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Context Window 

Limitations

Extend? Challenges YaRN

● Large Language Models (LLMs) like GPT, LLaMa are used for many NLP tasks

● Their performance heavily depends on context window size

● Pre-trained LLMs can only handle fixed, relatively short context lengths (2k - 4k 

tokens)



Motivation and Introduction
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Context Window 

Limitations

Extend? Challenges YaRN

Longer contexts enable:

● Better long-term dependencies (e.g. long documents, conversations)

● Improved in-context learning abilities

● Enhanced tasks like summarization, retrieval, and reasoning



Motivation and Introduction
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Context Window 

Limitations

Extend? Challenges YaRN

Position Encoding Bottleneck - Existing position encodings (like RoPE) don’t generalize beyond 

training window

Existing Solutions:

● Significant compute (large-scale fine-tuning)

● Performance trade-offs at long lengths



Motivation and Introduction
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Context Window 

Limitations

Extend? Challenges YaRN

● Goal: Efficiently extend the context window with minimal fine-tuning cost and no degradation

● Leverage and improve existing RoPE techniques to achieve: 

○ Lower training steps

○ Generalizations to much longer contexts (up to 128k tokens)



Background: Position Embeddings in Transformers
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Transformers lack inherent sense of word order. Position embeddings encode token order information

Absolute Sinusoidal Encoding (Original Transformer)

Learnable Absolute Position Encoding

Relative Positional Encodings

Fixed, predefined sinusoidal patterns

Trainable vectors assigned to each position

Allow model to focus on relative distances 

between tokens

Popular methods:

● T5 Relative Bias
● ALiBi

● RoPE



Rotary Position Embeddings (RoPE)
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Rotary Position Embeddings

● Encodes relative positional 

information via complex 

rotations

● Introduced in RoFormer, widely 
used in models like LLaMA, 

GPT-NeoX, and PaLM

Methodology

● Converts token embeddings 
into complex space

● Applies a rotation based on the 

token’s position





Prior Solutions and Challenges
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RoPE struggles to generalize beyond its trained context length. Extending the context requires rethinking 

how positional information is encoded.

Position Interpolation (PI) NTK-aware Interpolation Dynamic NTK

ReRoPE, LM-Infinite

Core challenge: high compute cost, complex fine-tuning, and may degrade performance on short or unseen 

sequences





YaRN Overview
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Improved Interpolation Techniques

Dynamic Scaling

Attention Temperature Adjustment

YaRN = Yet another RoPE extensioN method

Prior Methods YaRN

Tokens Needed High (billions) Low (~0.1% of 

pretrain data

Training Steps High Reduced (2.5x 

fewer)

Max Context Limited (32k-

100k)

Up to 128k



Technical Insight: NTK-aware and NTK-by-parts
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NTK-aware NTK-by-parts

● Inspired by Neural Tangent Kernel (NTK) 

theory
● Adjusts scaling non-uniformly

○ High frequency dimensions scaled 

less
○ Preserves fine-grained token 

relationships

● Observation: wavelength of RoPE 

dimension differs
● Idea:

○ High Frequency -> no interpolation

○ Low Frequency -> Interpolated 
proportionally

○ Mid-range Frequency -> Smooth 
ramp function between the two
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Dynamic Scaling

18

Formula for Updating Scaling Factor:

Scaling factor for 

interpolation

Actual sequence 

length

Pretrained 

context limit



Attention Temperature
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Training Setup
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Fine-tuning Process:

● Used LLaMA 2 (7B & 13B) with 

YaRN Interpolation

● Training data: PG19 Dataset 

● 10× fewer tokens, 2.5× fewer 

training steps than prior 

methods

Training Efficiency:

● YaRN achieves context 

extension with minimal fine-

tuning

No increase in inference costs 

Parameter Value

Learning rate 2 × 10⁻⁵

Batch size 64

Steps (s=16) 400

Steps (s=32) 200



Evaluating YaRN’s Performance
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Perplexity on Long 

Sequences

Passkey Retrieval 

Accuracy

LLM Standard 

Benchmarks



Key Results: Passkey Accuracy
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● YaRN 7B and 13B achieve accuracy of 99.4% at 128K 

tokens

● NTK-based models drop to 94.3% at 112K tokens



Key Results: Perplexity
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Conclusion and Key Takeaways
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YaRN enables efficient 

context window 

extension

Requires significantly 

less training data

Compatible with existing 

transformer 

architectures
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Long Context vs. RAG for 

LLMs



Background



Motivation



RAG



RAG



Related Work

● LC vs RAG: RAG improves 

performance for models like GPT-4o 

with long context windows (up to 

128K tokens), but LC outperforms 

RAG in multi-hop benchmarks, 

depending on model size and 

retrieval strategy (Xu et al., 2024b, Xu 

et al., 2024a).

● Efficiency: Combining LC and RAG 

can be beneficial with efficient 

retrieval strategies, as demonstrated 

by Self-ROUTE and OP-RAG, which 

also consider cost reduction (Li et al., 

2024, Yu et al., 2024).



Question Filtering and Expansion

● Curates dataset from 12 QA sources 

to compare LC and RAG.

● Filters questions to need external 

context, using GPT-4o.

● Expands dataset to 20,000 questions 

for better analysis.



Evaluation Methodology

● Evaluation Phases: 

Compares RAG and LC in 
three phases

○ Tests five retrievers

and picks the 
best(RAPTOR)

○ Compares RAG and LC 
on a full question set 
with the same LLM

○ Analyzes subsets 
where each excels.

● Evaluation Metrics: Uses 
win-lose rate with Exact 

Match and F1 scores; loose 
evaluation includes EM wins 

and higher F1 scores for 
open-ended answers.
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Experiment Setup

● To obtain answers from question dataset the following prompt 

was used: 
“From the context: [context], answer the questions briefly with no 
explanation.” for both retrieval and long context settings.

● For MCQ questions, the following sentence was added to the 
prompt
“Answer the question with the letters of the correct options (e.g. A, BC, 

C, ACD, etc.) with- out including text”



Phase 1: Retrievers

● Evaluated retrievers include chunk-based, 

index-based, and summarization-based 
methods

● RAPTOR demonstrates superior overall 
document understanding, particularly for 

research papers achieving the highest correct 
answer rate at 38.5%

● Index-based retrievers outperform chunk-
based methods

● Chunk-based methods struggle with 
information dispersed across multiple chunks.

● Index-based retrievers, while not as strong as 

RAPTOR in overall comprehension, are 
effective in interpreting dialogues.



Phase 2: Comparing LC and RAG

● Compared LC and RAG on 

the filtered, full question set 
across 12 datasets

● Overall, LC answers 56.3% of 
questions correctly, while 

RAG answers 49.0% 
correctly.

● Although LC shows better 
overall results, nearly 10% of 

the 13,628 questions can only 
be answered correctly by 
RAG, indicating retrievers 

cannot be simply replaced by 
long-context LLMs.



Phase 3: In-Depth Analysis

● LC and RAG performance varies by knowledge 

source and question type

● LC excels with noisy, long contexts (e.g., 

Wikipedia and stories), showing robustness to 
irrelevant information

● RAG performs better with naturally segmented 
sources like dialogues, papers, and reports

● LC leads on fact-based questions (e.g., “Who,” 

“Where,” “Which”), while RAG is comparable on 
open-ended (“How”) and general yes/no questions

● These findings highlight that each method has 
unique strengths depending on the scenario.



Word Frequency Visualization

● TF-IDF analysis was conducted on questions 

where LC or RAG exclusively produced correct 
answers

● The analysis treated all questions from each 
dataset as a single document, focusing on term 

frequency after removing stopwords

● LC’s top terms include “song,” “film,” and “novel,” 

indicating strength in narrative topics

● RAG’s top terms include “country,” “dataset,” and 
“model,” suggesting an edge in technical or data-
oriented topics



Impact of Generation Model in RAG

● Evaluated the impact of GPT-4o and GPT-4-Turbo 

on RAG’s performance with three retrievers 
(BM25, Tree Index, RAPTOR)

● Performance is largely consistent across 
generation models regardless of the retriever

● RAPTOR outperforms the others, with a slight 
decrease when using GPT-4-Turbo versus GPT-

4o

● Differences between GPT-4o and GPT-4-Turbo 
are marginal, suggesting the choice depends on 
factors like efficiency or resource availability

● The retrieval method has a larger influence on 

overall performance than the specific generation 
model



Case Study

● A case study examined 

frequent errors from LC 
and RAG by manually 
reviewing questions each 

method got wrong

● RAG’s most common error 
is failing to retrieve 
relevant context, often due 

to missed sentences or 
split chunks, leading to 

refusal or incomplete 
answers

● RAG also misinterprets 
partial context, as seen 

when it linked an incorrect 
birthday due to overly 
long, ambiguous text 

spans

● LC rarely reports context absence, but its 

mistakes stem from misinterpreting 
questions (e.g., confusing "a specific 
region" with multiple countries or 

answering "how" instead of "where")

● Both models can locate related text, but 
their reasoning is affected by how they 
handle context and question interpretation



What is Long Context?

● Definition Variability: Studies define "long" differently—ChatQA2 uses >32k tokens, 

LongBench v2 uses >8k, with others using 8k, 16k, or even 128k; no universal standard exists

● Relative Nature of "Long": The term is context-dependent; 4k tokens may be long for some 

models (e.g., BERT-base) but not for others with larger context windows

● Context Relevance: "Context" means the situation explaining a question, but long-context 
datasets may not always prioritize high relevance

● Dataset Types:
○ Realistic long texts (novels, research papers) challenge models with cohesive, dense 

information
○ Synthetic long texts (concatenated segments from sources like Wikipedia) simulate 

retrieval tasks and may include noise

● Task Alignment: Realistic texts suit reading comprehension, while synthetic texts assess 

factual reasoning and effects like the lost-in-the-middle phenomenon



How to Compare or Combine LC & RAG?

