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Motivation and Introduction

Fgure 1. Siiding window perplexity (5 = 256) of sn 1 25k Prool-pde documents nuncated 4o cvaluation
contenl window vae

Extend? Challenges YaRN

e Large Language Models (LLMs) like GPT, LLaMa are used for many NLP tasks

e Their performance heavily depends on context window size
e Pre-trained LLMs can only handle fixed, relatively short context lengths (2k - 4k

tokens)




Motivation and Introduction

Fgure 1. Siiding window perplexity (5 = 256) of sn 1 25k Prool-pde documents nuncated 4o cvaluation
contenl window vae

Context Window Challenges YaRN
Limitations

4 N

Longer contexts enable:
e Better long-term dependencies (e.g. long documents, conversations)
e Improved in-context learning abilities
e Enhanced tasks like summarization, retrieval, and reasoning

- /




Motivation and Introduction
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Fgure 1. Siiding window perplexity (5 = 256) of sn 1 25k Prool-pde documents nuncated 4o cvaluation
contenl window vae

Context Window Extend? YaRN
Limitations

4 N

Position Encoding Bottleneck - Existing position encodings (like RoPE) don’t generalize beyond
training window

Existing Solutions:
e Significant compute (large-scale fine-tuning)
e Performance trade-offs at long lengths

\_ J




Context Window

Motivation and Introduction

Fgure | Sliding window perplexity (5 »
contenl window vae

I56) of wn 125k Prool-pde documents truncatod 1o cvaluation

Extend? Challenges

Limitations

-

Goal: Efficiently extend the context window with minimal fine-tuning cost and no degradation

Leverage and improve existing ROPE techniques to achieve:

o Lower training steps
Generalizations to much longer contexts (up to 128k tokens)

O




Background: Position Embeddings in Transformers

Transformers lack inherent sense of word order. Position embeddings encode token order information

Absolute Sinusoidal Encoding (Original Transformer)

Learnable Absolute Position Encoding

Relative Positional Encodings

~
Fixed, predefined sinusoidal patterns
J
~
Trainable vectors assigned to each position
J
/ Allow model to focus on relative distances \
between tokens
Popular methods:
e T5 Relative Bias
e ALiBi
k e ROPE /




Rotary Position Embeddings (RoPE)
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Figure 1: Implementation of Rotary Position Embedding(RoPE).

Rotary Position Embeddings
e Encodes relative positional
iInformation via complex
rotations
e Introduced in RoFormer, widely
used in models like LLaMA,
GPT-NeoX, and PaLM

Methodology
e Converts token embeddings
iInto complex space
e Applies a rotation based on the
token’s position

10



To convert embeddings x,,,, x,, into query and key vectors, we are first given R-linear operators
W,, W, :RP 5 RIP
In complex coordinates, the functions f,, fi. are given by
fo(Xm,m) = e*’mﬂwqu, fe(x%n,n) = e™Wix,, (5)
where 6 = diag(fy,--- ,0pj/2) is the diagonal matrix with 6; = b=2%/IP| and b = 10000. This way,
RoPE associates each (complex-valued) hidden neuron with a separate frequency #;. The benefit

of doing so is that the dot product between the query vector and the key vector only depends on the
relative distance m — n as follows

(fo(xmsm), fr(xn,n))r (6)
=Re((fq(Xm, m), fe(%Xn,n))c) (7)
=Re(x}, W Wx,e?m~m) (8)
=g(Xm, Xp, M — N). (9)

In real coordinates, the RoPE can be written using the following function

cosmé; —sinm#, 0 0 0 0
sinm#; cosmb, 0 0 0 0
_ 0 0 cnSmﬂg —sinm&‘g 0 0
fw(Xm,m, 8a) = 0 0 sinmf>  cosmbs 0 0 WXm,



Prior Solutions and Challenges

ROPE struggles to generalize beyond its trained context length. Extending the context requires rethinking
how positional information is encoded.

