Inference Test Time Scaling Law

TEAM 5:

DANIEL SLYEPICHEV, ANANYA ANANDA, AADITYA GHOSALKAR,
AKIRA DURHAM, SAHLAR SALEHI

Daniel Slyepichev
dos8nw

What, How, Where, and How Well? A Survey on
Test-Time Scaling in Large Language Models

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin
King, Xue Liu, Chen Ma

* Test-time scaling emerges as prominent research focus

* What s Test Time Scaling?
o Allocate additional resources during inference (kind of like humans)

* Enabling breakthroughs in specialized and general tasks
o OpenAl o1, DeepSeek's R1

* Need for comprehensive survey for systemic understanding
o What to scale
o How to scale
o Where to scale
o How well to scale

Test Time Scaling vs. Pre Training Scaling

Pre-training Scaling

Training “
\ Time \

Test
Time

Jd N\

E—' n‘ U
7 p
k srr7,
ft rlrs
1 4
2 7

I
|
L1l =
|
l
l
|

T R
| ..Iwi;_ :\: ‘l Training RN |
I I |
(Status QUO —’” T?S'i' I
Foundation Model Time |

e | | | e e s — — — — s G s e e e w— w— — — — — — — o— w— — — —

Ly L P AL Ve sl Extended Resource Great Updated
| Test-time Scaling Participants efficient Potential uickl @

/Parallel Scaling N Self-Consistency (Brown et al., 2024b; Irvine et al., 2023; Song et al., 2024; Snell et al., 2024; Wang et al., 2023; Nguyen et al., 2024)
|(§2.1) (Chen et al., 2024d; Wu et al., 2025b), Multi-Agents (Jiang et al., 2023), PlanSearch (Wang et al., 2024a), CCE (Zhang et al., 2025¢)

Sequential Scali N Self-Refine (Madaan et al., 2023; Chen et al., 2024e; Gou et al., 2024; Zhang et al., 2024d), Sequential Revision (Lee et al., 2025), ReAct
(32) g}_ (Yao et al., 2023c), Budget-aware (Kimi, 2025; Muennighoff et al., 2025; Han et al., 2025), RecurrentBlock (Geiping et al., 2025), STaR
=S) (Yuan et al., 2023; Singh et al., 2024), Meta-STaR (X.mng et al, 2025), Planmngfl‘oken (Wang et al., 2024g), RaLU (Li et al 2025c)

=/

What to Scale
(§2) T — MoA (Wang et al., 2025a), Tree of Thoughts (Yao et al., 2023b; Zhang et al., 2024b), Graph of Thoughts (Besta et al., 2024), Tree-Search
a ybnd Scaling (Chen et al., 2024g), SoS (Gandhi et al., 2024), REBASE (Wu et al., 2024c), OAIF (Guo et al., 2024), Beam-Search (Guo et al., 2024) M-
(§2 3) CTS(Tian et al., 2024; Zhang et al., 2024e; Gao et al., 2024b; Wan et al., 2024; Chen et al., 2024a), Journey Learning(Qin et al., 2024),A-
daptiveAlloc(Snell et al., 2024; Ong et al., 2025), METAL(Li et al., 2025a), rStar-Math(Guan et al., 2025a),AtomThink(Xiang et al., 2024)

K1.5 (Kimi, 2025), 3SUM (Pfau et al., 2024), OAIF (Guo et al., 2024), LIMO (Ye et al., 2025), T1 (Hou et al., 2025), Distilled-ol

b =
e — »_ DeepSeek-R1 (DeepSeek-AlL 2025), OpenAl-01&03 (OpenAl, 2024b, 2025), Gemini Flash Thinking (Google, 2024), QwQ (Qwen, 2024),
#8249 (Huang et al., 2024b), RedStar (Xu et al., 2025a), SKY-T1 (NovaSky, 2025).s1 (Muennighoff et al., 2025), ITT (Hao et al., 2024)

