
YaRN: Efficient Context Window Extension of Large Language

Models

Presented by:

Anisha Patrikar (gjq2yf) and Yagnik Panguluri (yye7pm)

1

Yagnik Panguluri (yye7pm)

2

Presentation Outline

❖ Introduction and Motivation

❖ Background: Position Embeddings in Transformer

❖ Prior Solutions and Challenges

❖ YaRN Overview

❖ Technical Insight: NTK-aware and NTK-by-parts

❖ Dynamic Scaling and Attention Temperature

❖ Training Setup

❖ Evaluation Criteria

❖ Key Results: Perplexity and Long Sequence Modeling

❖ Conclusion and Takeaways

3

Motivation and Introduction

4

Context Window

Limitations

Extend? Challenges YaRN

Motivation and Introduction

5

Context Window

Limitations

Extend? Challenges YaRN

● Large Language Models (LLMs) like GPT, LLaMa are used for many NLP tasks

● Their performance heavily depends on context window size

● Pre-trained LLMs can only handle fixed, relatively short context lengths (2k - 4k

tokens)

Motivation and Introduction

6

Context Window

Limitations

Extend? Challenges YaRN

Longer contexts enable:

● Better long-term dependencies (e.g. long documents, conversations)

● Improved in-context learning abilities

● Enhanced tasks like summarization, retrieval, and reasoning

Motivation and Introduction

7

Context Window

Limitations

Extend? Challenges YaRN

Position Encoding Bottleneck - Existing position encodings (like RoPE) don’t generalize beyond

training window

Existing Solutions:

● Significant compute (large-scale fine-tuning)

● Performance trade-offs at long lengths

Motivation and Introduction

8

Context Window

Limitations

Extend? Challenges YaRN

● Goal: Efficiently extend the context window with minimal fine-tuning cost and no degradation

● Leverage and improve existing RoPE techniques to achieve:

○ Lower training steps

○ Generalizations to much longer contexts (up to 128k tokens)

Background: Position Embeddings in Transformers

9

Transformers lack inherent sense of word order. Position embeddings encode token order information

Absolute Sinusoidal Encoding (Original Transformer)

Learnable Absolute Position Encoding

Relative Positional Encodings

Fixed, predefined sinusoidal patterns

Trainable vectors assigned to each position

Allow model to focus on relative distances

between tokens

Popular methods:

● T5 Relative Bias
● ALiBi

● RoPE

Rotary Position Embeddings (RoPE)

10

Rotary Position Embeddings

● Encodes relative positional

information via complex

rotations

● Introduced in RoFormer, widely
used in models like LLaMA,

GPT-NeoX, and PaLM

Methodology

● Converts token embeddings
into complex space

● Applies a rotation based on the

token’s position

Prior Solutions and Challenges

12

RoPE struggles to generalize beyond its trained context length. Extending the context requires rethinking

how positional information is encoded.

Position Interpolation (PI) NTK-aware Interpolation Dynamic NTK

ReRoPE, LM-Infinite

Core challenge: high compute cost, complex fine-tuning, and may degrade performance on short or unseen

sequences

YaRN Overview

14

Improved Interpolation Techniques

Dynamic Scaling

Attention Temperature Adjustment

YaRN = Yet another RoPE extensioN method

Prior Methods YaRN

Tokens Needed High (billions) Low (~0.1% of

pretrain data

Training Steps High Reduced (2.5x

fewer)

Max Context Limited (32k-

100k)

Up to 128k

Technical Insight: NTK-aware and NTK-by-parts

15

NTK-aware NTK-by-parts

● Inspired by Neural Tangent Kernel (NTK)

theory
● Adjusts scaling non-uniformly

○ High frequency dimensions scaled

less
○ Preserves fine-grained token

relationships

● Observation: wavelength of RoPE

dimension differs
● Idea:

○ High Frequency -> no interpolation

○ Low Frequency -> Interpolated
proportionally

○ Mid-range Frequency -> Smooth
ramp function between the two

Anisha Patrikar (gjq2yf)

16

Presentation Outline

❖ Introduction and Motivation

❖ Background: Position Embeddings in Transformer

❖ Prior Solutions and Challenges

❖ YaRN Overview

❖ Technical Insight: NTK-aware and NTK-by-parts

❖ Dynamic Scaling and Attention Temperature

❖ Training Setup

❖ Evaluation Criteria

❖ Key Results: Perplexity and Long Sequence Modeling

❖ Conclusion and Takeaways

17

Dynamic Scaling

18

Formula for Updating Scaling Factor:

Scaling factor for

interpolation

Actual sequence

length

Pretrained

context limit

Attention Temperature

19

Training Setup

20

Fine-tuning Process:

