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Foundation models

• Foundation models are large-scale neural networks mainly used for a variety of tasks. 
o Chat GPT

o DeepSeek

o LLama

• Not feasible to fine tune models with traditional methods
o Updating all parameters (often billions – trillions of them) 

o Immense computational costs 

o Not super flexible for the variety of tasks needed for foundational modules

4



LoRA

• Low Rank Adaptation techniques involve implementing 
techniques that allow fine tuning with minimal overhead.
o Allows models to be fine tunes for specific tasks without having to 

update all the parameters

o Higher degree of customization

Works on two principles

 fine tuning a low dimension subspace

training it using low-rank matrices 
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Basics

• Create a low-rank update matrix ΔW  which is implemented through ΔW = BA⁢

• ⁢B and A are which direction and how much you want to change each vector respectively

• This matrix is often fine tuned and added on over each cycle making more changed into 
the model

• α/r is a scaling factor controlling the magnitude of the low-rank update
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Model of fine tuning process
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Advantages 

• Drastically cuts down on the number of new parameters needed to train 

• Focusing on the specific matrix leads to faster changes

• Does not slow down the model when using it

• Keeps the all-previous functionality since all original weights are frozen

• Easy to deploy for any scenario
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Foundations for LoRA

• Foundations
o Looking into the foundational aspects of Lora 

and how they show their effectiveness of the 
process
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Parameter Efficiency Enhancement

4 Distinct Components that make up the process of making the process of training easier
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Parameter Decomposition

• Breaking down the learning process into smaller chunks to make it computationally 
cheaper and gives more control

• 2 main ways of doing this
o Update Matrix Decomposition

o Pre-trained Weight Decomposition
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Update Matrix Decomposition

• Breaking down the ΔW matrix into other components, often times into smaller pieces 
with different properties to make for a more effective finetuning process
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Pre-trained Weight Decomposition

Breaks down the pretrained weight W0 into magnitude and directional components.

This breaks down the original weights into a more flexible format meaning you can change 
specific vectors of the original weights instead of the whole thing
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Parameter Pruning

• Selectively removing less important parameters
o Importance based

▪ Assigning importance to each parameter based on criteria and removing the ones under a specific threshold

o Regularization-based
▪ Removing parameters by assigning penalty terms, that rewards it for assigning zero to any parameters, parameters that are zero are 

considered pruned

o Output-based
▪ Getting rid of parameters who don't have much of an effect on the model's behavior
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Parameter Freezing

• Freezing one of the LoRA matrices (either A or B) so that the other can be trained 
independently
o It is possible to freeze random vectors in matrix A while only updating matrix B

o Because matrix A works like an extractor and B acts like a projector, so only changing B is an option
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Parameter Quantization

Quantization optimizes a model by lowering the bit at which the parameters are stored at. 

For Lora, you can quantize the training matrices to speed up the process of training. 

• Quantization Timing
o Can be done before, during, or after finetuning

• Quantization Technique
o Uniform, Non-uniform, and mixed-precision 
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LoRA Quantization
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• Frontier developments that extend LoRA capability
• Enable new functionalities

• Handle more complex tasks

• Address challenges in adaptation

• Application
• LoRA adaptation across domains

• Challenges and Discussion
• Critical challenges

• Opportunities for investigation

• Conclusion

Frontiers in LoRA and Applications
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• Goals: Improve LoRA for performance, 
parameter efficiency, generalization

• LoRA Composition
• Dynamic composition of multiple LoRA modules 

to enhance adaptability + generalization

• Optimization-based, Retrieval-based, Batch-
oriented Compositions

• Generalized Framework
• Extending LoRA architecture to capture both task-

specific and general features better

• Dual-branch and Multi-PEFT United Frameworks

Advanced Architecture
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• Mixture of Experts
• Multiple "expert" sub-networks specializing in different input patterns

• Gating mechanism routes inputs to network experts, allowing for broad input handling

• Efficiency-oriented Design, Memory-based Adaptation, Task-based Integration

Advanced Architecture
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• Continual Learning
• Efficient nature of LoRA allows for 

updating models without forgetting

• Reduced cost vs. fine-tuning, isolation 
of task-specific knowledge, flexible 
combinations

• Regularization-based, Task arithmetic-
based, Ensemble-based techniques

• Unlearning
• Targeted removal of specific knowledge 

from models without retraining

• Modular Decomposition, Optimization-
Based, Sequential Pipeline Strategies

LoRA for Learning and Unlearning

https://arxiv.org/abs/2411.05663
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Federated Learning

• Federated Learning
• Leverage collective knowledge while 

maintaining robust protection for 
individual data

• Increased foundation models 
availability to resource-constrained 
devices, IoT