J

/Su E—— Distillation (Muennighoff et al., 2025; Huang et al., 2024b; Xu et al., 2025a; NovaSky, 2025; Bespoke, 2025)
Fmp(: ing (§3.1.1) (Munkhbat et al., 2025; Ye et al., 2025), Synthesized Long CoT (Hou et al., 2025; Yeo et al., 2025),
C f 2 = J Learning Reasoning Structure (Li et al., 2025f), Long CoT warmup (Kimi, 2025) , CFT (Wang et al., 2025d)

= ~ 'Rule-Based (DeepSeek-AL 2025), cDPO (Lin et al., 2024), Focused-DPO
— Tuning ($3.1) _ |(Zhang et al, 2025b), Selective DPO (Gao et al., 2025b), CPL (Wang et al., 2024)
—Reward model-free —— OREO (Wang et al., 2024b), DAPO (Liu et al., 2024b), RFTT (Zhang et al., 2025¢),
| * ~ | SimPO (Meng et al., 2024), DQO (Ji et al., 2024), DAPO (Yu et al., 2025),
Relnforoement % | VC-PPO (Yuan et al., 2025), Light-R1 (Wen et al., 2025), efc.

Learning (§3.1.2)

_Jppor hulman et al., 2017), RLOO (Ahmadian et al., 2024a), i
—{ Reward model-based — GRPO (Shao et al, 2024), REINFORCE++ (Hu, 2025), DVPO (Huang et al., 20251),
|PRIME (Cui et al,, 2025), SPPD (Yi et al., 2025), etc.

8 3 I-lm! infer (Li et al., 2025b), Dipper (Lau et al., 2024), EVA (Ye et al., 2024),
[\ Prompt Strategy —| EvalPlan(Saha ct al,, 2025), ReasonFlux (Yang ct al., 2025a), Hong et al. (2024)

T ——
[(Decode Strategy. j— | (Kong et al, 2025), AFT (Li et al., 2025g), Predictive-Decoding (Ma et al., 2025

—{Stimulation (§3.2.1)
_(S elf-Repetition 1) rSelf ~Consistency (Wang et al., 2023), Self-Refine (Madaan et al., 2023), DeCRIM
\ pe (Fen'az et al., 2024), CCE (Zhang et al., 2025¢), TreeBoN (Qiu et al., 2024)

B Fl.llcr Tokens (Pfau et al., 2024), Budget Forcing (Muennighoff et al., 2025), LTV J

—fMixme—of-Model - [MoA (Wang et al., 2025a), RR-MP (He et al., 2025), BRAIN (Chen et al., 2024f)]
\ J L

“KOutput Verification (Cobbe et al., 2021), Generative Verifier (Zhang et al., 2025d),
/OF—' Self-Reflection Feedback (Li et al., 2025h), Discriminator (Chen et al., 2024g),

_{\, 7 OVM (Yu et al., 2024b), Heuristic (DeepSeek-AlL 2025), Bandit (Sui et al., 2025),

&Functional (Lee et al., 2025), XoT (Liu et al., 2023b), WoT (Zhang et al., 2024c) J

;—{Veriﬁcation $322) H

T — 2

L Inference (§3.2) J— Z = \(Sme Eval (Yao et al., 2023b; Zhang et al., 2024b), SIaM (Yu et al., 2024a),
b= " —{ Process ~—— Deductive Verification (Ling et al., 2023), Self-Evaluator (Xie et al., 2023),
S kV-S’l‘aR (Hosseini et al., 2024), Tool (Li et al., 2025b), PoT (Chen et al., 2023a)

TreeSearch (Yao et al., 2023b; Chen et al., 2024g),GraphSearch (Besta et al., 2024),C-MSTS (Lin et al., 2025),

_{s' h (§32.3) MCTS (Tian et al., 2024; Zhang et al., 2024e; Gao et al., 2024b; Wan et al., 2024; Chen et al., 2024a), SPaR
2 J (Cheng et al., 2025), REBASE (Wau et al., 2024c), SoS (Gandhi et al., 2024), CoAT (Pan et al., 2025a),Beam-

Search (Guo et al., 2024; Xie et al., 2023), Lookahead-Search (Snell et al., 2024; Zhang et al., 2023b), efc.