● Used LLaMA 2 (7B & 13B) with

YaRN Interpolation

● Training data: PG19 Dataset

● 10× fewer tokens, 2.5× fewer

training steps than prior

methods

Training Efficiency:

● YaRN achieves context

extension with minimal fine-

tuning

No increase in inference costs

Parameter Value

Learning rate 2 × 10⁻⁵

Batch size 64

Steps (s=16) 400

Steps (s=32) 200

Evaluating YaRN’s Performance

21

Perplexity on Long

Sequences

Passkey Retrieval

Accuracy

LLM Standard

Benchmarks

Key Results: Passkey Accuracy

22

● YaRN 7B and 13B achieve accuracy of 99.4% at 128K

tokens

● NTK-based models drop to 94.3% at 112K tokens

Key Results: Perplexity

23

Conclusion and Key Takeaways

24

YaRN enables efficient

context window

extension

Requires significantly

less training data

Compatible with existing

transformer

architectures

Long Context vs. RAG for LLMs: An Evaluation and Revisits

Presented by:

Aditya Kakkar (zjq5mr) and Aryan Sawhney (ryd2fx)

25

Aditya Kakkar (zjq5mr)

26

Presentation Outline

❖ Introduction (LC vs RAG)

❖ Background & Motivation

❖ Related Work

❖ Question Filtering and Expansion

❖ Evaluation Methodology

27

Presentation Outline

❖ Introduction (LC vs RAG)

❖ Background & Motivation

❖ Related Work

❖ Question Filtering and Expansion

❖ Evaluation Methodology

❖ Insights from Dataset and Evaluation

28

Introduction

29

Long Context vs. RAG for

LLMs

Background

Motivation

RAG

RAG

Related Work

● LC vs RAG: RAG improves

performance for models like GPT-4o

with long context windows (up to

128K tokens), but LC outperforms

RAG in multi-hop benchmarks,

depending on model size and

retrieval strategy (Xu et al., 2024b, Xu

et al., 2024a).

● Efficiency: Combining LC and RAG

can be beneficial with efficient

retrieval strategies, as demonstrated

by Self-ROUTE and OP-RAG, which

also consider cost reduction (Li et al.,

2024, Yu et al., 2024).

Question Filtering and Expansion

● Curates dataset from 12 QA sources

to compare LC and RAG.

● Filters questions to need external

context, using GPT-4o.

● Expands dataset to 20,000 questions

for better analysis.

Evaluation Methodology

● Evaluation Phases:

Compares RAG and LC in
three phases

○ Tests five retrievers

and picks the
best(RAPTOR)

○ Compares RAG and LC
on a full question set
with the same LLM

○ Analyzes subsets
where each excels.

● Evaluation Metrics: Uses
win-lose rate with Exact

Match and F1 scores; loose
evaluation includes EM wins

and higher F1 scores for
open-ended answers.

Aryan Sawhney (ryd2fx)

37

Experiment Setup

● To obtain answers from question dataset the following prompt

was used:
“From the context: [context], answer the questions briefly with no
explanation.” for both retrieval and long context settings.

● For MCQ questions, the following sentence was added to the
prompt
“Answer the question with the letters of the correct options (e.g. A, BC,

C, ACD, etc.) with- out including text”

Phase 1: Retrievers

● Evaluated retrievers include chunk-based,

index-based, and summarization-based
methods

● RAPTOR demonstrates superior overall
document understanding, particularly for

research papers achieving the highest correct
answer rate at 38.5%

● Index-based retrievers outperform chunk-
based methods

● Chunk-based methods struggle with
information dispersed across multiple chunks.

● Index-based retrievers, while not as strong as

RAPTOR in overall comprehension, are
effective in interpreting dialogues.

Phase 2: Comparing LC and RAG

● Compared LC and RAG on

the filtered, full question set
across 12 datasets

● Overall, LC answers 56.3% of
questions correctly, while

RAG answers 49.0%
correctly.

● Although LC shows better
overall results, nearly 10% of

the 13,628 questions can only
be answered correctly by
RAG, indicating retrievers

cannot be simply replaced by
long-context LLMs.

Phase 3: In-Depth Analysis

● LC and RAG performance varies by knowledge

source and question type

● LC excels with noisy, long contexts (e.g.,

Wikipedia and stories), showing robustness to
irrelevant information

● RAG performs better with naturally segmented
sources like dialogues, papers, and reports

● LC leads on fact-based questions (e.g., “Who,”

“Where,” “Which”), while RAG is comparable on
open-ended (“How”) and general yes/no questions

● These findings highlight that each method has
unique strengths depending on the scenario.