• Privacy and Security, Computation 
Efficiency, Heterogeneity Handling, 
Personalization

https://arxiv.org/html/2406.07925v1
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Long Sequence and Serving

• Long Sequence Modeling
• Extend context window of foundation models, 

typically constrained by max context length due 
to quadratic computational complexity of self-
attention w.r.t sequence length

• Shifted Sparse Attention and Sink Fixed 
Attention methods

• LoRA Serving Systems
• Efficient serving of multiple LoRA models is 

essential – GPU management, cold-start, etc

• Paging mechanism for KV cache and LoRA 
weights, CPU-assisted, scheduling algorithm

https://lmsys.org/blog/2023-11-15-slora/



25

Applications I

• Language Tasks
• Application in NLP to improve inference 

latency and training times

• Multilingual Language + Dialects and 
Medical + Clinical Text

• Computer Vision
• Enhance adaptability across visual tasks 

including understanding and generation

• Visual Understanding

• Visual Generation

• Speech Recognition



26

V-LoRA LMM

https://arxiv.org/abs/2411.00915
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Applications II

• Code Engineering
• Review, Analysis, Generation, Summarization

•  Scientific Discovery
• Protein Analysis and General Science Area

• Recommender Systems
• Click-Through Rate Prediction and Sequential Recommendation

• Graph NN Learning
• Non-Euclidean data fine-tuning to adapt new graphs or structure updates

• Cross-domain Graph NN Adaptation and Dynamic Knowledge Graph Learning
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Applications III

• Spatial-Temporal Forecasting
• LoRA to address multivariate time series 

data

• Node-specific Adaptation, Multi-channel 
Modeling, Out-of-domain Prediction

• Multi-Modal
• MFMs combine different data modalities   

-> optimize training efficiency + alignment

• Language-vision Learning

• Language-audio Learning
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MMD-LoRA

https://arxiv.org/abs/2412.20162



30

Challenges and Future Directions

• Challenges
• Theoretical Understanding

• Architectural Design Principles

• Computation Efficiency

• Robustness and Verification

• Privacy and Security

https://www.ibm.com/think/topics/lora
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Motivation
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• LoRA Limitations
oAccuracy gap between LoRA & fine-tuning (FT)

o Limited trainable parameters may restrict learning capacity

oNo clear understanding of how LoRA differs from FT

• DoRA (Weight-Decomposed Lower Rank Adaptation) 
o Enhance both learning capacity and training stability of LoRA while avoiding 

additional inference overhead

oAim to resemble learning capacity of fine-tuning

o Inspired by weight normalization



Weight Normalization
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• Weight normalization - achieves faster convergence via improving 
conditioning of gradient w/ weight reparameterization

• Decomposes weights into 2 components: magnitude (g) & direction 
(v)
o Stabilizes training

oAchieve faster convergence

o Improved robustness



DoRA Overview
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• Decomposes pre-trained 
weight into 2 components: 
magnitude & direction for 
fine-tuning

• LoRA to update direction 
component



LoRA
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• LoRA proposes using product of two-rank matrices to update the pre-
trained weights incrementally



Weight Decomposition Analysis
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• Break weights down into 2 components:
oMagnitude – how large the weight is

oDirection – orientation of weight in space



Weight Decomposition Analysis
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• Magnitude difference (3) and directional difference (4) between the 
pre-trained weight and fine-tuned weight



Weight Decomposition Analysis
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• Examine updates in magnitude and direction of LoRA and fine-tuning 
weights relative to pre-trained weights
oDistinction between FT & LoRA likely mirror respective learning capability 

Figure A.1: Weight decomposition analysis on the value weight matrix



Weight-Decomposed Low-Rank Adaptation
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• Keep V frozen, but fine-tune 
magnitude and LoRA-style 
directional updates
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Gradient Analysis of DoRA
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• Decomposition 
enhances learning 
stability of LoRA



Gradient Analysis of DoRA

• Gives insight into learning 
patterns of DoRA

• Smaller directional 
update=> larger magnitude 
update, aligns with pattern 
of FT
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FT vs LoRA vs DoRA: Slope Comparison
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DoRA Training Optimizations

45

• Unlike LoRA, gradient of low-rank 
updates differs from that of W'=> extra 
memory requirements

• Solution: redefine gradient of loss w.r.t 
directional matrix

• Reduced gradient graph memory 
consumption, negligible change in 
accuracy
o24.4%  memory reduction in fine tuning 

LLaMA, 12.4% for VL-BART



Evaluating DoRA
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• Compared DoRA with LoRA, FT, and various PEFT Methods