&z | Majority Voting(Wang et al., 2023; Chen et al., 2024d), BOND(Sessa et al., 2024),
Selection —— Filter Vote(Chen et al., 2024d), Length-filtered Vote(Wu et al., 2025b), Best-of-N
S E—— k(Irvmc et al., 2023; Song et al., 2024), Rejection Sampling (Kum 2025), etc.

_(Aggmgnﬁon (§3.2.4) |
Sl W - >
\—‘LBON (weighted) (Brown et al., 2024b), Synthesize (Wang et al., 2025a), etc.

What & How: Summary

Seque'pfial Parallel Scaling Hybrid Scaling Internal Scaling Internal Scaling
Scaling (Post Training) (Inference)

|

' Question Question Question | " Question |

\
' Question |

4

|
. Answer Answer

Answer

7 —_ ;
(N Verification Optional

@ Selected (Sub)-sample
O Rejected (sub)-Sample

— Stimulation

- = =-> Search

—P Aggregation
’{? Param Frozen

@ Param Trainable

fb Finetuning

[Verification Required

A

Parallel Scaling
(§2.1)

},

(§2.2)

Sequential Scaling‘

Hybrid Scaling

},

What to Scale: Parallel Scaling

*What is being scaled at the inference stage?

*Parallel Scaling
o Generating multiple outputs in parallel and then aggregating them into a final answer.

o Can be from multiple models, or the same model run repeatedly
o Same model adjustment from hyperparameter adjustment or prompt rephrasing

* Effectiveness derives from:
o Coverage: the likelihood of generating at least one correct response
o Aggregation Quality: if a correct response is successfully identified
o ldea that complex solutions have multiple pathways to the answer

What to Scale: Sequential & Hybrid

* Sequential Scaling
o Involves explicitly directing later computations based on intermediate steps.

o Has several states that involve previous states and problem context
o Chain-of-Thought (CoT) Prompting, Step-by-Step, Refine
o lterations create self-correction, improving accuracy

*Hybrid Scaling
o Combines Sequential and Parallel Scaling
o Generate multiple hypotheses and then refine/evaluate them
o Early work: Tree of Thoughts, Graph of Thoughts
o More advanced: Monte Carlo Tree Search, Multi-Agent Reasoning (debate)

What to Scale: Internal Scaling

* Internal Scaling
o Model chooses how much scaling to do for the problem instead of human strategy

*Param Trainable Model
o Continuously update the model based on reasoning tasks via some training procedure

= long CoT examples produced by external scaling
o Outcome-oriented reward modeling for RL (DeepSeek)

*Frozen Model
o At Test Time, the model generates a sequence of internal states (z)

ziy1 = fo(ze), stop(z¢) = me(ze).

o Controls when to stop via learned policy
o Leads to emergent thinking without external prompting

Supervised ‘

Finetuning (§3.1.1)

Reinforcement
Learning (§3.1.2)

N
Supervised
Finetuning (§3.1.1)

How to Scale
(§3)

Stimulation (§3.2.1)

Reinforcement
Verification (§3.2.2) Learning (§3.1.2)

Search (§3.2.3)

Aggregation (§3.2.4)

How to Scale: Tuning Based Approaches

*Directly tuning the LLM's parameters with 2 approaches: SFT and RL

*Supervised Fine Tuning (SFT)
o Train LLM to mimic the rationale/structure to prompt the model to think through complex problems

O 2 main approaches

*SFT Imitation

o Generate long CoT demonstrations using test-time “planner” algorithms and then fine-tune the model
to imitate those demonstrations

o STaR: Can be guided by the model itself (generates step-by-step solutions with filtering/verification)
o ReST-MCTS: use MCTS planner to model itself to reasoning steps

