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Organization of the Survey

• Background

• General2Specific

• Algorithm

• Application

• Trustworthiness & Safety

• Future Direction
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Background & Technology

NWP
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From General to Medical-specific LLMs
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From General to Medical-specific LLMs

• Making a LLM to be a doctor
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From General to Medical-specific LLMs

• Specific Med-LLMs

……
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From General to Medical-specific LLMs

ChatGPT, 

Nov 2022
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Improving Algorithms for Med-LLMs

MedRAG
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Applying Medical LLMs

• Multifarious Applications • Unique Challenges for Med-

LLMs

– Protected Health Information

– Clinical Workflows

– Safety and Accountability
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Trustworthiness and Safety

• Fairness

– Research has revealed biases in healthcare, and LLMs are able to capture these 

biases from training data.

• Accountability

– Lack of accountability in LLMs is recognized as an obstacle hindering its 

application in the medical field.

• Privacy

– Data privacy is an important challenge for medical applications.

• Robustness

– One future research direction is to explore the construction of effective 

adversarial test samples in the medical field to evaluate the robustness of large 

language models in the medical field.
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Future Directions

• Algorithmic advancements

– E.g., multimodal learning, robot-assisted learning

• Industrial transformations

– E.g., preventative and precision medicine, medical documentation

• Policy developments

– Clear guidelines and standards for the development, validation, and 

monitoring of Med-LLMs
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Organizational Framework
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Organizational Framework
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From PLMs to LLMs for healthcare
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From PLMs to LLMs for healthcare

• Summary of the performance for the three most popular 

datasets used to evaluate Healthcare LLMs
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Usage and data for healthcare LLM

• Usage

– From Fine-tuning to In-context Learning

• From Medprompt to o1: Exploration of Run-Time Strategies for Medical Challenge 

Problems and Beyond

– From System 1 To System 2 – Chain-of-Thought

• From Medprompt to o1: Exploration of Run-Time Strategies for Medical Challenge 

Problems and Beyond

– AI Agents

• The rise of agentic AI teammates in medicine
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Usage and data for healthcare LLM

• Healthcare training data

– EHR

• E.g., MIMIC III, MIMIC IV, CPRD

– Scientific Literature

• E.g., PubMed, PubMed Central

– Web Data

• E.g., COMETA (from Reddit), WebText
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Usage and data for healthcare LLM

• Assessment of computation requirements
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Discussion

• Healthcare core issues

– NLP technologies and their related healthcare applications (issues)

Technology

Application
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Discussion
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The rise of agentic AI teammates in medicine
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Introduction

• From Tools to Teammates:

– Shift from using AI as passive, reactive tools to proactive, agentic 

teammates.

– AI agents can autonomously monitor healthcare systems, retrieve data, and 

track long-term patient histories

• Key agentic capabilities of AI agents

– LLMs have rapidly improved their reasoning and problem-solving abilities

– LLMs have become more adept at interacting with the external environment 

and using tools

– Collaborations between multiple AI agents with complementary expertise 

have expanded their capability to address open-ended challenges
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Example of Agentic AI in Medicine

• MedAgents (Tang et al., 2024)
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Example of Agentic AI in Medicine

• MDAgents (Kim et al., 2024)



29

Potentials of AI agents in Medicine

– Instead of juggling multiple tools (e.g., analyze medical images, 

search clinical guidelines), the clinician could interact with a single 

manager agent, which is able to orchestrate these tools.
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Safety and Regulation

• Frameworks for evaluating and regulating AI agents

– Existing assessments typically focus on AI performance for a narrow medical 

output. 

• Confabulation by AI agents

– Continuous performance monitoring will be essential

• Boundaries for AI agent autonomy

– Initial deployments might focus on low-risk administrative tasks in 

controlled virtual environments

• Training of healthcare professionals

– Healthcare professionals would also need training to effectively collaborate 

with these semi-autonomous AI teammates.
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More Example on GenAI for Medicine

• Problem: 

– Traditional therapeutic antibody 

design is expensive, time-

consuming, and constrained by 

high-dimensional search spaces.

