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Foundation models

* Foundation models are large-scale neural networks mainly used for a variety of tasks.
o Chat GPT
o DeepSeek
o LLama

* Not feasible to fine tune models with traditional methods
o Updating all parameters (often billions — trillions of them)
o Immense computational costs
o Not super flexible for the variety of tasks needed for foundational modules



LoRA

* Low Rank Adaptation techniques involve implementing
techniques that allow fine tuning with minimal overhead.

o Allows models to be fine tunes for specific tasks without having to
update all the parameters

Scientific Natural
Discovery Language

o Higher degree of customization

Low-rank
Works on two principles Adaptation Computer

fine tuning a low dimension subspace el Vision
training it using low-rank matrices

Speech
Processing




Basics

* Create a low-rank update matrix AW which is implemented through AW = BA:X:
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This matrix is often fine tuned and added on over each cycle making more changed into
the model

a/r is a scaling factor controlling the magnitude of the low-rank update

F(xX) = Wox + AWx = Wyx + %BAx,



Model of fine tuning process

Pretrained
Weights




Advantages

* Drastically cuts down on the number of new parameters needed to train
* Focusing on the specific matrix leads to faster changes

* Does not slow down the model when using it

* Keeps the all-previous functionality since all original weights are frozen

* Easy to deploy for any scenario



Foundations for LORA

e Foundations

o Looking into the foundational aspects of Lora
and how they show their effectiveness of the

process
Parameter Efficiency (1) Parameter Decomposition, (2) Parameter Pruning,
[ | Advancement (3) Parameter Freezing and Sharing, (4) Parameter Quantization
[Ranking Adaptation ] { |(1) Rank Refinement, (2) Rank Augmentation ”
[ raining Process ] { |(1) Learning Rate, (2) Dropout Strategies, (3) Scaling Factor "
Improvements
L ] - (1) Effectiveness, (2) Optimal Rank Selection,
[Thecretlcal Foundation ] { (3) Roles of update matrices, (4) Induced Behaviors




Parameter Efficiency Enhancement

4 Distinct Components that make up the process of making the process of training easier

1. Parameter Decomposition

(A) Singular Value
Decomposition

T(}Xkl XT1
Td— xkdxrd

(B) Tensor Train
Decomposition

2. Parameter Pruning

AW,

N

(A) in-layer pruning

N\

AW, AW, ™

N

AW,

(B) cross-layer pruning

3. Parameter Freezing
and Sharing

A5 N(O 62) Frozen

and

M/ Shared

4. Parameter Quantization

|

I

: Frozen

| Quantized
| Weights W
|

|

I

I

[ frozen
[ trainable
K pruned
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Parameter Decomposition

* Breaking down the learning process into smaller chunks to make it computationally
cheaper and gives more control

e 2 main ways of doing this
o Update Matrix Decomposition
o Pre-trained Weight Decomposition

11



Update Matrix Decomposition

* Breaking down the AW matrix into other components, often times into smaller pieces
with different properties to make for a more effective finetuning process

1. Parameter Decomposition

(A) Singular Value
Decomposition

roXkq X1y

Ta—1XKqgXTq
(B) Tensor Train
Decomposition

TABLE |: Summary of Weight Decomposition Methods for LoRA

LoRAs Method Decomposition Components
AdaLoRA [2] SVD AW: AW « PAQ"
BiLoRA [37] SVD AW: AW « PAQ"

LoRETTA,,, [24]
LoRETTAqp [34]
TT-LoRA [25]

DoRA [29]

Tensor Train
Tensor Train

Tensor Train

Normalization

AW: AW « TT(B) - TT(A)
AW: AW « TT(AW) // series

AW: AW « TT(AW) // parallel

. Wo

Wy Wy « ”WOHCW
[
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Pre-trained Weight Decomposition

Breaks down the pretrained weight W0 into magnitude and directional components.

This breaks down the original weights into a more flexible format meaning you can change
specific vectors of the original weights instead of the whole thing

Wy
“IWoll,”

Vv
Wy =m—— = |W
VI,

W, + BA
m ,
W, + BA],

13



Parameter Pruning

e Selectively removing less important parameters
o Importance based

= Assigning importance to each parameter based on criteria and removing the ones under a specific threshold

o Regularization-based

= Removing parameters by assigning penalty terms, that rewards it for assigning zero to any parameters, parameters that are zero are

considered pruned

o Output-based

= Getting rid of parameters who don't have much of an effect on the model's behavior

Method Strategy Mechanism Core Innovation

Parameter Pruning

Multi-criteria importance evaluation (magnitude,
SparseAdapter [4] Importance-based ~ Parameter scoring , ) p (mag
gradient, sensitivity)

Regularization-

SoRA [43] based Gated sparsification  Ll-regularized gating for adaptive sparsity
ase
Layer impact Dynamic pruning based on layer-wise output
LoRA-Drop [44] Output-based yerimp ynamic pruning Y P
analysis contributions

2. Parameter Pruning

o B

(A) in-layer pruning

{1

AW, AW, ™ AW,

(B) cross-layer pruning




Parameter Freezing

* Freezing one of the LORA matrices (either A or B) so that the other can be trained
independently
o Itis possible to freeze random vectors in matrix A while only updating matrix B
o Because matrix A works like an extractor and B acts like a projector, so only changing B is an option

3. Parameter Freezing

| I

: and Sharing :

Parameter Freezing : A :
Fixed feature | \ I

LoRA-FA [45] Selective freezing , Random initialization and freezing of matrix A | Y\ Frozen |
extraction | d=1 < and |

Asymmetric LoRA Orthogonal | m Shared |
y [ Theoretical design , g Random orthogonal A with theoretical guarantees | |
46] projection T
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Parameter Quantization

Quantization optimizes a model by lowering the bit at which the parameters are stored at.
For Lora, you can quantize the training matrices to speed up the process of training.