*SFT Distillation
o Use responses of "stronger" models for supervised learning
o Can lead to smaller models answer questions just as well as the teacher model

How to Scale: Tuning Based Approaches

* RL: Reward Model-Free
o Verifiable reward by DeepSeek R1: rule-based reward mechanisms to optimize accuracy in large models

= SimpleR1: Open-source reproduction of R1

o OpenR1: HuggingFace's open-source tool for RL
o cDPO: preference-based optimizer, utilizing critical tokens (base for many other expansions)
o OREO: value-based optimizer for mathematical reasoning

 RL: Reward Model-Based X
o PPO: Using Human Based model for e detormined to pay back X

. . . the money she owes a fn'_end so she
optimization i *

how much did she owe originally?

= ReMax takes PPO and reduces hyperparameters, Response:
compute time, and need for additional value models Let’s think step by step. She owed

$125 initially, She still has 75% left to

) . . , So sh $125 *0.75 =
* Reinforce/Reinforce++ also do this, ReMax more greedy o 75, The snpure - $93.75,
(.

o UGDA: refines reward model with
(previously) uncertain data.

4

J

v

Figure 1: An illustration of the critical token “owed” shows that it fails to lead to the correct answer
in any case. Replacing it with an alternative can significantly increase model accuracy.

https://arxiv.org/pdf/2411.19943

Supervised
Finetuning (§3.1.1)

Reinforcement
Learning (§3.1.2)

—[Seli'-Repeﬁtion]_

—[Mlxmre-of-Mndel J_
How to Scale
(§3)

Stimulation (§3.2.1)

—(Veriﬁmﬁou (§3.2.2)

i
~ Inference (§3.2)]—

TreeSearch (Yao et al., 20!
MCTS (Tian et al., 2024;
‘ES“'“" (383.23) (Cheng et al., 2025), REB,

Search (Guo et al., 2024; .

]_
]_

Aggregation (§3. J _(31"35311011 (83.2.4)

How to Scale: Inference Based Approach

* Dynamically adjust parameters during deployment

e Stimulation
o Getting LLM to think more and allocate longer samples
o Prompting Strategies
= "Think Step by Step," and listing requirements to stimulate more samples

o Decoding Strategies

= |nput more filler phrases or tokens, enforcing intermediate generation (drafts), enforcing prior distributions of latent vectors

o Self-Repetition Strategies

* Prompt LLM repeatedly during decoding stage, another is to mimic refinement process

o Mixture of Model Strategies

= Ask different models about what they think. Can be all the same or different perspectives

How to Scale: Inference Based Approach

* Verification
o How do we make sure the LLM is generating a correct response?

= Can be used for Parallel Scaling, Sequential (to know when to stop), Aggregation or Searching Process (we'll get back to this)

o Outcome Verification
= Model Voting
= Self-consistency
= Separate algorithms/functions (verifiers)
= Code generation checks
= Separate LLM verifier (Judges), Agents
= RAG
o Process Verification
= AKA: Process Reward Model, State Verification
= Evaluating if the process is correct: Is it actually using CoT? Do the steps to reach the outcome make sense?
= Process Verification harder for LLMs to evaluate if too complex or long context, decomposition needed
= Used mostly in Code Generation or Mathmatical Reasoning

How to Scale: Inference Based Approach

* Search
o Make sure LLM is utilizing its vast database of knowledge to ensure accuracy

o Can organize thoughts into a tree and utilize BFS or DFS
o Utilize Monte Carlo Tree Search during decoding to guide planning
o Graph Search is also experimented, utilizing stochastic beam search

* Aggregation
o How to consolidate multiple answers
o Selection

= Self-consistency of different routes (most common answer, but sometimes filtering required), Selection Agent

= Best-of-N (score based on external verifier)
o Fusion

= Combine Best-of-N (based on external verifier)