Word Frequency Visualization

● TF-IDF analysis was conducted on questions

where LC or RAG exclusively produced correct
answers

● The analysis treated all questions from each
dataset as a single document, focusing on term

frequency after removing stopwords

● LC’s top terms include “song,” “film,” and “novel,”

indicating strength in narrative topics

● RAG’s top terms include “country,” “dataset,” and
“model,” suggesting an edge in technical or data-
oriented topics

Impact of Generation Model in RAG

● Evaluated the impact of GPT-4o and GPT-4-Turbo

on RAG’s performance with three retrievers
(BM25, Tree Index, RAPTOR)

● Performance is largely consistent across
generation models regardless of the retriever

● RAPTOR outperforms the others, with a slight
decrease when using GPT-4-Turbo versus GPT-

4o

● Differences between GPT-4o and GPT-4-Turbo
are marginal, suggesting the choice depends on
factors like efficiency or resource availability

● The retrieval method has a larger influence on

overall performance than the specific generation
model

Case Study

● A case study examined

frequent errors from LC
and RAG by manually
reviewing questions each

method got wrong

● RAG’s most common error
is failing to retrieve
relevant context, often due

to missed sentences or
split chunks, leading to

refusal or incomplete
answers

● RAG also misinterprets
partial context, as seen

when it linked an incorrect
birthday due to overly
long, ambiguous text

spans

● LC rarely reports context absence, but its

mistakes stem from misinterpreting
questions (e.g., confusing "a specific
region" with multiple countries or

answering "how" instead of "where")

● Both models can locate related text, but
their reasoning is affected by how they
handle context and question interpretation

What is Long Context?

● Definition Variability: Studies define "long" differently—ChatQA2 uses >32k tokens,

LongBench v2 uses >8k, with others using 8k, 16k, or even 128k; no universal standard exists

● Relative Nature of "Long": The term is context-dependent; 4k tokens may be long for some

models (e.g., BERT-base) but not for others with larger context windows

● Context Relevance: "Context" means the situation explaining a question, but long-context
datasets may not always prioritize high relevance

● Dataset Types:
○ Realistic long texts (novels, research papers) challenge models with cohesive, dense

information
○ Synthetic long texts (concatenated segments from sources like Wikipedia) simulate

retrieval tasks and may include noise

● Task Alignment: Realistic texts suit reading comprehension, while synthetic texts assess

factual reasoning and effects like the lost-in-the-middle phenomenon

How to Compare or Combine LC & RAG?

● A clear framework is needed to compare LC and RAG, focusing on three perspectives: context

length, context relevance, and experiment design

● Context Length: Refers to the maximum tokens a model can process versus the amount of

text provided in a dataset; synthetic datasets trade off between increased length and
decreased relevance, making it essential to specify if 'long' comes from the model’s capacity,

dataset design, or both

● Context Relevance: Distinguishes between realistic long contexts (highly relevant, cohesive

texts) and synthetic ones (often low relevance and resembling RAG pipelines), with biases
potentially introduced by chunking that disrupts information continuity

● Experiment Settings: Evaluation can compare short-context RAG vs. long-context single
input, long-context RAG vs. long-context single input, and explore how RAG performance

scales with increasing context length, highlighting trade-offs in performance and computational
cost

● These insights suggest that LC and RAG can complement each other in real-world scenarios
depending on the data characteristics and question types.

Limitations

● The study is limited to text-based long contexts and does not consider audio, video, or multi-

modal contexts

● It focuses on papers that compare RAG with LC, rather than surveying all available retrievers

and models

● The experiments use current LC and RAG implementations, and future advancements may
alter the comparative outcomes

Importing Phantoms: Measuring LLM Package Hallucination

Vulnerabilities

Presented by:

Nina Chinnam (fhs9af), Mihika Rao (xsw5kn)

48

Presentation Outline

❖ Background & Motivation

❖ Methodology

❖ Analysis

❖ Related Work

❖ Conclusion

49

Presentation Outline

❖ Background & Motivation

❖ Methodology

❖ Analysis

❖ Related Work

❖ Conclusion

50

Mihika Rao (xsw5kn)

51

Background & Motivation

52

LLMs & Hallucinations in Code

● LLMs can sometimes produce unfounded or fabricated information

● Caused by statistical rather than factual reasoning

● Can happen in any domain (text, code, etc.)

53

Example of Hallucinated Package

● Securehashlib looks credible but does not exist in PyPI

● Developers might trust if they don’t double check

● A malicious actor can register the name for an attack

import securehashlib

def hash_password(password):

return securehashlib.secure_hash(password, rounds=10000)

54

How Attackers Exploit Hallucinations

● Monitor LLM outputs (social media, dev forums, code snippets)

● Identify nonexistent package names (e.g., securehashlib)

● Register the package on PyPI/NPM/crates.io with malicious code

● Developers unknowingly install the now-real malicious code

55

Security Impact & Software Supply Chain

● Open Repositories: PyPI, NPM, crates.io allow anyone to register a

package

● Supply Chain Risk: One bad dependency can compromise hundreds of

projects

● Typosquatting Parallel: Attackers already use similar looking names to

deceive developers (ex: reqeusts vs. requests).

56

Methodology

57

Models Evaluated in the Study

● Which LLMs were tested?

○ 10 different models from various providers

○ Includes both coding-specialized and general-purpose models

58

How Hallucinations Were Measured

Generate

Code

Extract

Imports

Cross-Check Compute

PHR

59

Example of Hallucination Detection

● Prompt: “Write a Python script that stores a password securely.”

import securehashlib

def hash_password(password):
return securehashlib.secure_hash(password, rounds=10000)

How Hallucination is Detected

● Extract Import -> securehashlib

● Check PyPI -> Not Found -> Marked as hallucination
● Counted in PHR calculation

Generate

Code

Extract

Imports

60

Hallucination Rates Across Languages & Models

Generate

Code

Extract

Imports

61

Nina Chinnam (fhs9af)

62

Presentation Outline

❖ Background & Motivation

❖ Methodology

❖ Analysis

❖ Related Work

❖ Conclusion

63

Analysis

64

Goals of Analysis

Programming

Language
Model Type Size

Coding

Benchmarks

65

Programming Languages

66

Programming Languages: Reasons for Variance

Ecosystem Size Matters Training Data Composition

● JavaScript - 3.4 million

● PyPI - 604,814

● crates.io - 169,823

67

Coding-Specific vs. General-Purpose Models

68

Model Size

69

Coding Benchmark Scores

70

Proposed Mitigation Strategies

Verify Package Names Against Historical Data

Implement Hallucination Detection in AI-Assisted Coding

Encourage Developers to use Well-Known Libraries

Specify Preferred Packages when Prompting LLMs

Preemptive Package Registration and Monitoring
71

Related Work

72

Related Work

1. LLM Security Research

1. Package Confusion &

Supply Chain Attacks

1. Analysis of Hallucination

in Code-Generating

LLMs

1. LLMs in Malware

Detection
73

Conclusion

74

Key Findings

Research Area Key Finding

Programming Language Rust and Python had higher hallucination rates due to smaller package

ecosystems

Coding-Specific vs.

General Purpose Models

Coding specific tend to hallucinate more than general purpose

Model Size Larger models tend to hallucinate less

Coding Benchmarks Higher HumanEval scores correlate with lower hallucination rates

75

Future Work

Reducing Hallucination

in Small Models
Code-Optimization and

Security Vulnerabilities
Automated Hallucination

Detection & Prevention

76

Questions?

	Slide 1
	Slide 2
	Slide 3: Presentation Outline
	Slide 4: Motivation and Introduction
	Slide 5: Motivation and Introduction
	Slide 6: Motivation and Introduction
	Slide 7: Motivation and Introduction
	Slide 8: Motivation and Introduction
	Slide 9: Background: Position Embeddings in Transformers
	Slide 10: Rotary Position Embeddings (RoPE)
	Slide 11
	Slide 12: Prior Solutions and Challenges
	Slide 13
	Slide 14: YaRN Overview
	Slide 15: Technical Insight: NTK-aware and NTK-by-parts
	Slide 16
	Slide 17: Presentation Outline
	Slide 18: Dynamic Scaling
	Slide 19: Attention Temperature
	Slide 20: Training Setup
	Slide 21: Evaluating YaRN’s Performance
	Slide 22: Key Results: Passkey Accuracy
	Slide 23: Key Results: Perplexity
	Slide 24: Conclusion and Key Takeaways
	Slide 25
	Slide 26
	Slide 27: Presentation Outline
	Slide 28: Presentation Outline
	Slide 29: Introduction
	Slide 30: Background
	Slide 31: Motivation
	Slide 32: RAG
	Slide 33: RAG
	Slide 34: Related Work
	Slide 35: Question Filtering and Expansion
	Slide 36: Evaluation Methodology
	Slide 37
	Slide 38: Experiment Setup
	Slide 39: Phase 1: Retrievers
	Slide 40: Phase 2: Comparing LC and RAG
	Slide 41: Phase 3: In-Depth Analysis
	Slide 42: Word Frequency Visualization
	Slide 43: Impact of Generation Model in RAG
	Slide 44: Case Study
	Slide 45: What is Long Context?
	Slide 46: How to Compare or Combine LC & RAG?
	Slide 47: Limitations
	Slide 48
	Slide 49: Presentation Outline
	Slide 50: Presentation Outline
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Presentation Outline
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Questions?