● A clear framework is needed to compare LC and RAG, focusing on three perspectives: context 

length, context relevance, and experiment design

● Context Length: Refers to the maximum tokens a model can process versus the amount of 

text provided in a dataset; synthetic datasets trade off between increased length and 
decreased relevance, making it essential to specify if 'long' comes from the model’s capacity, 

dataset design, or both

● Context Relevance: Distinguishes between realistic long contexts (highly relevant, cohesive 

texts) and synthetic ones (often low relevance and resembling RAG pipelines), with biases 
potentially introduced by chunking that disrupts information continuity

● Experiment Settings: Evaluation can compare short-context RAG vs. long-context single 
input, long-context RAG vs. long-context single input, and explore how RAG performance 

scales with increasing context length, highlighting trade-offs in performance and computational 
cost

● These insights suggest that LC and RAG can complement each other in real-world scenarios 
depending on the data characteristics and question types.



Limitations

● The study is limited to text-based long contexts and does not consider audio, video, or multi-

modal contexts

● It focuses on papers that compare RAG with LC, rather than surveying all available retrievers 

and models

● The experiments use current LC and RAG implementations, and future advancements may 
alter the comparative outcomes



Importing Phantoms: Measuring LLM Package Hallucination 

Vulnerabilities

Presented by: 

Nina Chinnam (fhs9af), Mihika Rao (xsw5kn)

48



Presentation Outline

❖ Background & Motivation 

❖ Methodology 

❖ Analysis 

❖ Related Work 

❖ Conclusion 

49



Presentation Outline

❖ Background & Motivation 

❖ Methodology 

❖ Analysis 

❖ Related Work 

❖ Conclusion 

50



Mihika Rao (xsw5kn) 

51



Background & Motivation
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LLMs & Hallucinations in Code

● LLMs can sometimes produce unfounded or fabricated information 

● Caused by statistical rather than factual reasoning 

● Can happen in any domain (text, code, etc.)
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Example of Hallucinated Package

● Securehashlib looks credible but does not exist in PyPI 

● Developers might trust if they don’t double check 

● A malicious actor can register the name for an attack

import securehashlib

def hash_password(password):

return securehashlib.secure_hash(password, rounds=10000)

54



How Attackers Exploit Hallucinations

● Monitor LLM outputs (social media, dev forums, code snippets) 

● Identify nonexistent package names (e.g., securehashlib) 

● Register the package on PyPI/NPM/crates.io with malicious code 

● Developers unknowingly install the now-real malicious code
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Security Impact & Software Supply Chain

● Open Repositories: PyPI, NPM, crates.io allow anyone to register a 

package 

● Supply Chain Risk: One bad dependency can compromise hundreds of 

projects

● Typosquatting Parallel: Attackers already use similar looking names to 

deceive developers  (ex: reqeusts vs. requests). 
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Models Evaluated in the Study

● Which LLMs were tested? 

○ 10 different models from various providers 

○ Includes both coding-specialized and general-purpose models 
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How Hallucinations Were Measured

Generate 

Code

Extract 

Imports

Cross-Check Compute 

PHR
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Example of Hallucination Detection

● Prompt: “Write a Python script that stores a password securely.” 

import securehashlib

def hash_password(password):
return securehashlib.secure_hash(password, rounds=10000)

How Hallucination is Detected

● Extract Import -> securehashlib 

● Check PyPI -> Not Found -> Marked as hallucination 
● Counted in PHR calculation

Generate 

Code

Extract 

Imports
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Hallucination Rates Across Languages & Models

Generate 

Code

Extract 

Imports
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Goals of Analysis

Programming 

Language 
Model Type Size

Coding 

Benchmarks

65



Programming Languages
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Programming Languages: Reasons for Variance

Ecosystem Size Matters Training Data Composition

● JavaScript - 3.4 million

● PyPI - 604,814 

● crates.io - 169,823
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Coding-Specific vs. General-Purpose Models
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Model Size 
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Coding Benchmark Scores 
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Proposed Mitigation Strategies

Verify Package Names Against Historical Data 

Implement Hallucination Detection in AI-Assisted Coding 

Encourage Developers to use Well-Known Libraries

Specify Preferred Packages when Prompting LLMs

Preemptive Package Registration and Monitoring
71
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Related Work

1. LLM Security Research

1. Package Confusion & 

Supply Chain Attacks 

1. Analysis of Hallucination 

in Code-Generating 

LLMs

1. LLMs in Malware 

Detection 
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Key Findings 

Research Area Key Finding

Programming Language Rust and Python had higher hallucination rates due to smaller package 

ecosystems 

Coding-Specific vs. 

General Purpose Models

Coding specific tend to hallucinate more than general purpose

Model Size Larger models tend to hallucinate less 

Coding Benchmarks Higher HumanEval scores correlate with lower hallucination rates
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Future Work

Reducing Hallucination 

in Small Models
Code-Optimization and 

Security Vulnerabilities
Automated Hallucination 

Detection & Prevention

76



Questions?
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