= Have LLM summarize

What & How: Summary

Seque'pfial Parallel Scaling Hybrid Scaling Internal Scaling Internal Scaling
Scaling (Post Training) (Inference)

|

' Question Question Question | " Question |

\
' Question |

4

|
. Answer Answer

Answer

7 —_ ;
(N Verification Optional

@ Selected (Sub)-sample
O Rejected (sub)-Sample

— Stimulation

- = =-> Search

—P Aggregation
’{? Param Frozen

@ Param Trainable

fb Finetuning

[Verification Required

A

Akira Durham
ZUp9su

fWhere to Scale
(§84)

AIME (Google, 2025; Guan et al., 2025b), CNMO (CMS, 2025), NuminaMATH (LI et al., 2024), OmniMath

(Gao et al., 2025a), MATH (Cobbe et al., 2021; Hendrycks et al., 2021; Guan et al., 2025b), s1-prob-teasers
J_ (Muennighoff et al., 2025), GSM8K (Guan et al., 2025b; Zhang et al., 2024a), MATH500(Zhang et al., 2024a),
AMC (Guan et al., 2025b), College Math (Guan et al., 2025b), FrontierMath (Glazer et al., 2024), etc.

p
— Math
.

vy

_F Code] USACO (Shi et al., 2024), LiveCodeBench (Jain et al., 2025), CodeContests (Li et al., 2022), Aider-Polyglot
A

(aider, 2025),SWE-bench(Jimenez et al., 2024),Codeforces(codeforce, 2025),CodeMind (Liu et al., 2024a), efc.

. ™
— Reasoning (§4.1) P OlympicArena (Huang et al., 2024a), OlympiadBench (He et al., 2024a; Guan et al., 2025b), TheoremQA
— Science]— (Chen et al., 2023b), JEEBench (Arora et al., 2023), GPQA (Rein et al., 2024), SciEval (Sun et al., 2024),
~ Miverva (Lewkowycz et al., 2022), SciBench (Zhang et al., 2024a), HLE (Phan et al., 2025), erc.
A

J
~
—kGame & Strategy HSysBench (Google, 2025), Points24 (Yao et al., 2023b; Zhai et al., 2024), TravelPlan (Xie et al., 2024), erc. j

-
—l\Medical HSysBench, JMLE-2024 (Nori et al., 2024),Medbullets (Chen et al., 2025a),MedQA (Jin et al., 2020), efc.

Kaoyan (GSEE, 2025), CMMLU (Li et al., 2024), LongBench (Bai et al., 2024), ARC-AGI (Chollet, 2019), e

(Basim] AGIEval (Zhong et al., 2024), MMLU-Pro (Wang et al., 2024h), Gaokao (NCEE, 2025; Guan et al., 2025b), J
Ic

] WebShop (Yao et al., 2023a), WebArena (Zhou et al., 2023c), SciWorld (Wang et al., 2022), WebVoyager

p
— Agents (He et al., 2024b), TextCraft(Prasad et al., 2024), TAU-bench (Yao et al., 2024), BCEL (Yan et al., 2024), erc.

How Well to
Scale (§35)

gi“;)ml'f'“rpose —1Kn0wledge HSimpleQA (Wei et al., 2024a), C-SimpleQA (He et al., 2024¢)),FRAMES (Krishna et al., 2025), erc. }
i ~
a

AlpacaEval2.0 (Dubois et al., 2024), ArenaHard (Li et al., 2024b). IF-Eval (Zhou et al., 2023b), Chatbot Aren
] (Zheng et al., 2023b), C-Eval (Huang et al., 2023), FollowBench (Jiang et al., 2024b), erc.
S

—iOpen-Ended

vy

- MMMU (Yue et al., 2024), MATH-Vision (Wang et al., 2024d), MathVista (Lu et al., 2024), LLAVA-Wild
L— Multi-Modal j— (Liu et al., 2023a), MM-Vet (Yu et al., 2024d), MMBench (Liu et al., 2024¢), MMMU (Yue et al., 2024),
- CVBench (Tong et al., 2024), MMStar (Chen et al., 2024¢), CHAIR (Rohrbach et al., 2018), etc.