• Solution: 

– The paper introduces the Lab-in-

the-loop (LitL) system, an AI-

driven iterative optimization 

framework to automate and 

accelerate antibody design.

Frey, N. C., Hotzel, I., Stanton, S. D., Kelly, R. L., Alberstein, R. G., Makowski, E. K., ... & Gligorijevic, V. (2025). 

Lab-in-the-loop therapeutic antibody design with deep learning. bioRxiv, 2025-02.
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Introduction

• Problem Statement:

– Traditional prompt engineering methods (e.g., Medprompt) improve 

performance on medicine by using dynamic chain-of-thought (CoT) 

reasoning, few-shot prompting, and ensembling.

• New Paradigm:

– The o1-preview model integrates run-time reasoning internally 

during training, making it “reasoning-native”.

– This model challenges the necessity of prompting strategies.
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Background: Medprompt
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Background: Medprompt
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Background: o1-preview

• Uses reinforcement learning to “think” before producing final 

responses.

……

Evaluation of 

OpenAI o1: 

Opportunities and 

Challenges of AGI



37

Experimental Setup

• Medical benchmarks:

– MedQA, MedMCQA, MMLU (Medical subset), NCLEX (Nurse 

licensing exam), JMLE-2024

• Official preparatory materials offered by NBME

– USMLE Sample Exam

– USMLE Self Assessment

• Evaluation metrics:

– Accuracy for multiple-choice questions (MCQ)
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Experimental Setup

• Setting: Quick Response
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Experimental Setup

• Setting: Extended Reasoning
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Experimental Setup

• Setting: Tailor Prompting
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Key Results & Findings

• Performance Gains:

– o1-preview outperforms GPT-4 enhanced with Medprompt on 

several benchmarks.
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Key Results & Findings

• Performance Gains:

– o1-preview outperforms GPT-4 enhanced with Medprompt on 

several benchmarks.
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Key Results & Findings

• Impact of Prompting:

– Five-shot prompting significantly decreases performance on MedQA
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Key Results & Findings

• Impact of Prompting:

– Ensemble improves performance across tasks
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Key Results & Findings

• Role of Reasoning Tokens

– Performance improves when the model is explicitly told to spend 

longer amounts of time reasoning
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Key Results & Findings

• Accuracy and Cost Frontiers
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Discussion & Future Directions

• Metareasoning Principles and Machinery

– High-level metareasoning methods can facilitate runtime decision 

making by dynamically allocating computing resources across 

different generative processes and their combinations.

• Guiding LLM Inference and Sampling

– Incorporating token steering mechanisms directly into model 

training may unlock further capabilities

• E.g., entropy-based sampling techniques
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Discussion & Future Directions

• Optimizing Input for LLMs

–  In-Context Learning

• Determining how to efficiently provide relevant examples and additional 

context to optimize performance—especially in models such as o1-preview—

remains a promising area of research

–  Integrating External Resources at Runtime

• An essential avenue for further enhancing these models lies in their ability to 

actively acquire information at run-time from external sources such as the 

web and knowledge bases (KBs)
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Discussion & Future Directions

• Reasoning

– Chain-of-Thought prompting

– Structured problem-solving

• ReAct, skeleton-based prompting, and tree-based reasoning

– Training LLMs to improve real-time reasoning

• Self-Taught Reasoner (STaR)

– Process supervision

• Let’s Verify Step-by-Step (Process reward model)

– Scaling test-time computation

– Reinforcement learning



50

Discussion & Future Directions

•  Leveraging Multiple Runs and Models

– Ensembling

• Simple majority voting is a popular approach for aggregating outputs

• Sophisticated methods are emerging

– Ensemble Refinement, LLM-Blender

• A major challenge with ensembling is the computational cost

– Model Federation and Multi-Agent Architectures

• Agent frameworks and multi-agent orchestration enable models to 

dynamically select and integrate the tools required to solve a given problem
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