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What is LLM Jailbreak?

• Jailbreak attack means modifying the prompt to generate malicious content from LLM



Types of Jailbreak Attacks

• Generative Technique

• Includes attacks that are dynamically produced 

• Template Technique

• Compromised attacks conducted via pre-defined template 

• Training Gap Technique

• Focuses on exploiting weakness due to insufficient 
safeguards in safe training practices
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Generative Technique
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Template Technique

Utilize a predefined template-based prompt for the jailbreak .
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Training Gap Technique

Exploit the weakness due to insufficient safeguards in training practices.
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Types Jailbreak Defense

• Self-Processing Defense

• Rely on the LLM’s own capabilities

• Additional Helper Defense

• Require support from additional helper for the verification

• Input Permutation Defense

• Manipulate the input prompt and verify the target LLM 
multiple times
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Self Processing Defense

Wrap the user query with build in self 

reminder to remind the LLM to act 

responsibly

.
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Additional Helper Defense

• In the intermediate block, the color indicates the 
perplexity of each token. 

• In the output block, the color indicates the likelihood 

     of it being part of an adversarial prompt



Input Permutation Defense
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Study Design

• RQ1 (Effectiveness of Jailbreak Attack)

• How effective are jailbreak attack techniques across various LLMs? 

• RQ2 (Effectiveness of Jailbreak Defenses)

• How effective are jailbreak techniques against various attack techniques

Study workflow



Baseline Selection

• For RQ1, selected total of 9 attack techniques

• 5 Generative techniques: DAN, PAIR, TAP, GPTFuzz, GCG

• 4 Template based techniques, includes 78 templates 

• For RQ2, examine 4 defense techniques

• Bergeron and Baseline for additional helper technique

• RALLM and SmoothLLM for input permutation technique



LLMs Under Test

• Evaluate 3 distinguish LLM models

• Llama 2-7b, Vicuna-v1.5-7b and GPT 3.5 Turbo 1106



Second Half of the paper: A 
Comprehensive Study of 

Jailbreak Attack versus Defense 
for Large Language Models

Presented By : Md. Mahir Ashhab (ftm2nu)



Experimental Configuration

• Two Nvidia RTX 6000 Ada GPU
• Each with 48 GB of VRAM

• For addressing RQ1
• Each query is executed 5 times

• For evaluating generative models
• Process capped at a maximum 75 iterations
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Benchmark Construction: OpenAI’s 
Disallowed Usage
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Benchmark Construction: Taxonomy of 
Jailbreak Prompts
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Evaluation Metrics: RQ1

• Attack Success Rate (𝑨𝑺𝑹 =
𝒄

𝒏
)

• Ratio of successfully compromised question 𝒄 to the total number of 
questions n. 

• Measures the effectiveness of an attack

• Efficiency (𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 = 𝒒

𝒐
)

• Ratio of the number of individual queries q that successfully compromise 
the model to the total number of query attempts o

• Quantifies the effectiveness of attack queries
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Evaluation Metrics: RQ2

• Defense Passing Rate (𝑫𝑷𝑹 =
𝒇

𝒎
)

• Ratio of prompts f that incorrectly bypass the defense mechanism to the 
total number of malicious inputs m

• Benign Success Rate 𝑩𝑺𝑹 =
𝐬

𝐭
• Assesses the proportion of non-malicious inputs s that successfully 

navigate through the defense filter relative to the total number of inputs t.
• Generated Response Quality (GRQ)

• evaluates the quality of responses generated by defense mechanisms 
compared to a standard reference.

• Rely of Human feedback
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Effectiveness of Jailbreak Attacks (RQ1)

• Evaluating the success rates of different jailbreak attacks across 
LLMs.

• Vicuna, LLaMa, and GPT-3.5 Turbo performance comparison
• Attack effectiveness under different prompt conditions
• Key vulnerabilities observed in tested models
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Comparative Analysis of Attack Techniques

• Success rates across models:
• White-box attacks: High success but require internal knowledge
• Universal attacks: More transferable but less effective 
• Instruction tuning attacks: Highly adaptable
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Comparative Analysis of Attack Techniques: 
GPT-3.5-turbo
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Comparative Analysis of Attack Techniques: 
Vicuna
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Comparative Analysis of Attack Techniques: 
Llama
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Comparative Analysis of Attack Techniques

33



Top 5 template-based Attack Strategies
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For each method of attack applied on GPT-3.5-turbo, the count 
of questions from relevant categories that are successfully 
breached
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For each method of attack applied on Vicuna, the count of 
questions from relevant categories that are successfully 
breached

36



For each method of attack applied on Llama, the count of questions 
from relevant categories that are successfully breached

37



Targeted Experiment result: Influence of Loss 
Metrics to jailbreak 
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Impact of Special Tokens in Prompts
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Effectiveness of Defense Strategies (RQ2)

• How well do defenses mitigate jailbreak attacks?
• Evaluating adversarial training, filtering, and fine-tuning
• Success rates of models after applying defenses
• Patterns in robustness across different architectures
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Comparative Analysis of Defense Techniques: 
Llama-2
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Comparative Analysis of Defense Techniques: 
Vicuna
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Comparative Analysis of Defense Techniques: 
GPT-3.5-turbo
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Comparative Analysis of Defense Techniques
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Comparative Analysis of Defense Techniques
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Comparative Analysis of Defense 
Techniques
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Key Findings and Insights for Defense 
mechanism
• Detection Constraints

• Lack of uniform evaluation methodology

• Cost concerns
• Bergeron method; effective yet substantial operational cost

• Latency and Scalability issue
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Conclusion

• Template methods highly effective; 78 templates technique 
strongest.

• GPTFuzz is the best generative attack within budget.
• LLMs show resilience to unlawful and harmful content queries.
• Most current defenses are ineffective, with Bergeron performing 

best.
• Need for a uniform jailbreak detection baseline and improved 

defenses.
• Observed impact of ‘[/INST]’ marker in LLaMa model.
• Future work: Integrating evolving attack and defense techniques.
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Q&A

• Open discussion and audience questions.
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Constitutional Classifiers: Defending 
against Universal Jailbreaks across 
Thousands of Hours of Red Teaming

Presenter-
Radowan Mahmud Redoy (snf4za)
Rishov Paul (vst2hb)



Radowan Mahmud Redoy (snf4za)
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Example

“Do Anything Now” (Shen et al., 2023)
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Background on Jailbreaking

More concerning as the chemical, biological, radiological, or nuclear (CBRN) capabilities of 
LLMs increase 

Universal jailbreak strategies: 

❑ Could allow non-experts to execute complex scientific processes 

❑ Defenses must be practically viable for deployment 

❑ Flexible enough to adapt to evolving threat models

Large language model (LLM) safety mechanisms can be circumvented by “jailbreaks” that 
elicit harmful information from models 

"Attacks that reliably extract detailed harmful 
information across the vast majority of queries in 

a domain"
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Why Jailbreaking Happens?

Reliable Access 
to Accurate 
Information

Comprehensive 
Coverage Across 
Queries

Provision of 
Detailed Specific 
Information
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Introduction to Proposed Framework

To defend LLMs against universal 
jailbreaks, 

Classifier safeguards that monitor inputs and outputs. 

To train these safeguards, 

A constitution defining categories of harmful and 
harmless content

Enabling rapid adaptation to new threat models. 

The constitution is used to generate 
synthetic data for use in training

Constitutional Classifiers, a framework that trains classifier safeguards using explicit 
constitutional rules
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Objectives - Key Constraints

Output classifiers support streaming 
prediction

Assess the potential harmfulness of the complete 
model output at each token 

Immediately halt generation, preserving both safety 
and user experience

Allows to rapidly adapt to new threat 
models through constitution updates, 

including those related to model misalignment

To enhance performance, Employ extensive data augmentation and leverage 
pool sets of benign data. 
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Developing practically viable safeguards to 
defend against universal jailbreaks.

Desideratum 3: Flexibility. Safeguards should be flexible enough to adapt to evolving domains 
of potential harm. 

Desideratum 2: Practical deployment viability.

Maintain reasonable inference overhead and 
latency to be cost-effective in production

Preserve time-to-first-token and streaming 
capabilities for user experience

Keep false-positive rates low to avoid 
frustrating legitimate users. 

Desideratum 1: Robustness to universal jailbreaks

Goal is to develop safeguards that enable the wide deployment of LLMs with advanced scientific capabilities
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Overview
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Constitutional Classifiers

Constitution-Guided Synthetic 
Data: Trains classifiers using 
synthetic data based on rules 
defining harmful and permissible 
content.

Adaptable & Scalable: Enables 
rapid updates for evolving threats 
and large-scale data generation.

False Positive Reduction: Uses 
data augmentation and benign 
input/output pools to enhance 
accuracy.

Input Classifier: Blocks harmful 
prompts.

Streaming Output Classifier: 
Monitors outputs in real-time, 
halting harmful responses.

Robust Against Jailbreaks: 
Defends against many-shot 
jailbreaking and GCG attacks, 
preventing safeguard bypasses.
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Specifying a constitution

Table : Example harmful and harmless constitution. Using a constitution of natural-language 
rules to specify restricted and permitted categories. This example shows categories of harmful and 
harmless content in the context of chemical weapons. See Appendix B for full constitutions.
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Generating Synthetic Data to train Classifiers

• Stage I: constitution-based synthetic-data generation.

• Use a helpful-only model to generate queries that span the 
constitutional categories, 

•  Use the helpful-only model to generate harmful and harmless 
outputs for each synthetic input.

•  Use a prompted language model to filter out any inadvertent 
refusals 

• Stage II: data augmentation. 

• These “transformations” preserve semantic content while 
expanding the diversity of inputs and outputs
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Automated 
red teaming

Figure: Automated-red-teaming pipeline. Uses a prompted 
language model to automatically red team a given system. 
Successful attacks from this pipeline can then added to 
training datasets to improve classifiers.
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Classifier types

Figure: Classification-task setup for training classifiers. For both input and output classifiers, 

formulating the classification task as a next-token-prediction task outperforms a value-head 
setup. Error bars are computed from 95% confidence intervals.

In light of these 
results,  next-

token prediction 
is selected for 
input classifier. 

For the output classifier, however,  the value-
head setup is selected despite its lower 
performance because of the simplified 

implementation of allowing token streaming 
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Input classifiers

The input-classification task is 
framed as a next-token-

prediction problem and they 
fine-tune a language model to 

perform this task

Train the classifier to block 
inputs that attempt to 

establish coded 
communication or otherwise 

obfuscate the output such 
that it cannot be understood 

without seeing the input. 

Include pool sets of harmless 
queries to help minimize 

false-positive rates for 
legitimate inputs
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Output 
classifiers

To preserve output-streaming capabilities, a key 
requirement for the output classifiers is continuous 
token streaming.

Fine-tune a language model with a linear value head that 
predicts the harmfulness of a full sequence of tokens of 
length T from a prefix of T˜ ≤ T token.

If the classifier’s predicted score for a given token 
exceeds a given threshold, we block the output and stop 
streaming. 