Accuracy Pass@ 1(DeepSeek-Al, 2025; Kimi, 2025), Pass@k(Chen et al., 2021; Brown et al., 2024a), WinRate(DeepSeek-Al, 2025; Hou et al., 2025)
(§5.1) Cons @k (DeepSeek-Al, 2025; Zeng et al., 2025c¢), , ete.

_

T
|| Efficiency Token Cost (Welleck et al., 2024; Aytes et al., 2025), FLOPs-based Efficiency Analysis (Kaplan et al., 2020; Snell et al., 2024), KV Cache
(§5.2) size (Hooper et al., 2025), Underthinking score (Wang et al., 2025¢), efc.

Yy
| | g‘;“;;"’“"b"“y HControl Metric (Muennighoff et al., 2025),Length Deviation (Aggarwal and Welleck, 2025a),k-¢ Controllability (Bhargava et al., 2024), e:c}
.

N
(S;; I:)b'llty H Scaling Metric (Muennighoff et al., 2025),Scaling Curves (Accuracy vs. Compute) (Aggarwal and Welleck, 2025a; Teng et al., 2025), erc.]
.

Where to Scale: Reasoning Tasks

* Challenging tasks that require structured, explicit, and precise reasoning

* Mathematical Reasoning
o Complex computations, logical inference, and iterative verification

* Programming and Code Generation
o Syntactic accuracy, executable correctness, and iterative debugging

O Issue > (w Language Model) E) Unit Tests
data leak in GBDT due to warm J
start (This is about the non- Pre PR PostPR Tests
histogram-based version of... w oin_struct_col
£ 1" GeneratedPR . . Y i o :t_ o
D Codebase B8 sklearn S s :‘-::nk_ truv;_cnl
m sklearn/ O regs.txt () gradient_boosting.py [H ".= =StIUCt_cor
B examples/ [setup.cfg O helper.py o| v matrix_transform
W euclidean_diff

[} README.rst [3 setup.py I utils =

Benchmark

Size

Evaluation Criteria

Example Task

Key Features

Reasoning-intensive Tasks

FrontierMath (Glazer et al., 2024)
MATH (Cobbe et al., 2021)
NuminaMath (LI et al., 2024)
OmniMath (Gao et al., 2025a)
GSMSK (Zhang et al., 2024a)
rStar-Math (Guan et al., 2025)
ReST-MCTS (Zhang et al., 2024a)
sl (Muennighoff et al., 2025)

Hundreds
12.5K
860K
4.4K
8.5K
747K

Varied
1K

Exact match
Exact match
Exact match, CoT
Accuracy
Accuracy
Pass@1 accuracy
Accuracy
Accuracy

Algebraic geometry
AMC/AIME-style
Olympiad-level math
Math Olympiads
Grade-school math
Competition math
Multi-step reasoning
Math/science tasks

High complexity
Structured reasoning
Annotated reasoning
Advanced reasoning

Natural-language solutions
Iterative refinement
Reward-guided search
Controlled compute

USACO (Shi et al., 2024)

AlphaCode (Li et al., 2022)
LiveCodeBench (Jain et al., 2025)
SWE-bench (Jimenez et al., 2024)

307
Thousands
511
23K

Pass@1
Solve rate
Pass@1
Resolution rate

Olympiad coding
Competitive coding
Real-time coding
GitHub issues

Creative algorithms
Complex algorithms
Live evaluation
Multi-file edits

GPQA (Rein et al., 2024)

OlympicArena (Huang et al., 2024a)
OlympiadBench (He et al., 2024a)
TheoremQA (Chen et al., 2023b)