J 48 K 7

)’i\< o2 v\

Position Interpolation (PI) NTK-aware Interpolation Dynamic NTK

ReRoPE, LM-Infinite

Core challenge: high compute cost, complex fine-tuning, and may degrade performance on short or unseen
sequences
12
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extrapnlatmn does not perfnnn well on sequences Wy, , WL with L larger than the pre -trained
limit, they discovered that interpolating the position l]'ldlClES within the pre-trained limit works well
with the help of a small amount of fine-tuning. Specifically, given a pre-trained language model with
RoPE, they modify the RoPE by

mL
Fow G, 00) = fov (s 7104 (10)
where L' > L is a new context window beyond the pre-trained limit. With the original pre-trained
model plus the modified RoPE formula, they fine-tuned the language model further on several orders
of magnitude fewer tokens (a few billion in Chen et al. [9]) and successfully acheived context window
extension.



YaRN Overview

YaRN = Yet another ROPE extensioN method

Prior Methods

YaRN

Tokens Needed | High (billions) Low (~0.1% of
pretrain data
Training Steps High Reduced (2.5x
fewer)
Max Context Limited (32k- Up to 128k
100K)

— Codellama-] 300
Wen-Liamy-2-1 1044k
- Wen-Uiand-2-130- 128k
— OO LIMA 2 78 32K
w— Cosellama- TN
— WenUama-2. 7064k
BenLiama 2 To 128k

Figure 1. Sliding window perplexity (S = 256) of ten 128Kk Proof-pik documents truncased to evaluation
context window size

Improved Interpolation Techniques

Dynamic Scaling

Attention Temperature Adjustment 14



Technical Insight: NTK-aware and NTK-by-parts

NTK-aware

o0
&

o

e Inspired by Neural Tangent Kernel (NTK)
theory
e Adjusts scaling non-uniformly
o High frequency dimensions scaled
less
o Preserves fine-grained token
relationships

NTK-by-parts

Observation: wavelength of RoPE
dimension differs
ldea:
o High Frequency -> no interpolation
o Low Frequency -> Interpolated
proportionally
o Mid-range Frequency -> Smooth
ramp function between the two

15
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Dynamic Scaling

Adapts
interpolation
dynamically based
on sequence length
"

Prevents abrupt
performance drop
at longer contexts

Updates scaling
factor dynamically
atinference

Formula for Updating Scaling Factor:

E.F < Actual sequence

s = max(1, — length
Scaling factor for — (

interpolation ¥~ Pretrained
context limit

18



Attention Temperature

Prevents loss of
attention weight
sharpness

Adjusts softmax
to avoid extreme
probability shifts

vy

Om = -!]'{Im:m] € Hlﬂla k, = fk(xmn] € RIP,

T T
q kﬂ kaﬂ.
ft m__ | softmax
S0 max( |D|) > ( £/ ﬂ|)
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Training Setup

Fine-tuning Process:

e Used LLaMA 2 (7B & 13B) with
YaRN Interpolation

e Training data: PG19 Dataset

e 10x fewer tokens, 2.5x% fewer
training steps than prior
methods

Training Efficiency:

e YaRN achieves context
extension with minimal fine-
tunina

Parameter Value
Learning rate 2 x107°
Batch size 64
Steps (s=16) 400
Steps (s=32) 200




Evaluating YaRN’s Performance

ol

Perplexity on Long Passkey Retrieval LLM Standard
Sequences Accuracy Benchmarks

21



Key Results: Passkey Accuracy

e YaRN 7B and 13B achieve accuracy of 99.4% at 128K

e NTK-based models drop to 94.3% at 112K tokens

tokens

Model Model Scaling  Context Training Extension Passkey  Passkey

Size Name Factor (s) Window Data Context Method  Context Accuracy
7B Together 4 32k 32k P1 32k 100%
7B Code Llama 88.6 100k 16k NTK 112k 94.3%
7B YaRN 16 64k 64k YaRN 64k  96.3%
7B YaRN 32 128k 64k YaRN 128k  99.4%