* Quantization Timing
o Can be done before, during, or after finetuning

* Quantization Technique
o Uniform, Non-uniform, and mixed-precision

16



LoRA Quantization

TABLE Ill: Comparison of Quantization Methods for LoRA

Memo
Method Timing Target Precision Technique Low-Rank Optimization E v Dequant
ocus
_ i _ Standard ,
QLoRA [55] Pre-FT  Pretrained 4 bit NormalFloat LoRA Separate FT&Inference  Partial
o
A-LoRA Pre & -aware
?_ [ ] Pretrained 2, 3, 4 bit Group-wise Q Joint FT&Inference  None
57 During FT LoRA
~ ) , Uniform & Q-aware ] ,
LoftQ [50] Pre-FT  Pretrained mixed Joint FT Partial
NormalFloat LoRA
Group-wise &  SVD-based
LQER [58] Post-FT  Pretrained mixed P , Q-error min Inference None
adaptive LR
D )
QDyLoRA During FT  Pretrained  mixed Rank sampling {H;TC Rank selection FT None
o
LQ-LoRA Q-aware
r: [ Pre-FT  Pretrained mixed ILP & data-aware LoRA Joint FT&Inference  Partial
59 o

FT = Fine-tuning, Q = Quantization, LR = Low-Rank, ILP = Integer Linear Programming

17



Akira Durham
ZUp9su



Frontiers in LORA and Applications

* Frontier developments that extend LoRA capability
* Enable new functionalities
* Handle more complex tasks ¢ (Aovances Avchtectrs
* Address challenges in adaptation (Continsal Loaring

r(1 ) LoRA Composition, (2) Generalized Framework,
(3) Gradient Boosting LORA, (4) MoE with LoRA

(1) Regularization-based, (2) Task Arithmetic-based,
(3) Ensemble-based

L

(1) Modular Decompasition, (2) Optimization-Based, (3) Progressive
Unleaming

. . m J \;Unlearningrl earning
* Application LoRA fo

Foundation {'-Féce:ate& Vir_rua.'n:ng (1) Privacy and Secunty, (2) Heterogeneity Handling, (3) Personalization ‘l

Models

I,Long Sequence Modeling | (1) Shifted Sparse Attention, (2) Sink Fixed Attention ]

* LoRA adaptation across domains

(1) Concurrent Serving, (2) Batching Serving

Lf arving Systems .
‘. LoRA Serving Systems (3) Code-start Latency Mitigation, (4) Personal Devices

* Challenges and Discussion
* Critical challenges B
\\Cum;_ulu' Vision

* Opportunities for investigation (Spoech Recognion

(Codc Engineering

* CO n CI u S io n . 1 \’:‘S;‘lcnuhc Discovery

| Recommender Systems

(1) NLU, QA, MT, Reasoning, NLG, (2) Multilingual Language and
Dialects Processing, (3) Medical and Clinical Text Processing. etc.

P \ Language Tasks

(1) Visual Understanding, (2) Visual Generation

L

J
_l
|
_|

(1) Code Review and Analysis, (2) Code Generation and Summarization -l

| (1) Fake audio detection, (2) Multiingual ASR, (3) Low-resource ASR

L

A =

(1) Protein Analysis, (2) Material Design

(1) CTR Prediction, (2) Sequential Recommendation

Ay A v A e A A 2=\ A — A —

(1) Cross domain Graph Adaptation,

)HGraph Leaming (2) Dynamic Knowledge Graph Update

r(1‘:Nr.)du»:;;:-t::dx(: Adaptation, {2) Mult-Channel Modekng,

\ \h Spatial-Temporal Fnrcasr:ﬂg‘ | (3) Out-of-Domain Prediction
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Advanced Architecture

* Goals: Improve LoRA for performance,
parameter efficiency, generalization

D S Sy,
- |
Q
=
g

* LoRA Composition

* Dynamic composition of multiple LoRA modules
to enhance adaptability + generalization

* Optimization-based, Retrieval-based, Batch-
oriented Compositions

o

* Generalized Framework

* Extending LoRA architecture to capture both task-
specific and general features better

e Dual-branch and Multi-PEFT United Frameworks

D3-D-Pd &

~

\-——————

(A) Composition of LoRA Modules
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Advanced Architecture

* Mixture of Experts
* Multiple "expert" sub-networks specializing in different input patterns
* Gating mechanism routes inputs to network experts, allowing for broad input handling
* Efficiency-oriented Design, Memory-based Adaptation, Task-based Integration

n y=3 Gix)Ex) (13)
Wx + Gi(x)E(x) | o o

( where y is the output, (¢ is a gating function, E; is an expert,
and # 15 the number of experts.

TABLE 6

Comparison of MoE-LoRA Methods
Method Rouling Key Fealture
MoV/MoLoRA [34] Scft routing All experts contribute with weights
MoELoRA |B5) Top-k Confrastive bebween experts
MoLA [59] Top-k Layer-wise expert distribution
LoRAMGE |20) Top-k Localized balancing for knowledae
MoRAL |91] Soft rouling Lifelong leamning framework
MOELoRA |92] T.!:-ik-b.l:-il."db Task identifier conditioning
MoCLE [93] Cluster-based  Instruction cluster routing
LLaVA-MoLE [%1] Token-level Toyp-1 sparse expert selaction

(B) Mixture of LoRA Experts 21



LoRA for Learning and Unlearning

e Continual Learning

 Efficient nature of LoRA allows for
updating models without forgetting

* Reduced cost vs. fine-tuning, isolation
of task-specific knowledge, flexible
combinations

* Regularization-based, Task arithmetic-
based, Ensemble-based techniques
* Unlearning

* Targeted removal of specific knowledge
from models without retraining

* Modular Decomposition, Optimization-
Based, Sequential Pipeline Strategies

https://arxiv.org/abs/2411.05663

{ Online LoRA )
Classification: dogs, baats, vehicles, etc. .
/ Frozen weights are merged T:ailgi'b!lt
+ i re | T_-T T-_; 'I\---ll: 'I.I- jt
! I
Vision Transformer povees - (VT T W
15100 lranstormel : of the + ; + _a + ;a N ;
Multi-head Attention ) pretrained : o
! | .- r Aa .l ;
: AL A Ady
—_— E .__.h __.b .___h ___'L ,[:h‘]
( '=. : ™,
) | i |
R \
NNl " NE
=i b |
I | | |
Data Stream = i | i |
|1'a5hl |1|.| ||| i IIrt]-.J
ESAS A
| P N Samples trata Stmam) OO
h e B Task 4 >
h %;h. Til
\_ - ' e y. (a) \_ Plateaus of the loss surface Time y. i)

Figure |. The overview of Online-LoR A, As the data s continuously streamed (a), a new pair of rainable LoRA parameters (g, B4) 18

atlded (b) every time the loss surface encounters a plateaw (c). Subseguently, the previous LoEA parameters (A4, B

frozen (the lock sign in (b)) and merged o the weights of the pre-trained YiT model.

: .1_!. H_': .'I.:!.. ”-:|J are
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Federated Learning

.
i @ N * Federated Learning
Centmal Server . .
B % cé%\o .@b * Leverage collective knowledge while
= T 'O " OO . . . .
£ : : : maintaining robust protection for
3 r = o individual data
" Wi 2 s - .
g | Somemaication 3 * Increased foundation models
= oo powe pow e s availability to resource-constrained
( J/ﬁ \\ /..' \ /,/ f - ) ).\ 2
Shared Made é%/c q/\’( e }Q :_39/(“ - /}{) \ E devices, loT
AN = . . .
. \:{ﬂ’“ll i hoael | * Privacy and Security, Computation
5 Efficiency, Heterogeneity Handling,
Locatprivte 8 L] D = e Personalization
Xata A —G_ YooN
- (3]
Persomalized
Maodel
-~

- Local Training - Model Upload - Muodel Agpreestion
- Maodel Download - Personalized Training 23
https://arxiv.org/html|/2406.07925v1



Long Sequence and Serving

* Long Sequence Modeling

* Extend context window of foundation models, ,
. . Performance of Serving Thousands of LoRA Adapters
typically constrained by max context length due (single A100 GPU, Llama-7B base model)
to quadratic computational complexity of self-

attention w.r.t sequence length ;ﬁ- ;
» Shifted Sparse Attention and Sink Fixed s
Attention methods £ 4
* LORA Serving Systems = B » » x
* Efficient serving of multiple LoRA models is : 100 1000 2000

Mumber of adapters

essential — GPU management, cold-start, etc

* Paging mechanism for KV cache and LoRA
weights, CPU-assisted, scheduling algorithm

HuggingFace PEFT m®mvLLM-packed = 5-LoRA

24
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Applications |

e Language Tasks

* Application in NLP to improve inference
latency and training times

e Multilingual Language + Dialects and
Medical + Clinical Text

* Computer Vision

* Enhance adaptability across visual tasks
including understanding and generation

e Visual Understanding

* Visual Generation § == Qs Pudicson
LT YOLO Pmdcton

* Speech Recognition
{a) Zero-shot Grounding results on

data #38 in Aircraft dataset [9].
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V-LoRA LMM

*#.-:l:l..m-::.' Requiremamnis B OwenvL
Accuracy-aware LoRA &~ I Vision Applications l
Adapter Generation | LoRA QwenVLwith
M ! _-“-E_l-f“" Resporses :|“L=LH. Requrements, Reguests> B UCF101 Adapter
pau——— e = | VL with
i External knowledge Em! E;H:u:qh HEJ:I?}E#:HAT:HEF EdeﬂpL
: : i :
[ oomiezpecte ] Fafiaman I e | [ S,
ma. els i -
E L:_arge hMode | L | ATMM \ideo Image Object
i . : ' Multimodal . Qassification Classification  Detection
t | Domain-specific | Model Unmerge| | Merge (op-lAcch  (Precision)  {Fl-score)
Datasets : Mode Mode
bemmnm e — <Mode, LoRé= - Figure 4. LoRA adapters with domain-specific knowledge im-
Offline Online

prove the Qwen-VL's accuracy on target tasks.
Figure 8. ValoRA overview.
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Applications Il

Code Engineering
* Review, Analysis, Generation, Summarization

* Scientific Discovery
* Protein Analysis and General Science Area

« Recommender Systems
* Click-Through Rate Prediction and Sequential Recommendation

Graph NN Learning
* Non-Euclidean data fine-tuning to adapt new graphs or structure updates
* Cross-domain Graph NN Adaptation and Dynamic Knowledge Graph Learning

27



Applications Il

e Spatial-Temporal Forecasting

* LoRA to address multivariate time series | (a) pre-traming step 2

. - B |
data ? ' ] |—— R |
" : : : ' E il T OrERY
* Node-specific Adaptation, Multi-channel | 7 F 1S ]
Modeling, Out-of-domain Prediction = R
& F, F
* Multi-Modal - :]
— Align loss
« MFMs combine different data modalities H =
-> optimize training efficiency + alignment = FE F
* Language-vision Learning —
* Language-audio Learning » B
_ #  Tuned

28



MMD-LoRA

Fig. 4. Qualitative results of MMD-LoRA and the previous SOTA depth estimation method on the Robotcar test set. The first column denotes the original
image. The second, third and fourth column denote the depth estimation results of Monodepth2, md4allDD and ours MMD-LoRA respectively. The final
column indicates the ground-truth depth maps.