448
11.1K
8.4K

800

Accuracy
Accuracy
Accuracy
Accuracy

Graduate STEM
Multidisciplinary tasks
Math/Physics Olympiads
Theorem-based STEM

Domain expertise
Multimodal reasoning
Expert multimodal tasks
Theoretical application

Science

MedQA (Jin et al., 2020)

1.3K

Accuracy

Clinical diagnostics

Medical accuracy

Where to Scale: Reasoning Tasks

* Game Playing and Strategic Reasoning
o Adaptive planning, interactive decision-making, and complex multi-round reasoning

* Scientific Reasoning
o Multi-domain knowledge integration

* Medical Reasoning
o Diagonostic decision-making, clinical reasoning, precise medical knowledge

JAMA Clinical Challenge Medbullets

Case: A woman it her 30s presented for evaluation of asymptomatic Case: A 27-year-old woman presents to her prumary. ..
erythematous scaly plaques over the face and proximal. .. : . :
wyth ypiad P Question: Which of the following 1s the most likely

Question: What 1s yvour diagnosis? cause of this patient's symptoms?
Answer Choices: Answer Choices:
[A Chromoblastomycosis| (B. Hyalohyphomycosis | |A. Antigen exposure || B. Drug reaction]
[C‘. Blastomycosis] [D_ Phaeohyphomycosis] (C. Infection|(D. IV drug use|[E. Photosensitivity|
Discussion: In this case, based on MRI and the lack of gadolinium Explanation: This patient 1s presenting with arthralgias,
enhancement. . .there was no need for positron emission tomography scan pancytopenia . Arthritis/arthralgias are often the most
(option A), biopsy (option B). or radiotherapy (option C). common presenting symptom for SLE.

(a) (b)

Others

AGIEval (Zhong et al., 2024)
MMLU-Pro (Wang et al., 2024h)
C-Eval (Huang et al., 2023)
Gaokao (NCEE, 2025)

Kaoyan (GSEE, 2025)

CMMLU (Li et al., 2024)
LongBench (Bai et al., 2024)

8K

12K
13.9K
Varied
Varied
Varied
Varied

Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy
Accuracy

College exams
Multidisciplinary tests
Chinese exams
Chinese college exams
Graduate entry exams
Multi-task Chinese eval
Bilingual multi-task eval

Human-centric reasoning
Deep reasoning complexity
Multidisciplinary reasoning

Broad knowledge
Specialized knowledge
Comprehensive coverage
Long-form reasoning

IF-Eval (Zhou et al., 2023b)
ArenaHard (Li et al., 2024b)
Chatbot Arena (Zheng et al., 2023a)
AlpacaEval2.0 (Dubois et al., 2024)

541
500
Varied
805

Accuracy
Human preference
Human alignment

Win rate

Instruction adherence
Open-ended creativity
Chatbot quality
Chatbot responses

Objective evaluation
Human alignment
User-aligned responses
Debiased evaluation

Open-ended

WebShop (Yao et al., 2023a)
WebArena (Zhou et al., 2023¢)
SciWorld (Wang et al., 2022)
TextCraft (Prasad et al., 2024)

1.18M
Varied
30 tasks
Varied

Task success
Task completion
Task-specific scores
Success rate

Online shopping
Web navigation tasks
Scientific experiments
Task decomposition

Real-world interaction
Adaptive decision-making
Interactive simulation
Iterative planning

Agentic

SimpleQA (Wei et al., 2024a)
C-SimpleQA (He et al., 2024c)
FRAMES (Krishna et al., 2025)

43K
3K
824

Accuracy
Accuracy
Accuracy

Short queries
Chinese queries
Multi-hop queries

Factual correctness
Cultural relevance
Source aggregation

Knowledge

RewardBench (Lambert et al., 2024)
JudgeBench (Tan et al., 2025)
RMBench (Liu et al., 2024b)

PPE (Frick et al., 2024)

RMB (Zhou et al., 2025)

2,985
350
1,327
16,038
3,197

Accuracy
Accuracy
Accuracy
Accuracy
Accuracy

Chat,Safety,Reasoning
knowledge, reasoning, math, and coding
Visual math problems
Instruction, Math, Coding, etc.