This approach allows to cache intermediate activations 
during sampling and token-wise prediction, and is thus a 
particularly efficient approach for streaming 
classification.
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Training Loss for Output Classifiers

Here LNTP is the standard next-token-prediction loss, λ is a regularization hyperparameter, and LBCE is binary-
cross-entropy loss. To predict the harmfulness p at each token position, there are two natural choices:

1. Directly using each value-head probability as the predictor for the full sequence label.
2. Using the cumulative-maximum value-head probability as the predictor for the full sequence label.
They combine the benefits of these choices by linearly interpolating between them throughout training. 
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Output classifiers

Figure: Example output-classifier predictions. Unlike the input classifier, our output classifier 
makes a prediction at each token for the harmfulness of a full output sequence. This prediction is 
used to assess whether the output stream should be stopped at a given token position. In this 
figure, the numbers indicate word-level predictions rather than token-level predictions
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Constitutional classifiers defend against universal jailbreaks by 
human red teaming

Bug-bounty program: 
Parterned with HackerOne

Target Queries: 

10 harmful Chemical, 
Biological, Radiological, 
Nuclear (CBRN) queries

Applications: 800 Invited participants:  405

Active participants: 183
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Recruiting 
Red Teamers
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Experience levels of red teamers
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Evaluating jailbreak success

Objective: Measure 
effectiveness of 

universal jailbreaks.

multi-stage LLM-
based rubric-grading 

pipeline

Step 1: Generate 
baseline outputs from 

helpful-only models 
(no safeguards).

Step 2: Create query-
specific rubrics with 
key information from 

baseline outputs.

Step 3: Use LLM grader 
to score candidate 
jailbreak outputs 

against rubric criteria.

Assessment: 
Compare candidate 
jailbreak scores to 
average baseline 

scores.

Effectiveness 
Criteria: Higher scores 

indicate successful 
extraction of detailed 
harmful information.
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Rubric-
based 

Grading 
Example
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Red-teaming 
results
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Report Severity 
(Graph A)

• Measures how many out of 10 sensitive 
questions were successfully answered in 
each attack attempt

• Attackers generally answered fewer 
than 3 out of 10 questions

• No attempt was succeeded fully (10/10)
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Red-teamer Severity 
(Graph B)

• Focuses each participant’s best 
performance across all their submitted 
reports

• Nobody managed more than 6 
questions at the stricter standard (red 
bars)
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Questions Vulnerability 
(Graph C)

• Analysis of per-question vulnerability

• Q2 being most resistant with 4 reports

• Q9 being most vulnerable with near 40 
reports

29



Robustness 
Comparison

HHH model: Harmlessness training 
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Red-teaming evaluation limitations

High Refusal Rate:
Prioritizing AI robustness caused excessively cautious responses, resulting in frequent unnecessary refusals.

Incomplete Vulnerability Detection:
Attackers still found vulnerabilities, indicating room for strengthening AI defenses further.

Limited Attacker Representation:
Evaluations involved only a subset of possible attackers; real-world attackers may differ in skill and approach.

Insufficient Incentives:
Attackers were rewarded upon minimal success (half-detail), possibly limiting exploration of more potent attack 
strategies.

Narrow Context Scope:
Evaluations only focused on chatbot interactions and fixed queries, raising questions about robustness in 
broader or different real-world deployments.
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Enhanced classifier methodology

Significantly expanded 
the harmless 

constitution to reduce 
false positives

Enhanced robustness 
and performance by 

increasing the number 
and variety of data 

augmentations and 
training data

Reduced inference 
overhead by using 

Claude 3.5 Haiku instead 
of Claude 3.5 Sonnet for 

classifier training
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Constitutional 
classifier 
performance
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Scaling 
trends for 
constitutional 
classifiers
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Extracting Keywords from 
Helpful-Only Model 
Outputs to Harmful 
Queries
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Conclusion

Constitutional classifiers offer a promising 
foundation for deploying advanced, high-risk AI 
systems securely.

Successfully prevented human testers from 
consistently tricking AI into giving inappropriate 
answers.

Enhanced robustness while significantly reducing 
unnecessary refusals and computational overhead.

Easily adaptable to new threats by updating the rules 
("constitutions").

However, additional protective measures (rapid 
jailbreak patching, continuous monitoring) remain 
essential for safe deployment.
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Thanks
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