• Evaluate accuracy with respect to:
oCommon sense reasoning tasks

o Image/video-text understanding tasks

oVisual instruction tuning tasks

o Test DoRA with LoRA variants

oAdjusting rank settings

oChange in tuning granularity



Common Sense Reasoning Tasks
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DoRA/LoRA Deviation from Pre-Trained 
Weights
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Image/Video-Text Understanding Tasks

49



Visual Instruction Tuning
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Compatibility of DoRA with VeRA: DVoRA

• Vector-based Random 
Matrix Adaptation (VeRA)
oReduces trainable 

parameters

• DVoRA: DoRA + VeRA for 
directional update
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DoRA vs LoRA: Rank Configuration
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DoRA vs LoRA: Granularity Analysis

• Idea: use fewer trainable 
parameters for directional 
updates
oUpdate direction only for QKV 

modules
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QDoRA: DoRA + QLoRA

• Problem: A lot of GPU memory needed to initially 
load model weights

• QLoRA: quantize pretrained model to 4-bit, fine 
tune with LoRA on top

• QDoRA: Use QLoRA for directional update

• Outperformed QLoRA and FT using much less 
memory
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QDoRA Results
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Further Applications: Text-to-Image Generation

• Compared DoRA vs LoRA on image generation
o Same configuration/hyperparameters, test on generating 3D icons and Lego 

images

• Results: DoRA much more personalized than LoRA with same settings
o Ex: training data for Lego dataset had Lego logo, DoRA outputs consistently 

added Lego logo to generated image where LoRA may not have

• Future directions with DoRA: look more into audio generation/data 
modes
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Key Takeaways

• DoRA splits weight matrix into magnitude and directional 
components

• Fewer parameters than FT, more accurate than LoRA
oBest of both worlds

• Can be optimized to use less GPU memory (QDoRA)

• Improvements over existing fine tuning for image generation
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SFT Memorizes, RL Generalizes:

A Comparative Study of

Foundation Model Post-training
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Introduction

• Supervised Fine Tuning (SFT) & Reinforcement Learning (RL)
o Generalizable, or just memorization?

• How will we study this question?
o Text Based Rules

o Model’s ability to apply learned rules (given text instructions) to variants of those rules

o Visualization
o Performance consistency to variations in visual input, such as color and spatial layout

• What tasks will we solve?
o General Points

• Given 4 playing cards, find sum of target number

o V-IRL
• Navigation Task
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Related Works

• Post-Training
• Supervised Fine Tuning

• A "Format Teacher" for training pre-trained LLMs

• Weight Adjustment

• Reinforcement Learning

• Used for solving a specific task or alignment

• Rewards system

• Memorization & Generalization
• LLMs exhibit more overfitting on simpler, knowledge-intensive tasks and greater generalization 

on more complex, reasoning-intensive ones

• Pre-computing reasoning graphs before autoregressive generation leads to generalization
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Related Works

• Inference Time Computation

• VLM Perception Issues
• Can be improved with more visual encoders, high quality SFT data, or unfreezing the visual backbone
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Evaluation Task: General Points
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Evaluation Task: General Points

• Rule Variations
• Interpret face cards as all 10 or [11, 12, 13] 

• [VISUAL] Use different colored cards (Only Black, Only Red, All)

• Post Train with one rule, evaluate with the other

• Reward Functions
• Success: r = 5

• Using each card, but not getting target OR 
exceeding max verification step of 5: r =-1

• VLM Incorrect recognition: r = -1.5

• Equation not using legal choices: r= -2

• Anything else: r = -3
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Results: SFT Memorizes, RL Generalizes 
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Results: SFT Memorizes, RL Generalizes:
SFT Failure Example
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Results: SFT Memorizes, RL Generalizes 
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Results: Improving VLM Capabilities
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Results: RL without SFT
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Results: RL without SFT Example
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Results: Verification Experimentation
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Key Takeaways
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• Standardized Fine Tuning Memorizes, Reinforcement Learning 
Generalizes!
• ​Still need SFT for RL initialization. Need to teach proper formatting!



Appendix
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Evaluation Task: Template
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Evaluation Task: Template
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Evaluation Task: V-IRL
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Evaluation Task: V-IRL Template
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VLM 
Addition ->



Evaluation Task: V-IRL
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Evaluation Task: V-IRL

• Rule Variations
• Relative Directions vs. Absolute Direction

• "Left" vs. East

• Different Target Locations in Action Space

• [VISUAL] New York vs. Original Combination

• Reward Functions
• Success: r = 1

• Wrong Action OR Exceeding verification steps (2): r = -1

• Failed Verification of Landmarks: r = -1.5
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