49 fine-grained real-world scenarios

Multiple Domains General Reward
Challenging Tasks
subtle differences and style biases
Real-world preference
Closely related to alighment objectives

Evaluation

MMMU (Yue et al., 2024)
MathVista (Lu et al., 2024)
MATH-Vision (Wang et al., 2024d)
LLAVA-Wild (Liu et al., 2023a)
MM-Vet (Yu et al., 2024d)
MMBench (Liu et al., 2024d)
CVBench (Tong et al., 2024)
MMStar (Chen et al., 2024¢)
CHAIR (Rohrbach et al., 2018)

11.5K
6.1K
3K
Varied
Varied
3.2K
Varied
L.5K
Varied

Accuracy
Accuracy
Accuracy
GPT-4 score
GPT-4 evaluation
Accuracy
Accuracy
Accuracy
Hallucination rate

Multimodal expert tasks
Visual math reasoning
Visual math problems

Visual QA
Integrated multimodal
Diverse multimodal
Vision tasks
Vision-critical QA
Image captioning

Multidisciplinary integration
Visual-math integration
Multimodal math reasoning
Complex visuals
Multi-capability eval
Fine-grained eval
High-quality eval
Visual reliance
Object hallucination

Multimodal

Business

Science

Question: ...The graph shown is compiled from data
collected by Gallup <unage 1>. Find the probability
that the selected Emotional Health Index Score is

between 80.5 and 82?

Emotional Health Index Score

Options:
(A)O (B) 0.2142 g
003571 (D)0.5

Question: <umage 1> The region bounded by the
graph as shown above. Choose an integral
expression that can be used to find the area of R.
Options: p it

(A) [() - g()ldx
®) [, *[9(x) - f())dx
© S2If) — g()]dx
D) fLg(x) — x()]dx

Where to Scale:
General Tasks

Subject: Marketing; Subfield: Market
Research; Image Type: Plots and Charts;
Difficulty: Medium

Subject: Math; Subfield: Calculus;
Image Type: Mathematical Notations;
Difficulty: Easy

Humanities & Social Science

Tech & Engineering

WHAT THE UNITED STATES HAS FOUGHT FOR|

Question: In the political |
cartoon, the United States is |
seen as fulfilling which of the |
following roles? <image 1>

Option:

(A) Oppressor ‘
(B) Imperialist ;
(C) Savior (D) Isolationist

Question: Find the VCE for the circuit shown in
<tmage 1>. Neglect VBE

Answer: 3.75

Explanation: ...IE = [(VEE) /
(RE)] =[G V) / (4 k-ohm)] =
1.25mA; VCE = VCC-IERL =
10V - (1.25mA) 5 k-ohmy;
VCE=10V-625V=375V

= V=8V

Subject: History; Subfield: Modern
History; Image Type: Comics and Cartoons;

Difficulty: Easy

Subject: Electronics; Subfield: Analog
electronics; Image Type: Diagrams;
Difficulty: Hard

* Require broad, general-purpose reasoning capabilities

* Open-ended Tasks
o Enhance output diversity, quality, and coherence

* Agentic Tasks

o Realistic and interactive environments, complex planning, tool
utilization, and iterative reasoning

* Knowledge-intensive Tasks
o Retrieve and synthesize factual knowledge from external sources

* Multimodal Tasks

o Cross-modal integration, iterative reasoning between modalities,
and robust verification

How Well to Scale

Classify metrics used in evaluating TTS methods

Performance: Assess correctness of generated
solutions

Pass@1 — Widely used, proportion of problems
where first response was correct

Pass@k — Extends Pass@1, at least one of k
responses is correct

Consensus @k — Majority-voted answer through
k responses, was it correct

Arena-based Evaluation — