT-3.5-turbo
	Slide 31: Comparative Analysis of Attack Techniques: Vicuna
	Slide 32: Comparative Analysis of Attack Techniques: Llama
	Slide 33: Comparative Analysis of Attack Techniques
	Slide 34: Top 5 template-based Attack Strategies
	Slide 35: For each method of attack applied on GPT-3.5-turbo, the count of questions from relevant categories that are successfully breached
	Slide 36: For each method of attack applied on Vicuna, the count of questions from relevant categories that are successfully breached
	Slide 37: For each method of attack applied on Llama, the count of questions from relevant categories that are successfully breached
	Slide 38: Targeted Experiment result: Influence of Loss Metrics to jailbreak
	Slide 39: Impact of Special Tokens in Prompts
	Slide 40: Effectiveness of Defense Strategies (RQ2)
	Slide 41: Comparative Analysis of Defense Techniques: Llama-2
	Slide 42: Comparative Analysis of Defense Techniques: Vicuna
	Slide 43: Comparative Analysis of Defense Techniques: GPT-3.5-turbo
	Slide 44: Comparative Analysis of Defense Techniques
	Slide 45: Comparative Analysis of Defense Techniques
	Slide 46: Comparative Analysis of Defense Techniques
	Slide 47: Key Findings and Insights for Defense mechanism
	Slide 48: Conclusion
	Slide 49: Q&A