Fig. 5. Ablation visualization of our proposed MMD-LoRA with PDDA and VTCCL. The first column denotes the original image. The second, third and
fourth column denote baseline(i.e.EVP [4]), MMD-LoRA with PDDA, MMD-LoRA with PDDA and VTCCL. The final column indicates the ground-truth
depth maps.

https://arxiv.org/abs/2412.20162

P—

—_—

(b) training step

Text
encoder

_'_h._ -
Text
Adapter

Cross atrenﬁunl UMNet
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Challenges and Future Directions

* Challenges

: _ - _—
* Theoretical Understanding puring raining ter raining
Architectural Design Principles

h
* Computation Efficiency
e Robustness and Verification e R
* Privacy and Security HEIgnts : h=(W + B
Wiergea
X X

30
https://www.ibm.com/think/topics/lora



DoRA:

Welight-Decomposed
Low-Rank Adaptation
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Motivation

* LoRA Limitations
o Accuracy gap between LoRA & fine-tuning (FT)
o Limited trainable parameters may restrict learning capacity
o No clear understanding of how LoRA differs from FT

* DoRA (Weight-Decomposed Lower Rank Adaptation)

o Enhance both learning capacity and training stability of LoRA while avoiding
additional inference overhead

o Aim to resemble learning capacity of fine-tuning
o Inspired by weight normalization

33



Weight Normalization

* Weight normalization - achieves faster convergence via improving
conditioning of gradient w/ weight reparameterization

 Decomposes weights into 2 components: magnitude (g) & direction
(v)
o Stabilizes training

o Achieve faster convergence
o Improved robustness

J V
vl

W —

34



DoRA Overview

Pretrained — Frozen Merged
Weight Weight
Wy € R™ | — Trainable W'e R :
— * Decomposes pre-trained
Decompose Merge weight into 2 components:
e - r o . .
(Initialize) magnitude & direction for
Magnitud Magnitud : .
agnitude_ _ _ _ ________. | g | fine-tuning
[ m=Woll.eB¥ ] ; m e B |
Direction - - - - - % —————— - Direction - - - - - % —————— -
] 1/|Woll | ; 1/IIV + AVI), " * LoRA to update direction
| : Adapt l :
| Pretrained | pD | AT '~ component
| Weight : | AVeR™ |
I | ' Pretrained B I
| V =W, € R%* | | Weight |
| | || v e R ——
: ' : A\
\ /' \ / 35

~N - ~N -



LoRA

* LoRA proposes using product of two-rank matrices to update the pre-
trained weights incrementally

W'=Wo+ AW =W, + BA (1)

36



Weight Decomposition Analysis

* Break weights down into 2 components:

o Magnitude — how large the weight is
o Direction — orientation of weight in space

2
W1 @)

37



Weight Decomposition Analysis

 Magnitude difference (3) and directional difference (4) between the
pre-trained weight and fine-tuned weight

k

1
AM]E‘T _ Z?’L:]_ ‘mlgT o mg‘

k

k n,t
_ (1 —cos(Vzy", WJ
ADIE*T _ Zn_l( 5 ( FT 0 )) (4)

3)
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Weight Decomposition Analysis

 Examine updates in magnitude and direction of LoRA and fine-tuning
weights relative to pre-trained weights
o Distinction between FT & LoRA likely mirror respective learning capability

i 0.8 1
layer 1 0.055 * *  Inter step |
layer 2 0.050 A ¢ B Interstep2 0.7 1
® layer3 *o8 A Interstep3
layer 4 0.045 7 ¢ 0 Final step 0.67
o mers  AMoow- .
® layer6
0.035 .
- 0.4 1
0.030 1 ‘ s
y 3 4
0.025 A ¢ " x &
0.2 1
0.020
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.20 0.25 0.30 0.35 0.40 0.45 0.50
(a) (b) (c)

Figure A.1: Weight decomposition analysis on the value weight matrix
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Weight-Decomposed Low-Rank Adaptation

Pretrgined — Frozen Merged
Weight Weight A B A
W, € R | — Trainable W' e R™ W, =m 4 + 4 =m WO + —
IV + AV [Wo + BA|.
Decompose
@ (Initialize) ﬁMerge
Magnitud Magnitud .
e o S S .+ Keep V frozen, but fine-tune
! m = ||[Wo|l. € R | | meER | ]
B R magnitude and LoRA-style
Dirgction ———————————— . Dire/ction ———————————— S d . . I d t
|' T | |' YT \ Irectional updates
! Pretrained . Adapt ! Y oh |
! retraine ! ! !
: Weight : :> | AV e RM
| | ' Pretrained B l
| V =W, € R&* ! | Weight |
[ | [ V € R™* c—; [
| | I A I

—————————————— 40
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Gradient Analysis of DoRA

