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• Test-time scaling emerges as prominent research focus

•  What is Test Time Scaling?
o Allocate additional resources during inference (kind of like humans)

• Enabling breakthroughs in specialized and general tasks
o OpenAI o1, DeepSeek's R1

• Need for comprehensive survey for systemic understanding
o What to scale
o How to scale
o Where to scale
o How well to scale
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Test Time Scaling vs. Pre Training Scaling
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What & How: Summary
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What to Scale: Parallel Scaling
•What is being scaled at the inference stage? 

•Parallel Scaling
o Generating multiple outputs in parallel and then aggregating them into a final answer.

o Can be from multiple models, or the same model run repeatedly

o Same model adjustment from hyperparameter adjustment or prompt rephrasing

• Effectiveness derives from:
o Coverage: the likelihood of generating at least one correct response

o Aggregation Quality: if a correct response is successfully identified

o Idea that complex solutions have multiple pathways to the answer
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What to Scale: Sequential & Hybrid
• Sequential Scaling
o Involves explicitly directing later computations based on intermediate steps.

o Has several states that involve previous states and problem context

o Chain-of-Thought (CoT) Prompting, Step-by-Step, Refine

o Iterations create self-correction, improving accuracy

•Hybrid Scaling
o Combines Sequential and Parallel Scaling

o Generate multiple hypotheses and then refine/evaluate them

o Early work: Tree of Thoughts, Graph of Thoughts

oMore advanced:  Monte Carlo Tree Search, Multi-Agent Reasoning (debate)
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What to Scale: Internal Scaling
• Internal Scaling
o Model chooses how much scaling to do for the problem instead of human strategy

•Param Trainable Model
o Continuously update the model based on reasoning tasks via some training procedure

▪ long CoT examples produced by external scaling

o Outcome-oriented reward modeling for RL (DeepSeek)

•Frozen Model
o At Test Time, the model generates a sequence of internal states (z)

o Controls when to stop via learned policy

o Leads to emergent thinking without external prompting
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How to Scale: Tuning Based Approaches
•Directly tuning the LLM's parameters with 2 approaches: SFT and RL 

•Supervised Fine Tuning (SFT)
o Train LLM to mimic the rationale/structure to prompt the model to think through complex problems

o 2 main approaches

•SFT Imitation
o Generate long CoT demonstrations using test-time “planner” algorithms and then fine-tune the model 

to imitate those demonstrations

o STaR: Can be guided by the model itself (generates step-by-step solutions with filtering/verification)

o ReST-MCTS: use MCTS planner to model itself to reasoning steps

•SFT Distillation
o Use responses of "stronger" models for supervised learning

o Can lead to smaller models answer questions just as well as the teacher model
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How to Scale: Tuning Based Approaches
• RL: Reward Model-Free 
o Verifiable reward by DeepSeek R1: rule-based reward mechanisms to optimize accuracy in large models

▪ SimpleR1: Open-source reproduction of R1

o OpenR1: HuggingFace's open-source tool for RL

o cDPO: preference-based optimizer, utilizing critical tokens (base for many other expansions)

o OREO: value-based optimizer for mathematical reasoning

• RL: Reward Model-Based
o PPO: Using Human Based model for 

optimization
▪ ReMax takes PPO and reduces hyperparameters,

compute time, and need for additional value models

• Reinforce/Reinforce++ also do this, ReMax more greedy

o UGDA: refines reward model with
(previously) uncertain data. 