13B Code Llama 88.6 100k 16k NTK 128k  99.4%

13B YaRN 16 64k 64k YaRN 64k  97.5%

32 64k

13B

YaRN

128k

YaRN

128k

99.4%

22



Key Results: Perplexity

— Yarn-Mistral-7b-6dk
—— Yarn-Mistral-7h-128k
3.2 — amazeniMistrallite
— mistralai/Mistral-78-40.1
:
é 2.8 1
‘_:E‘ 2.6 1
]
2.4
2.2 1 - - — -
1] 206'3'0 NEH)D WI;JOI:I EEI':I)DG wl.'.lrﬂ{!ﬂ 12!1;30'3
Context Window
Model Model Context Extension Evaluation Context Window Size
Size MName Window Method B192 32768 65536 OB34 131072
7B Together 32k PI 350 264 =100 =100 =10t
TB Code Llama 100k NTK 3.71 2.74 2.55 2.54 2.71
7B  YaRN (s = 16) 64k YaRN 3.51 2.65 242 > 10t > 10!
7B  YaRN (s = 32) 128k YaRN 3.56 2.70 2.45 2.36 2.37
13B Code Llama 100k NTK 3.54 2.63 241 2.37 2.54
13B YaRN (s = 16) 64k  YaRN 325 250 229 >10' > 10!

I13B  YaRN (s = 32) 128k YaRN 3.29 2.53 2.31 2.23 2.24 23




Conclusion and Key Takeaways

eI o4

YaRN enables efficient Requires significantly Compatible with existing
context window less training data transformer
extension architectures

24
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Introduction

amity solutions %

Long Context vs. RAG for
RAG Workflow LLMs

VS.
Long Context
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Simple RAG
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Structured Data

Chunks Vector DB Retrieved Response
(Embeddings) Chunks Generation
%

Unstructured Data



Retrieval Type

Chunk-Based
Retnieval

Index-Based Retrieval

Summarization-Based
Retrieval

How It Works

Splits document into smaller sections and
retrieves relevant ones

Pre-processes documents into structured indices
(e.g., tree or knowledge graphs) for efficient
lookups

Generates multi-level summaries instead of
retrieving raw text chunks

Best Use Case

Best for fact-based, structured
text (e.g., research papers, news)

Best for large, structured
databases or knowledge graphs

Best for long documents, multi-
step reasoning, and broad queries



Related Work

Paper | Type | Findings
LongBench (B) . Retrieval helps 4k model, but not 16k/32k models.
(Bai et al., 2024a) Models benefit from continuous training on long contexts.

+ Splitting context into shorter and more chunks is better.
Ret-LC LLM (R) * LC is better for multi-hop benchmarks than 4k RAG.
(Xu et al., 2024b) o RAG improves on TOB/M43B models on all context lengths.

+ For LC model, best results are obtained from top-3 or top-10.
LongRAG (L) @ Retrieval benefits from long retrieval units,
(liang et al., 2024h)
ChatQA2 (C) # For sequence lengths up to 32K, RAG outperforms LC.
(Xu et al., 2024a) o From 3K to 24K, greater context window benefits RAG.
Self-ROUTE (S) * LC consistently outperforms RAG, but RAG has lower cost,
(Lietal., 2024)
OP-RAG (O) # Efficient retrieval can outperform brute-force LC,
(Yu et al, 2024) + Too many chunks in RAG harms performance.

+ Preserving the original order is better than ordering by score.
LC LLM-RAG (M) . Retrieve more passages first improves performance then drops.
(Jim et al., 2024) + Ordering higher score information to front and back helps.
LC RAG Most close models” RAG improves up to 100k tokens.
Performance () Most open models’ RAG peak at 16k-32k then performance drops.
(Leng et al., 2024)
LongBench v2 (V) & GPT-4o performs better at 128k without RAG.
(Bai et al., 2024h) o GPT-d4o performance keeps increasing to 128k RAG context.

Qwen2.5 & GLM-4-Plus drop with =32k RAG contexts,

LC vs RAG: RAG improves
performance for models like GPT-40
with long context windows (up to
128K tokens), but LC outperforms
RAG in multi-hop benchmarks,
depending on model size and
retrieval strategy (Xu et al., 2024b, Xu
et al., 2024a).

Efficiency: Combining LC and RAG
can be beneficial with efficient
retrieval strategies, as demonstrated
by Self-ROUTE and OP-RAG, which
also consider cost reduction (Li et al.,
2024, Yu et al., 2024).



Question Filtering and Expansion

e Curates dataset from 12 QA sources
to compare LC and RAG.