* Decomposition m V'V!'T
enhances learnin Vv L = (I —
: Ve " Ve

) VL (6)
stability of LoRA

42



Gradient Analysis of DoRA

e Gives insight into learning

patterns of DoRA r ,
+ Smaller directional vV [ — VLV (7)
update=> larger magnitude m V]

update, aligns with pattern
of FT

43



T vs LORA vs DoRA: Slope Comparison

FT LoRA DoRA

1.4 4
layer 1 .’ *  lInter step 1 0.45 4 *  Inter step 1 “’ *  Inter step 1
layer 2 0.09 4 ’ M Intersiep2 o W Interstep 2 1.3 'Y M Interstep 2
® layer3 n A Interstep3 A Interstep 3 5 A Interstep 3
ave 1 L] ) 0.40 ; 129 4 "
layer 4 0.08 ¢ * #  Final siep & Final siep #  Final siep
®  layer$ &M u A + 1.1+ *
®  layeré 0.07 4 - L ad 0.35 A Lo
L ry :
0.06 A * n A * 0.30 4 0,94
.06
* 084 « ¥
0.25 4
0.05 074
T T T T T T T T T T T T T T T T T T T T T
0014 0.016 LX) 0020 0.022 (.10 011 012 013 0.14 015 0.16 016 [INE) 0.20 0.22 .24 .26 .28 (.30 (.32

AD AD AD
(a) (b) (c)
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DoRA Training Optimizations

* Unlike LoRA, gradient of low-rank
updates differs from that of W'=> extra
memory requirements

 Solution: redefine gradient of loss w.r.t
directional matrix m

Vv L= —Vw L where C = ||[V'||.

* Reduced gradient graph memory ¢

consumption, negligible change in
accuracy

024.4% memory reduction in fine tuning
LLaMA, 12.4% for VL-BART

45



Evaluating DoRA

 Compared DoRA with LoRA, FT, and various PEFT Methods

e Evaluate accuracy with respect to:
o Common sense reasoning tasks
o Image/video-text understanding tasks
o Visual instruction tuning tasks
o Test DoRA with LoRA variants
o Adjusting rank settings
o Change in tuning granularity

46



Common Sense Reasoning Tasks

Model PEFT Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-¢c OBQA Avg.

ChatGPT - - 73.1 854 685 78.5 66.1 808 799 748 770
Prefix 0.11 643 768 739 421 72.1 729 540 60.6 64.6

Series 0.99 63.0 792 763 67.9 75.7 745 571 724 708

N MA.TR Parallel 3.54 679 764 788 69.8 78.9 737 573 752 722
LoRA 0.83 689 80.7 774 78.1 78.8 77.8 613 748 747

DoRAT (Ours) 0.43 700 826 79.7 83.2 80.6 80.6 654 77.6 1715

DoRA (Ours) 0.84 69.7 834 786 87.2 81.0 81.9 662 792 1784

Prefix 0.03 653 754 721 55.2 68.6 795 629 680 684

Series 0.80 718 83 792 88.1 82.4 825 673 818 795

Parallel 2.89 725 849 798 92.1 84.7 842 712 824 814

LLaMA-13B 7y ‘RA 0.67 721 835 805 905 83.7 828 683 824 805
DoRA' (Ours) 0.35 725 853 799 90.1 82.9 827 69.7 836 80.8

DoRA (Ours) 0.68 724 849 815 92.4 84.2 842 696 828 815

LoRA 0.83 69.8 799 795 83.6 82.6 798 647 810 77.6

LLaMA2-7B DoRAT (Ours) 0.43 720 831 799 89.1 83.0 845 710 812 805
DoRA (Ours) 0.84 718 837 76.0 89.1 82.6 83.7 682 824 1797

LoRA 0.70 70.8 852 799 91.7 84.3 842 712 79.0 808

LLaMA3-8B DoRAT (Ours) 0.35 745 888 80.3 95.5 84.7 90.1 79.1 872 85.0

DoRA (Ours) 0.71 746 893 799 95.5 85.6 90.5 80.4 85.8 85.2
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DoRA/LoRA Deviation from Pre-Trained

Welights

LoRA vs DoRA self _attn.q_proj LoRA vs DoRA self attn.q_proj
—— LoRA AM 0.009 - —— LoRA AD
0.4 1 —— DoRA AM —— DoRA AD
0.008
0.3 0.007 A
AM AD %%
0.3 - N
0.005 - .
e W
0.004
0.1 A
0.003
0.0 4 0.002
0 5 10 15 20 25 30 0 5 10 15 20 25 30
layers index layers index

(a) (b)
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Image/Video-Text Understanding Tasks

Method  #Params (%) VQA'? GQA NVLR? COCO Cap Avg.

FT 100 66.9 56.7 73.7 112.0 77.3
LoRA 5.93 652 536 719 115.3 76.5
DoRA (Ours) 5.96 65.8 54.7 73.1 115.9 77.4
Method  #Params (%) TVQA How2QA TVC YC2C Avg.
FT 100 76.3 73.9 457 154 87.5
LoRA 5.17 75.5 72.9 44.6 1409 83.5

DoRA (Ours) 5.19 76.3 741 458 1454 85.4
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Visual Instruction Tuning

Method # Params(%) Avg.