13https://arxiv.org/pdf/2411.19943
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How to Scale: Inference Based Approach
• Dynamically adjust parameters during deployment

• Stimulation
o Getting LLM to think more and allocate longer samples

o Prompting Strategies

▪ "Think Step by Step," and listing requirements to stimulate more samples

o Decoding Strategies
▪ Input more filler phrases or tokens, enforcing intermediate generation (drafts), enforcing prior distributions of latent vectors

o Self-Repetition Strategies

▪ Prompt LLM repeatedly during decoding stage, another is to mimic refinement process

oMixture of Model Strategies
▪ Ask different models about what they think. Can be all the same or different perspectives 
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How to Scale: Inference Based Approach
• Verification

o How do we make sure the LLM is generating a correct response?
▪ Can be used for Parallel Scaling, Sequential (to know when to stop), Aggregation or Searching Process (we'll get back to this)

o Outcome Verification
▪ Model Voting

▪ Self-consistency

▪ Separate algorithms/functions (verifiers)

▪ Code generation checks

▪ Separate LLM verifier (Judges), Agents

▪ RAG

o Process Verification
▪ AKA: Process Reward Model, State Verification

▪ Evaluating if the process is correct: Is it actually using CoT? Do the steps to reach the outcome make sense?

▪ Process Verification harder for LLMs to evaluate if too complex or long context, decomposition needed

▪ Used mostly in Code Generation or Mathmatical Reasoning
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How to Scale: Inference Based Approach
• Search

oMake sure LLM is utilizing its vast database of knowledge to ensure accuracy

o Can organize thoughts into a tree and utilize BFS or DFS

o Utilize Monte Carlo Tree Search during decoding to guide planning

o Graph Search is also experimented, utilizing stochastic beam search

• Aggregation
o How to consolidate multiple answers

o Selection
▪ Self-consistency of different routes (most common answer, but sometimes filtering required), Selection Agent

▪ Best-of-N (score based on external verifier)

o Fusion
▪ Combine Best-of-N (based on external verifier)

▪ Have LLM summarize
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What & How: Summary

18



Akira Durham
zup9su

19



20



Where to Scale: Reasoning Tasks
• Challenging tasks that require structured, explicit, and precise reasoning

• Mathematical Reasoning
o Complex computations, logical inference, and iterative verification

• Programming and Code Generation
o Syntactic accuracy, executable correctness, and iterative debugging

21
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Where to Scale: Reasoning Tasks
• Game Playing and Strategic Reasoning
o Adaptive planning, interactive decision-making, and complex multi-round reasoning

• Scientific Reasoning
oMulti-domain knowledge integration

• Medical Reasoning
o Diagonostic decision-making, clinical reasoning, precise medical knowledge
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Where to Scale: 
General Tasks
•  Require broad, general-purpose reasoning capabilities

•  Open-ended Tasks

o Enhance output diversity, quality, and coherence

•  Agentic Tasks

o Realistic and interactive environments, complex planning, tool 
utilization, and iterative reasoning

•  Knowledge-intensive Tasks

o Retrieve and synthesize factual knowledge from external sources

•  Multimodal Tasks

o Cross-modal integration, iterative reasoning between modalities, 
and robust verification
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How Well to Scale
•  Classify metrics used in evaluating TTS methods

•  Performance: Assess correctness of generated 
solutions

o Pass@1 – Widely used, proportion of problems 
where first response was correct

o Pass@k – Extends Pass@1, at least one of k 
responses is correct

o Consensus@k – Majority-voted answer through 
k responses, was it correct

o Arena-based Evaluation – Paired with additional 
output metrics, ex. shorter answers

•  Efficiency: Assess computational and resource costs

o Token Cost – Total number of tokens generated 
during inference, intermediate + final

o FLOPs-based Efficiency Analysis – Quantify 
computational cost, comparison for similar 
compute models

o Underthinking Score – Initial correct thought 
but fails to follow through, measures time + 
length
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How Well to Scale
• Controllability: Assess if inference-time methods can 
consistently align to constraints

o Control Metric – Quantify adherence to specific compute 
budget range

o Length-Deviation – Quantify model's ability to control 
output length

o K-ϵ Controllability – Prompt-based steerability, achieve 
some specific output

•Scalability: Assess TTS methods leverage increased compute to 
improve performance

o Scaling Metric – Average slope of performance gains as 
compute increases

o Scaling Curves – Visualize diminishing returns at higher 
compute budgets (accuracy, pass rate, etc)
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Organization and Trends
•  2022 – 2023
o Emphasized structured inference to guide LLMs

• 2024
oMethods like PRM and MCTS enabled automatic supervision of reasoning

•2025
o Pure RL can also elicit comprehensive, sound reasoning
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Hands-on Guidelines
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Challenges and Opportunities
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More scaling 
is the frontier

Clarifying the 
techniques

Optimizing 
Scaling

Domain 
generalization 



More Scaling 
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• Transformative impact on reasoning-intensive tasks – as seen in o1 and R1

• Parallel
o Generating multiple responses and selecting best answer, leads to diminishing returns

• Sequential
oMaintaining coherence and preventing error accumulation

• Hybrid
o Blends parallel and sequential, more adaptive and practical, more specialized and less generalizable

• Internal
o On the fly computation modulation without external intervention, unique challenges



Techniques & Generalization
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• Clarifying Techniques
o Gaps in scaling techniques, improving reward modeling, CoT reasoning priorities, and adaptive TTS

• Optimizing Scaling
o Comprehensive and comparable measurements of different strategies

• Generalization
o Balancing cost + accuracy, ensure domain-specific interpretability, and integrate external knowledge
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s1: Simple test-time 
scaling
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Test-Time Scaling
•Increase compute at test time for better results

•OpenAI o1 – validated test-time scaling
oUsing large scale RL (implying sizable amounts of data)

•DeepSeek R1 – replicated o1-level performance
oEmploying RL w/ millions of samples and multiple training stages

BUT What's the simplest approach to achieve both test-time scaling and strong 
reasoning performance?
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s1-32B
• Trained on 1000 samples (from MATH, GPQA, AIME24)

• Sample test-time technique called budget forcing that controls thinking 
duration

• SFT on off the shelf pretrained model (26 minutes & 16 H100 GPUs)
oQwen2.5-32B-Instruct

• Competitive with OpenAI's o1-preview
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1K Dataset
•3 well known reasoning benchmarks: 
MATH, GPQA, AIME24

•3 main principles
oQuality

oDifficulty

oDiversity

•3 parts to each sample
oPrompt

oReasoning trace
▪ Google Gemini Flash Thinking API

oAnswer

39



Data Filtering
• 59K -> 1K

• Quality

oExclude API errors, formatting issues, inconsistent question numbering

• Difficulty

oEvaluate 2 models on each question: Qwen2.5-7B-Instruct & Qwen2.5-32B-Instruct
▪ Correctness assessed by Claude 3.5 Sonnet against reference solution

oToken length 

• Diversity
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Test Time Scaling: Sequential scaling
•Sequential – scales better because computations build on intermediate results
o Allow for deeper reasoning and iterative refinement
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Test-Time Control Methods
•Token-conditional control

•Step-conditional control

•Class-conditional control
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Test Time Scaling: Budget Forcing
•Budget Forcing – simple 
decoding time intervention by 
forcing a max/min number of 
thinking tokens
oEnd-of-thinking token delimiter 

("Final Answer")

o"Wait" to encourage model to 
reflect
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Performance
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Sample Efficiency
•S1-32B as the most sample efficient 
open data reasoning model
oModel nearly matches Gemini 2.0

o r1-32B has stronger performance 
▪ But also trained on 800x more reasoning 

samples
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Recent Paper: Scaling LLM Test-Time Compute 
Optimally canbe More Effective than Scaling 

Model Parameters
• Charlie Snell, Jaehoon Lee, Kelvin Xu, 2 Aviral Kumar

o Google DeepMind, UC Berkeley

• If we give a model more inference time, can it improve accuracy enough that we can 
decrease the model size and get comparable results to LLM?
o Powerful lightweight models

• How do models best use additional inference time?

• What is the tradeoff between test-time compute and pretraining compute?
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Use of Additional Test Time
• How is additional time used to improve model accuracy?

• Two ways we can improve model accuracy
o Modify the model's proposal distribution

▪ Proposal distribution : probability distribution of predicted tokens

o Use a post-hoc verifier to modify/select outputs
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Modifying the Proposal Distribution
• Could augment prompt with tokens, but not effective at test time

• Better: use RL inspired finetuning, iteratively improve outputs
◦ Model produces output

◦ Self-critique technique to evaluate output

◦ Use evaluation to improve proposal distribution->output again

• Question: is it better to use additional test time to iteratively revise a single output, or should 
it be used for model to generate multiple independent responses and select the best one?
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Optimizing the Verifier
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• Verifier selects best answer from proposal distribution
o Best-of-N sampling: sample N complete solutions, use verifier to select best

• Need to train process-based verifier, or process reward model (PRM)
o Idea: predict correctness of intermediate steps in solution

o Use step-wise predictions to tree search over solutions, find best process

• Question: what search technique (best-of-N, beam search, lookahead search) performs best 
with PRM



Allocating Test-Time Budget
• Several hyperparameters

o How much time generating independent samples vs revising samples

o Which search algorithm for verifier

• Test time compute optimal scaling strategy
o Optimal hyperparameter configuration to maximize performance benefits on a specific prompt

o Strategy that works best will depend on the prompt/difficulty
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Estimating Question Difficulty
• Need to approximate difficulty to determine optimal strategy

o Put pass@1 rate estimated from 2048 samples in bins of increasing difficulty

• No ground truth difficulty-> rely on model-predicted notion of difficulty
o Use learned verifier to bin samples, adds additional one-time cost during inference
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Experiments
• Scaling test time compute via verifiers

o Best of N vs Beam Search vs Lookahead Search

• Scaling test time compute via refining proposal distribution
o How to train and use revision models

o Parallel vs sequential sampling to optimize proposal distribution

• Ratios of pretraining vs inference time

• PaLM 2 base model, evaluated on MATH benchmark
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Scaling via Verifiers: Search Methods
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Scaling via Verifiers: Results
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Scaling via Verifiers: Results
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Scaling via Refining Proposal Distribution: 
Training and Using Revision Models
• Model trajectory of incorrect answers approaching and arriving at a correct answer

o Want to correlate incorrect and correct answers to teach model to point out mistakes

• For each question
o Sampled 64 prallel responses, pairing correct answers with sequence of up to 4 incorrect answers in 

context

o Select incorrect answer more closely related to final correct answer->trajectory from incorrect to 
correct
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Scaling via Refining Proposal Distribution: 
Parallel Sampling vs Sequential Revisions
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Scaling via Refining Proposal Distribution: 
Results
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Scaling via Refining Proposal Distribution: 
Parallel vs Sequential Ratio Results
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Scaling via Refining Proposal Distribution: 
Compute Optimal Results
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Exchanging Pretraining and Test Time 
Compute
• Model pretrained with X FLOPs, we want to run Y FLOPs of inference on the model

• We want to improve performance by increasing total FLOP budget by a factor of M
o That is M(X+Y) total FLOPs across pretraining and inference

• Should we spend additional FLOPs on increased pretraining compute or increased test-time 
compute?

• Need to define exchange rate between pretraining and inference FLOPs
o X=6ND_pretrain, Y=2ND_inference

o Amount of inference compute we can use to match the FLOPs of the larger pretrained model 
depends on ratio R=D_inference/D_pretrain
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Results: Comparing Test-Time and 
Pretraining Compute
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Discussions and Future Work
•Test time compute and Pretraining compute not 1-to-1 exchangeable, depends on the prompt

•Difficulty assessment requires a non-trivial amount of additional test time compute, potentially 
taking away from performance

•Study focused purely on test time compute scaling and trading off for additional pretraining
o Potential direction for putting test-time compute into the base LLM to enable self-improvement during 

inference
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INFERENCE SCALING LAWS:
AN EMPIRICAL ANALYSIS OF COMPUTE-OPTIMAL

INFERENCE FOR LLM PROBLEM-SOLVING
• Yangzhen Wu , Zhiqing Sun , Shanda Li , Sean Welleck , Yiming Yang

◦ Institute for Interdisciplinary Information Sciences, Tsinghua University

◦ School of Computer Science, Carnegie Mellon University

• Inference scaling laws
o Can we use better strategies to make smaller models perform as well as larger ones?

▪ Example: LLemme-7B + tree search > Llemma-34-B

• Strategies researched 
o Greedy search, Best of n, Majority & Weighted voting, Tree search
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• Current issue:
o Big models are more powerful but require more computing

o Smaller models are cheaper, but less capable 

• Most research is based on optimizing training scaling laws, like Chinchilla Scaling Laws, and 
how one would optimize a budget based on training size. 

• Goal of this paper: Is it possible to make smaller models perform the same as larger ones by 
reducing the overhead of a trained model generating answers 
o The phase where a trained model is used to generate answers is called the Inference Phase
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Question: Given a fixed FLOPs budget, how should one select an optimal model size for the policy 
model, and an effective inference strategy to maximize performance (i.e., accuracy)?

N is the Model size, T is the number of tokens generated, and S is the inference strategy

The goal is to minimize the Error rate E under the test time compute constraint of FLOPS(N,T,S) = C

Nopt⁢(C) and Topt⁢(C) denote the optimal allocation of a computational budget C
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Problem Statement – Compute Optimal 
Inference



The paper aims to examine between different inference strategies on the performance and the 
cost using the metrics discussed. 

Sampling-based methods
o Greedy Decoding – fastest, picks most likely token, doesn't explore alternatives

oMajority voting – generates multiple completions, chooses the most common answer

oWeighted majority voting – like majority voting, but tanks completion by confidence or reward

Tree-based methods
oMCTS (Monte Carlo Tree Search): based on game playing AI, it simulates multiple paths 

o REBASE : proposed inference strategy by the paper
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Voting-Based Inference
Majority Voting:
o Run the model multiple times with the same prompt

o Collect the outputs and pick the most frequent answer

o Assumes that common answers are more likely to be correct

Weighted Majority Voting:
o Like majority voting, but each answer is scored (e.g., by a reward model)

o Select the answer with the highest total weighted score

Limitations:
o Performance depends on number of samples

o More samples = more compute → diminishing returns

o Eventually, sampling more does not yield better results

o These methods are simple, but they reach a plateau. To go further, we need structured search.
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Tree-Based Inference 
Why sampling isn't enough:
o Sampling generates full completions blindly
o It lacks structure and wastes compute on bad outputs

Enter tree search:
o Builds solutions incrementally (step-by-step)
o Allows dynamic allocation of compute to promising paths

Example: MCTS (Monte Carlo Tree Search)
o Simulates many possible completions (rollouts)
o Assigns rewards based on full solution outcomes
o Backpropagates rewards to improve search decisions

Drawback:
o MCTS is compute-heavy – expensive rollouts for every path
o Doesn’t scale well for LLM inference, especially with long solutions

The goal is to find a tree search that's lightweight, greedy, and guided. 
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REBASE
Step-by-step generation:

oREBASE builds answers token-by-token, as a tree

oEach node = a partial solution

Reward-guided expansion:
oA learned reward model scores each partial solution

oNodes are expanded based on softmax-normalized scores

oHigher scores → more children explored

Compute-efficient:
oAvoids full rollouts (like MCTS)

oPrioritizes only the most promising paths
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Experiment Setup
Benchmarks:

oGSM8K – Grade-school math word problems (easy, short reasoning)
oMATH – High school competition problems (long, multi-step reasoning)

Models tested:
oLlemma-7B and Llemma-34B (fine-tuned for math)
oPythia and Mistral-7B (open LLM baselines)

Inference methods evaluated:
oGreedy decoding, Sampling, Majority & Weighted voting
oMCTS (baseline tree search)
oREBASE (proposed method)

Evaluation metric:
oTest error (lower is better)
oInference FLOPs per question – total compute used to generate a final answer
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Conclusion

82

1. Small models + smart inference > big models
• Better performance at the same compute budget
2. Sampling saturates
• More samples ≠ better results after a point
3. REBASE is compute-optimal
• Best accuracy-cost trade-off across all budgets
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