Dataset | #Questions  #KeptQ % Kept Q e Filters questions to need external

Coursera 172 54 32 context, using GPT-4o.

EQ 0 }};gg ;2; 2: e Expands dataset to 20,000 questions
ove A . H

2WikiMHQA 2,300 1,036 45 for better analysis.

HotpotQA 2,200 1,113 51

MuSiQue 2,200 1,663 78

MultiFieldQA 150 121 81

NarrativeQA 2211 1,880 85

QASPER 2,718 2,674 98

QuALTY 2,725 2,725 100

TOEFL-QA 962 962 100

MultiDoc2Dial 158 158 100

Total | 19,188 13,628 71




Evaluation Methodology

Questions
Only RAG
Answered
Correctly

>
Eomect Answere
by RAG (EM)

Figure 2: Evaluation Matrix for In-depth Analysis.

Questions
Only LC
Answered
Correctly

Questions
Both
Answered

RAG  Wrongly

Correct
Answers
by LC
(EM)

e Evaluation Phases:
Compares RAG and LC in
three phases

o Tests five retrievers
and picks the
best(RAPTOR)

o Compares RAG and LC
on a full question set
with the same LLM

o Analyzes subsets
where each excels.

e FEvaluation Metrics: Uses
win-lose rate with Exact
Match and F1 scores; loose
evaluation includes EM wins
and higher F1 scores for
open-ended answers.
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Experiment Setup

e To obtain answers from question dataset the following prompt
was used:
“From the context: [context], answer the questions briefly with no
explanation.” for both retrieval and long context settings.

e For MCQ questions, the following sentence was added to the
prompt
“Answer the question with the letters of the correct options (e.g. A, BC,
C, ACD, etc.) with- out including text”



Phase 1: Retrievers

Type | Retriever Correct (%) RAG Only RAG Better
| BM25 319 (20.4) 50 141
Chunk Contriever 315(20.1) 43 143
| Text-emb-3-small 338 (21.6) 47 151
Inde | Tree Index A4T0(30.1) 82 234
fdex | Window Parsing 555 (35.5) 9] 237
Summarization | RAPTOR 602 (38.5) 97 258

Table 5: Comparison of different retrieval methods

Evaluated retrievers include chunk-based,
index-based, and summarization-based
methods

RAPTOR demonstrates superior overall
document understanding, particularly for
research papers achieving the highest correct
answer rate at 38.5%

Index-based retrievers outperform chunk-
based methods

Chunk-based methods struggle with
information dispersed across multiple chunks.

Index-based retrievers, while not as strong as
RAPTOR in overall comprehension, are
effective in interpreting dialogues.



Phase 2: Comparing LC and RAG

e Compared LC and RAG on
the filtered, full question set

Dataset | #Questions | LC Correct  RAG Correct | LC Only RAG Only | LC Better  RAG Better across 12 datasets

Coursera 54 26 0 10 4 10 4

2WikiMHOA 1,036 504 431 242 79 265 107

HotpotQA 1,113 876 723 212 59 231 67 0
MultiFieldQA 121 63 60 14 11 44 21 i Ovel‘a_ll, LC answers 56-3/0 of
NQ 373 189 138 75 24 104 35 guestions correctly, while
NarrativeQA 1,880 558 405 276 123 685 281

QASPER 2,674 884 863 517 496 1,011 762 RAG answers 49.0%

QUALITY 2,725 2,290 2,050 402 162 402 162

TOEFL-QA 962 895 884 26 15 26 15 correctly.

MuiQue 1,663 821 663 344 186 426 225

MultiDoc2Dial 158 14 38 5 29 65 58

NovelQA 869 466 408 164 106 164 106 e Although LC shows better
Overall | 13,628 | 7676 6,683 | 2287 1294 | 3433 1,843 overall results, nearly 10% of

Table 4: Performance of LC and RAG across different datasets. We report the number of questions answered :
correctly by each method, as well as the breakdown of questions where: only LC answers correctly (LC Only), only the 13’628 queStlonS canon Iy
RAG answers correctly (RAG Only), LC outperforms RAG (LC Better), and RAG outperforms LC (RAG Better). be answered correctly by

RAG, indicating retrievers
cannot be simply replaced by
long-context LLMs.