FT 100 66.5

LoRA 4.61 66.9
DoRA (Ours) 4.63 67.6
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Compatibility of DoRA with VeRA: DVoRA

e VVector-based Random
Matrix Adaptation (VeRA)

o Reduces trainable

Model PEFT Method # Params (%) Score

o Tm
0) urs . .

e DVoRA: DoRA + VeRA for LLaMA-7B VeRA 0.02 43

directional update DVoRA (Ours) 0.04 5.0
LoRA 2.31 5.7

DoRA (Ours) 2.33 6.0

LLaMA2-7B VeRA 0.02 5.5

DVoRA (Ours) 0.04 6.0
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DoRA vs LoRA: Rank Configuration

LLaMA-7B

o0
=

Avg. Accuracy
Lhn L o b= =] =]
= Lh = n - h

i
L

e
=
1

4 g 16 32 64
rank r
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DoRA vs LoRA: Granularity Analysis

(Q)uery, (K)ey, (V)alue, (O)utput, (G)ate, (U)p, (D)own.

* Idea: use fewer trainable Model PEFT Method# Params (%)  m V  Avg.
parameters for directional LoRA 0.83 : T 747
u pd ates LLaMA-7B DoRA (Ours) 0.84 QKVUD QKVUD78.1

DoRA (Ours) 0.39 QKVOGUD QKV 77.5

o Update direction only for QKV

modules LoRA 0.67 80.5

LLaMA-13B DoRA (Ours) 0.68 QKVUD QKVUDS8I1.5
DoRA (Ours) 0.31 QKVOGUD QKV 8l1.3

53



QDoRA: DoRA + QLoRA

* Problem: A lot of GPU memory needed to initially
load model weights

* QLoRA: quantize pretrained model to 4-bit, fine
tune with LoRA on top

* QDoRA: Use QLoRA for directional update

e Qutperformed QLoRA and FT using much less
memory
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QDoRA Results

100k Orca-Math finetuning results

0.31

A R

0.12

LR A |

0.26

e |

e 0.08
e N >
0.07 LLaMA2-7B
Zero-shot
0.23 B [L1aMA3-8B
0.0 0.1 02 03 0.4 0.5

Exact match score (Eval size: 500)
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Further Applications: Text-to-Image Generation

* Compared DoRA vs LoRA on image generation

o Same configuration/hyperparameters, test on generating 3D icons and Lego
images

* Results: DoRA much more personalized than LoRA with same settings

o Ex: training data for Lego dataset had Lego logo, DoRA outputs consistently
added Lego logo to generated image where LoRA may not have

 Future directions with DoRA: look more into audio generation/data
modes
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Key Takeaways

* DoRA splits weight matrix into magnitude and directional
components

* Fewer parameters than FT, more accurate than LoRA
o Best of both worlds

* Can be optimized to use less GPU memory (QDoRA)

* Improvements over existing fine tuning for image generation

57



Daniel Slyepichev
dos8nw



SFT Memorizes, RL Generalizes:
A Comparative Study of
Foundation Model Post-training




Introduction

* Supervised Fine Tuning (SFT) & Reinforcement Learning (RL)

o Generalizable, or just memorization?

* How will we study this question?

o Text Based Rules
o Model’s ability to apply learned rules (given text instructions) to variants of those rules

o Visualization
o Performance consistency to variations in visual input, such as color and spatial layout

 What tasks will we solve?

o General Points
* Given 4 playing cards, find sum of target number

o V-IRL
* Navigation Task
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Related Works

* Post-Training
e Supervised Fine Tuning
* A"Format Teacher" for training pre-trained LLMs
* Weight Adjustment
* Reinforcement Learning
* Used for solving a specific task or alignment
* Rewards system

* Memorization & Generalization

e LLMs exhibit more overfitting on simpler, knowledge-intensive tasks and greater generalization
on more complex, reasoning-intensive ones

* Pre-computing reasoning graphs before autoregressive generation leads to generalization
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Related Works

* Inference Time Computation

* VLM Perception Issues
e Can be improved with more visual encoders, high quality SFT data, or unfreezing the visual backbone

Ground Truth Cards: [2, 8, 5, J]

Error Type: Fail to recognize all numbers
{
"cards": [10, 10, 5, 9],

"formula": "10+",

"thoughts": "'10+' is an incomplete formula, since ' 10+10-549=24", I should append '10"' to the
current formula",

N‘actinn": HlOH

}
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Evaluation Task: General Points

.

( _ N
System Prompt (vg'
[Task Description]
You are an expert 24 points card game player. You are observing these ‘our cards
in the image. Note that 'J', 'Q", and 'K' count as '10', and each card must be used
once. Your goal is to output a formula that evaluates to 24 using numbers from the
cards and operators such as '+, -, "', '/, '(’, )', and '=".
[Output]
Your response should be a valid json file in the following format:
{
"cards": [X,y, z, w], where J', 'Q', and 'K' count as '10',
"number": [a, b, c, d], where a, b, ¢, and d are the numbers on the cards,
"formula": "an equation that equals 24",
}
Appending model and verifier outputs to obtain v;"
' = [od", v, v, Vi, L L v, vl > vi* = concat ('u(i)“, [0p", v };;lo)
Model output (v
{
”Cards": IFAI, l3l-J IKF, I6II,
"number": [1, 3, 13, 6],
"formula": "(1+6)*3+13=24",
}
Verifier Output (v}*
You failed this trial because your formula is incorrect. > vy, = concat(v, v)", v}*)

63



Evaluation Task: General Points

* Rule Variations
* Interpret face cards as all 10 or [11, 12, 13]
» [VISUAL] Use different colored cards (Only Black, Only Red, All)
* Post Train with one rule, evaluate with the other

e Reward Functions
 Success:r=5

* Using each card, but not getting target OR
exceeding max verification step of 5: r =-1

* VLM Incorrect recognition: r=-1.5
* Equation not using legal choices: r= -2
* Anything else: r=-3
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Results: SFT Memorizes, RL Generalizes

1
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Results: SFT Memorizes, RL Generalizes:

SFT Failure Example

\

4 ‘ )
System Prompt (vg')
[Task Description]
You are an expert 24 points card game player. You are observing these four cards
in the image. Note that 'J', 'Q’, and 'K' count as '10', and each card must be used
once. Your goal is to output a formula that evaluates to 24 using numbers from the
cards and operators such as '+, ', "*', '/, '(, ), and "=\
[Output]
Your response should be a valid json file in the following format:
{
"cards": [x, y, z, w], where 'I', 'Q’, and 'K' count as '10',
"number": [a, b, c, d], where a, b, c, and d are the numbers on the cards,
"formula": "an equation that equals 24",
}
Appending model and verifier outputs to obtain v
vt = [vd", vy, v, L vf v > vy = concat (v, [vp", vi]4_p)
Model output (v")
{
"cards": ['A', '3, 'K', '6'],
"number": [1, 3, 13, 6],
"formula": "(14+6)*3+13=24",
}
Verifier Output (v;™)
You failed this trial because your formula is incorrect. > 'virl,_l = concat(vi“, e
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Results: SFT Memorizes, RL Generalizes
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Results: Improving VLM Capabillities

Recognition Accuracy (%)
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Results: RL without SFT
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Results: RL without SFT Example

4 \

System Prompt (v{!

[Task Description]

You are an expert 24 points card game player. You are observing these four cards in the image. Note that 'I', 'Q’,
and 'K' count as '11', '12', and '13’ respectively, and each card must be used once. Your goal is to output a formula
that evaluates to 24 using numbers from the cards and operators such as '+, -, *', '/, '(, '), and '="

[Input]

Cards: [2, T, '3, 'K']

[Output]

Your response should be a valid json file in the following format:
{

"cards": [X, vy, z, w], where 'J', 'Q', and 'K' count as '10',
"number": [a, b, ¢, d], where a, b, ¢, and d are the numbers on the cards,
"formula": "an equation that equals 24",

Appending model and verifier outputs to obtain v
in out . ver _ out . ver out ver in in out . .verjt—1
vy = [vﬂ Vo V1 ;U1 -, Vi1,V b vy = concat (’Uo, [Uk 1 Uk LC:O)

Failed model output (v®")

To solve this problem, we can use a brute force approach by generating all possible combinations of the cards and
checking if any of them can be used to form an equation that equals 24.

Here 1s a Python solution for this problem:

“‘python

def calculate_formula(cards):

# Define the mapping of cards to their corresponding numbers

Verifier Qutput (v;*)

You failed this trial because your formula is incorrect. > vy = concat(vy", v, v}) 70
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Results: Verification Experimentation
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Key Takeaways

e Standardized Fine Tuning Memorizes, Reinforcement Learning
Generalizes!

* Still need SFT for RL initialization. Need to teach proper formatting!

100 -
2 80
o
® 60-
§ In-Distribution
o 407 Out-of-Distribution
o
) @ SFT ®RL

20 1
O k L) L) T T T T
0.0 0.5 1.0 1.5 24 2.9

Training Computation (GFLOPs) le9 72



Appendix




Q: Compute 24 using these four cards: [5, 4, 10, 7] Verifier Info: wrong illegal number correct answer

- calculation used
10
¢ ’ ‘ ¥ ’ ‘ * * Reward: -1 Reward: -5 Reward: +10
¢ *m (V)LM 10+7+4+5 (7-4)*10-6 (7-5)*10+4

out

Figure 2: An example of the sequential revision formulation with a verifier. The model generate the next answer v; ; conditioned
on all previous answers and information (v, v;",0 < i < t) from the verifier.
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e - N

ystem Prompt (v

[Task Description] You are an expert in {task name}, you are observing {purely language/vision-language
inputs + <image>}. You are currently at {state related info}. Please follow {tasks rules}.

[Output] Your response should be a valid json file in the following format:
{task related information and answer}

Appending previous model and verifier outputs to obtain v®
ot = [0, o5, o, v, o) > v = coneat (uff, [of", 0}

Model output (v"") and Verifier Qutput (v}*")

out

Task related json outputs}, { You success/fail}. > vﬂl = concat(v", v{", v}

:vf,

{
N )
Figure 3: An template of our prompt update for constructing v}" ;. The brown parts marks the task and related information, and

the purple parts denote the state (s¢) specific info. The blue and red describe the output from the model and verifier, respectively.
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@ [OBSERVATION]
| “See Shuka on my right.”

Shuka

[ACTION] Mediterranea
“Stop.”
Y T
.\ x'l @ Q {
\LolajTaverna : ' \
\ A Greek The Dutch y
\ ! ’ ( American restaurant
19
" ¢ m | iopeEEvanion
1 - ¥ : “See The Dutch on my right.”
) i< [ACTION]
“Left turn to northwest.”

[OBSERVATION]
“See Lola Taverna on my right.”
[ACTION]

“Left turn to northwest.”

J “Start!”
' [ACTION]
' B” “Turn to northeast.”

@ @ [OBSERVATION]
'




VLM
Addition ->

7
System Prompt (v{

[Task Description]

You are an expert in navigation. You will receive a sequence of instructions to
follow while observing your surrounding street views. You are also provided with
your observation and action history in text. your goal is to take the action based on
the current observation and instruction.