Phase 3: In-Depth Analysis

Dialogue 31 44 L
RAG
Paper/Report | 531 507
Story | B42 391 |
WikiPedia | 873 318
] 200 400 600 BOO 1000 1200
Word Count
Figure 3: Performance breakdown by knowledge source
for LC Only and RAG Only.
Who! 268 [E01 LC
RAG

When! 182 73
VWhere! 143 58

Which! 250 110

What | 919 468
Why: 130 63
How 333 280
Other 540 140
1] 200 400 GO0 BOO 1000 1200
Word Count

Figure 4: Performance breakdown by question type for
LC Only and RAG Only.

LC and RAG performance varies by knowledge
source and question type

LC excels with noisy, long contexts (e.g.,
Wikipedia and stories), showing robustness to
irrelevant information

RAG performs better with naturally segmented
sources like dialogues, papers, and reports

LC leads on fact-based questions (e.g., “Who,”
“Where,” “Which”), while RAG is comparable on
open-ended (“How”) and general yes/no questions

These findings highlight that each method has
unique strengths depending on the scenario.



Word Frequency Visualization
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Figure 5: Top 15 Words based on TF-IDF Score for LC
Only vs. RAG Only.

TF-IDF analysis was conducted on questions
where LC or RAG exclusively produced correct
answers

The analysis treated all questions from each
dataset as a single document, focusing on term
frequency after removing stopwords

LC’s top terms include “song,” “film,” and “novel,”
indicating strength in narrative topics

RAG'’s top terms include “country,” “dataset,” and
“‘model,” suggesting an edge in technical or data-
oriented topics



Impact of Generation Model in RAG

e Evaluated the impact of GPT-40 and GPT-4-Turbo
on RAG'’s performance with three retrievers
(BM25, Tree Index, RAPTOR)

Retriever | Model Correct (%) RAG Only RAG Better e Performance is largely consistent across

BM25 GPT-40 319 (20.4) 50 141 generation models regardless of the retriever
GFT-4-Turbo 310 (19.8) 51 152

Tree-Index | OF 140 470 (30.1) 82 234 e RAPTOR outperforms the others, with a slight
GPT-4-Turbo 458 (29.3) 81 229 :
. pregr 5 v decrease when using GPT-4-Turbo versus GPT-

PT-4o (38.5) 7 3
RAPTOR | Gpra-Turbo 589 (37.7) 99 295 40

Table 6: Results of using different generation models _
e Differences between GPT-40 and GPT-4-Turbo

are marginal, suggesting the choice depends on
factors like efficiency or resource availability

e The retrieval method has a larger influence on
overall performance than the specific generation
model



Case Study

Cuastion: What iz the debt-to-GDP
ratic of the country where Anthony
Upko was formerly involved in the
government ?

Wrong Answer: The context does not
provide the debt-to-GDP ratio for
Nigeria.

Gold: 11 percent

Relevant Sents: 1. HNigeria is the
world’s 20th largest economy ... the
debt-to-GDF ratio is only 11 percent.
2. Anthony Ukpeo was Minister of
Information and Culture, and then
Governor of Rivers State, Migeria.

Cuestion: When is the performer of
song Swing Down Sweet Chariet fs
birthday?

Wrong Answer: May 8, 1940

Gold: January 8, 1935

Relevant Sents: 1. Swing Down Sweet
Chariot is a traditional song ...
recorded by Elvis Presley.

2. Elwvis Aaren Presley (January B,
1935 - August 16, 1977), alsoc known as

Table 7: Examples cases where RAG made mistakes

Quastion:
specific region?

Wrong Answer: Yes, the tweets come
from 16 different countries.

Gold: HNo

Relevant Sents: This helped us narrow
down our guery space to 16 countries.
Question: Where did Valancourt lose
his wealth?
Wrong Answer:
Gold: Paris
Relevant Sents: FReturning to her
aunt’s estate, Emily learns that
Valancourt has gone to Paris and lost
his wealth.

Table 8: Examples representing common cases where
only RAG answers correctly

In Gambling.

LC rarely reports context absence, but its
mistakes stem from misinterpreting
guestions (e.g., confusing "a specific

region" with multiple countries or °

answering "how" instead of "where")

Both models can locate related text, but
their reasoning is affected by how they
handle context and question interpretation

Do the tweets come from a PY

A case study examined
frequent errors from LC
and RAG by manually
reviewing questions each
method got wrong

RAG’s most common error
is failing to retrieve
relevant context, often due
to missed sentences or
split chunks, leading to
refusal or incomplete
answers

RAG also misinterprets
partial context, as seen
when it linked an incorrect
birthday due to overly
long, ambiguous text
spans



What is Long Context?

Definition Variability: Studies define "long" differently—ChatQA2 uses >32k tokens,
LongBench v2 uses >8Kk, with others using 8k, 16k, or even 128Kk; no universal standard exists

Relative Nature of "Long": The term is context-dependent; 4k tokens may be long for some
models (e.g., BERT-base) but not for others with larger context windows

Context Relevance: "Context" means the situation explaining a question, but long-context
datasets may not always prioritize high relevance

Dataset Types:
o Realistic long texts (novels, research papers) challenge models with cohesive, dense

information
o Synthetic long texts (concatenated segments from sources like Wikipedia) simulate
retrieval tasks and may include noise

Task Alignment: Realistic texts suit reading comprehension, while synthetic texts assess
factual reasoning and effects like the lost-in-the-middle phenomenon



How to Compare or Combine LC & RAG?

A clear framework is needed to compare LC and RAG, focusing on three perspectives: context
length, context relevance, and experiment design

Context Length: Refers to the maximum tokens a model can process versus the amount of
text provided in a dataset; synthetic datasets trade off between increased length and
decreased relevance, making it essential to specify if 'long' comes from the model’s capacity,
dataset design, or both

Context Relevance: Distinguishes between realistic long contexts (highly relevant, cohesive
texts) and synthetic ones (often low relevance and resembling RAG pipelines), with biases
potentially introduced by chunking that disrupts information continuity

Experiment Settings: Evaluation can compare short-context RAG vs. long-context single
input, long-context RAG vs. long-context single input, and explore how RAG performance
scales with increasing context length, highlighting trade-offs in performance and computational
cost

These insights suggest that LC and RAG can complement each other in real-world scenarios
depending on the data characteristics and question types.



e The study is limited to text-based long contexts and does not consider audio, video, or multi-
modal contexts

e |t focuses on papers that compare RAG with LC, rather than surveying all available retrievers
and models

e The experiments use current LC and RAG implementations, and future advancements may
alter the comparative outcomes
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LLMs & Hallucinations in Code

e LLMs can sometimes produce unfounded or fabricated information
e Caused by statistical rather than factual reasoning

e Can happen in any domain (text, code, etc.)

53



Example of Hallucinated Package

e Securehashlib looks credible but does not exist in PyPI

e Developers might trust if they don’t double check

e A malicious actor can register the name for an attack
import securehashlib

def hash password(password):
return securehashlib.secure _hash(password, rounds=10000)

54



How Attackers Exploit Hallucinations

Monitor LLM outputs (social media, dev forums, code snippets)
Identify nonexistent package names (e.g., securehashlib)
Register the package on PyPI/NPM/crates.io with malicious code

Developers unknowingly install the now-real malicious code

55



Security Impact & Software Supply Chain

Open Repositories: PyPIl, NPM, crates.io allow anyone to register a
package

Supply Chain Risk: One bad dependency can compromise hundreds of
projects

Typosquatting Parallel: Attackers already use similar looking names to
deceive developers (ex: regeusts vs. requests).

56
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Models Evaluated in the Study

e Which LLMs were tested?
o 10 different models from various providers
o Includes both coding-specialized and general-purpose models

Importing Phantoms: Measuring LLM Packape Hallucination Vulnerabilities

Code Open

Label Params model? weights? Provider Full name; reference
Codeliemma 7B ¥ ¥ Google CodeGemma 18; CodeGemma Team (2024)
Dracarys 1B ¥ ¥ Abacus. Al Dracarys-Llama-3.1-70B-Instruct
GPT-d4o 200B* n n OpenAl gpt-40-2024-08-06; OpenAl (2024)
Granite-3.0 3B ¥ y IBM Granite Team (2024)
Llama-3.1-8B 3B n ¥ Meta Llama 3.1 8B
Llama-3.1-T0B TOB n ¥ Meta Llama 3.1 0B
Mamba-Codestral B ¥ ¥ Mistral Al Mamba Codestral 7B v 1; Mistral Al team (2024)
Minitron-Mistral 3B n ¥ NVIDLA Mistral-NeMo-Minitron-8B-Insiruct; Adler et al. (2024)
Nemotron-Llama-3.1 T n ¥ NVIDILA Llama-3, 1-Nemotron-T0B-Instruct; Adler et al, (2024)
Qwen2, 5-Coder B ¥ y AlibabaiQwen Qwen. 5-Coder TB; Hui et al, (2024)
StarCoder2 15B ¥ ¥ BigCaode StarCoder2- 158, Lozhkov et al. (2024)

Table 1. Models selected for assessment, *:GPT-40 parameter count is an approximation, from Abacha et al. (2024)
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How Hallucinations Were Measured

Compute
' PHR

Generate Extract Cross-Check

Code Imports

Language Repository Count
JavaScript NPM 3,391,235
Python PyPI 604,814
Rust crates.io 169,823

59



Example of Hallucination Detection

e Prompt: “Write a Python script that stores a password securely.”
Import securehashlib

def hash password(password):
return securehashlib.secure_hash(password, rounds=10000)

How Hallucination is Detected
e Extract Import -> securehashlib
e Check PyPI -> Not Found -> Marked as hallucination
e Counted in PHR calculation
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Hallucination Rates Across Languages & Models

PHR (%)
Model JavaScript Rust Python
Dracarys 20.44 15.38 242
Codegemma 23.74 42.20 33.85
StarCoder2 14.51 31.65 27.03
Granite-3.0 24.62 42.86 46.15
Llama-3.1-70B 24.40 18.02 25.93
Llama-3.1-8B 11.43 28.79 5.49
Mamba-Codestral 14.95 14.29 33.85
Nemotron-Llama-3.1 0.22 0.22 4.84
Minitron-Mistral 10.77 24.62 33.41
GPT-40 1.76 10.99 3.52
Qwen2.5-Coder 15.16 43.08 38.02

Table 3. Overall package hallucination rate for JavaScript, Rust,
and Python
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Analysis
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Goals of Analysis

Importing Phantoms: Measuring LLM Package Hallucination Vulnerabilities

Code Open
Label Params  model?  weights? Provider Full name; reference
CodelGemma B ¥ ¥ Google CodeGemma 7B; CodeGemma Team (2024)
Dracarys 708 ¥ ¥ Abacus. Al Dracarys-Llama-3. 1-TOB-Instruct
GPT-4o 2008+ n n OpenAl gpt-40-2024-08-06; OpenAl (2024)
Granite-3.0 BB ¥ ¥ IBM Granite Team (2024)
Llama-3.1-88 5B n ¥ Meta Llama 3.1 8B
Llama-3.1-TOB TOB n Y Meta Llama 3.1 T0B
Mamba-Codestral 7B ¥ ¥ Mistral Al Mamba Codestral 7B v0.1; Mistral Al team (2024)
Minitron-Mistral 5B n ¥ NYIDA Mistral-NeMo-Minitron-88-Instruct; Adler et al. (2024)
Nemotron-Llama-3.1 T0B n v NVIDIA Llama-3. 1 -Nemotron-TOB-Instruct; Adler et al. (2024)
Qwenl. 5-Coder T8 ¥ ¥ Alibaba/Qwen Qwenl. 5-Coder TB; Hui et al. (2024)
StarCoder2 15B ¥ y BigCode StarCoder2-15B; Lozhkov et al. (2024)

Table 1. Models selected for assessment.
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Figure I. Package Hallucination Rate by language, averaged

across all models

0.2474

Language
N Python
S Rust
e JavaScript

JavaScript

PHR (%)
Model JavaScript Rust Python
Dracarys 20.44 15.38 2.42
Codegemma 23.74 42.20 33.85
StarCoder2 14.51 31.65 27.03
Granite-3.0 24.62 42.86 46.15
Llama-3.1-70B 24.40 18.02 25.93
Llama-3.1-8B 11.43 28.79 5.49
Mamba-Codestral 14.95 14.29 33.85
Nemotron-Llama-3.1 0.22 0.22 4.84
Minitron-Mistral 10,77 24.62 33.41
GPT-40 1.76 10.99 3.52
Qwen2.5-Coder 15.16 43.08 38.02

Table 3. Overall package hallucination rate for JavaScript, Rust,

and Python
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Programming Languages: Reasons for Variance

[ Ecosystem Size Matters }

e JavasScript - 3.4 million
e PyPl-604,814
e crates.io - 169,823

[ Training Data Composition }

Prﬂgrarnmlng Languages Popularity in 2024
Baged o data fresn

thay Stack Chanrfiers Sircblofied fuviy

I
Javascript | I 50
soL I, 54.10%

52.90%
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Coding-Specific vs. General-Purpose Models

ous] JavaScript Rust Python
. g 1890%  3138% 3022%
Coding 5 459 1528 16.67
@ 971%  1653% 14.63%
T Non-coding 8.86 11.88 1350

-
P
o

-3
b
=

Table 4. Package hallucination rates of coding-specific vs. non-
coding models

Package Hallucination rate
=
=

|
+
—

Aust/Coding

E & 3
Rust/Non-coding |7

Python/Coding
Javascript/Coding

Pythan/Man-coding

JavascriptiNon-coding |_

Figure 2. Distribution of package hallucination rate split by code-
specialized and non-code models. Lower y-axis scores are better.
Coding-specific models plots are solid-shaded, other models are
hatch-shaded. Note that for every language, coding-specific mod-
els exhibit higher propensity to hallucinate packages. 68



Model Size

® PHR measurement PHR (%}
0.45 4 e Pearson correlation _Modd JavaScript Rust P?"Ihﬂn
3 Dracarys 20.44 15.38 242

9 0.401 Codegemma 23.74 42.20 3385
- ¢ StarCoder2 14.51 31.65 27.03
§°%1e Granite-3.0 24.62 4286  46.15
Bo3q ° Llama-3.1-70B 24.40 1802 2593
£ -3.1-8B 11.43 28,79 5.49
=2 023 Mamba-Codestral 14.95 14.29 33.ES|
2 5201 Nemotron-Llama-3.1 0.22 022 484
4 Minitron-Mistral 10.77 24.62 3341
8 0151 GPT-do 1.76 10.99 3.52
é o Qwen2.5-Coder 15.16 43.08 38.02

0.05 - Table 3. Overall package hallucination rate for JavaScript, Rust,

0.00 v v v r v v v v and P}'Thﬂﬂ

0 25 S0 75 100 125 150 175 200

Model parameter count (bn)

Figure 3. Model Size (x) vs PHR (y). Lower PHR is desir-
able. Small and low-hallucination models are in the bottom left.
Pearson product-moment correlation coeff. of size vs.PHR is
—0.541, p = 0.00114; coeff of In(size) vs. PHR is —0.593, p =
0.00028. 69



Coding Benchmark Scores

0.90 - @& Python . .
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Figure 4. MBPP Coding score vs. package hallucination rate Figure 5. HumanEval Coding score vs. package hallucination rate
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Proposed Mitigation Strategies

Verify Package Names Against Historical Data

Implement Hallucination Detection in Al-Assisted Coding

Encourage Developers to use Well-Known Libraries

Specify Preferred Packages when Prompting LLMs

Preemptive Package Registration and Monitoring
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Related Work
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Related Work

1. LLM Security Research

1. Package Confusion &
Supply Chain Attacks

1. Analysis of Hallucination

In Code-Generating
\ LLMs

1. LLMs in Malware
Detection
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Conclusion
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Key Findings

Research Area

Programming Language

Coding-Specific vs.
General Purpose Models
Model Size

Coding Benchmarks

Key Finding
Rust and Python had higher hallucination rates due to smaller package
ecosystems

Coding specific tend to hallucinate more than general purpose

Larger models tend to hallucinate less

Higher HumanEval scores correlate with lower hallucination rates
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Future Work

o ’
= 4

Reducing Hallucination Code-Optimization and Automated Hallucination
in Small Models Security Vulnerabilities Detection & Prevention
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Questions?
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