[Instruction]

1. First, turn left to face east.

2. Move forward until you reach the next intersection where Hotel 320ne is on
your right behind.

3. Turn right to face north.

4. Move forward until you reach the next intersection where Dragon Gate Chinatown SF is on your right front.
5. Turn left to face east.

6. Move forward until the destination Café de la Presse is on your right.

| n servation |
You observe a 2x2 grid of street view images with the following he ;:
[front, right

You need to identify if any of the landmarks in the instruction are visible in the street view grid.

[Action space]

- "forward()": indicates moving forward for 1 step;

- "turn_direction(x)": indicates turn direction to the target heading, where x&['north’, 'northeast’, “east’, "southeast’,
'south’, “southwest’, "west’, "northwest’];

- "stop()": indicates the navigation is finished;

77



[
=3

servations and actions sequence]

O_1: No landmarks nearby;

A_1: turn_direction(east)

0_2: No landmarks nearby;

A_2: forward()

0_3: No landmarks nearby;

A_3: forward()

g_i: You observe an image of 4 views; You observe an intersection O_4: Hotel 320ne is on your right behind; You observe an intersection
[Output]

Your response should be a valid json file in the following format:

{

"current observation": latest observation from the street view grid,
"current instruction": analyze the full instruction and identify the sentence to be executed,
"action": the action to be taken chosen from the action space,

}

Appending model and verifier outputs to obtain v\

in __ out ver out ver out ver in __ in out ver1t—1
vy = ['UO yV0 V1 VU1 -0y Vi1,V > vy = concat (‘Ug ) ['vk » Uk k,:(])

out>

Model output (v}
{ - . . . . .
"current observation": "Hotel 320ne is on my right behind; I observe an intersection",
"current instruction": "Turn right to face north.",

"action": "turn_direction(north)",

}

Verifier Output (v;"")

Correct solution. > Move to the next scene upon correct action 78
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 Rule Variations

e Relative Directions vs. Absolute Direction
e "Left" vs. East

e Different Target Locations in Action Space
* [VISUAL] New York vs. Original Combination

* Reward Functions
* Success:r=1
 Wrong Action OR Exceeding verification steps (2): r=-1
* Failed Verification of Landmarks: r=-1.5



	Slide 1: Model Customization & Instruction Tuning/LoRA
	Slide 2: Aaditya Ghosalkar ag5jk
	Slide 3
	Slide 4:  Foundation models
	Slide 5:  LoRA
	Slide 6:  Basics
	Slide 7: Model of fine tuning process
	Slide 8:  Advantages 
	Slide 9:  Foundations for LoRA
	Slide 10:  Parameter Efficiency Enhancement
	Slide 11:  Parameter Decomposition
	Slide 12:  Update Matrix Decomposition
	Slide 13:  Pre-trained Weight Decomposition
	Slide 14:  Parameter Pruning
	Slide 15:  Parameter Freezing
	Slide 16:  Parameter Quantization
	Slide 17:  LoRA Quantization
	Slide 18: Akira Durham zup9su
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: DoRA:   Weight-Decomposed Low-Rank Adaptation
	Slide 32: Ananya Ananda jaf5rp
	Slide 33: Motivation
	Slide 34: Weight Normalization
	Slide 35: DoRA Overview
	Slide 36: LoRA
	Slide 37: Weight Decomposition Analysis
	Slide 38: Weight Decomposition Analysis
	Slide 39: Weight Decomposition Analysis
	Slide 40: Weight-Decomposed Low-Rank Adaptation
	Slide 41:  Sahlar Salehi rmh7ce
	Slide 42:  Gradient Analysis of DoRA
	Slide 43:  Gradient Analysis of DoRA
	Slide 44:  FT vs LoRA vs DoRA: Slope Comparison
	Slide 45: DoRA Training Optimizations
	Slide 46: Evaluating DoRA
	Slide 47: Common Sense Reasoning Tasks
	Slide 48: DoRA/LoRA Deviation from Pre-Trained Weights
	Slide 49: Image/Video-Text Understanding Tasks
	Slide 50: Visual Instruction Tuning
	Slide 51: Compatibility of DoRA with VeRA: DVoRA
	Slide 52: DoRA vs LoRA: Rank Configuration
	Slide 53: DoRA vs LoRA: Granularity Analysis
	Slide 54: QDoRA: DoRA + QLoRA
	Slide 55: QDoRA Results
	Slide 56: Further Applications: Text-to-Image Generation
	Slide 57: Key Takeaways
	Slide 58:  Daniel Slyepichev  dos8nw
	Slide 59
	Slide 60:  Introduction
	Slide 61:  Related Works
	Slide 62:  Related Works
	Slide 63:  Evaluation Task: General Points
	Slide 64:  Evaluation Task: General Points
	Slide 65:  Results: SFT Memorizes, RL Generalizes 
	Slide 66:  Results: SFT Memorizes, RL Generalizes: SFT Failure Example
	Slide 67:  Results: SFT Memorizes, RL Generalizes 
	Slide 68:  Results: Improving VLM Capabilities
	Slide 69:  Results: RL without SFT
	Slide 70:  Results: RL without SFT Example
	Slide 71:  Results: Verification Experimentation
	Slide 72:  Key Takeaways
	Slide 73: Appendix
	Slide 74:  Evaluation Task: Template
	Slide 75:  Evaluation Task: Template
	Slide 76:  Evaluation Task: V-IRL
	Slide 77:  Evaluation Task: V-IRL Template
	Slide 78:  Evaluation Task: V-IRL
	Slide 79:  Evaluation Task: V-IRL

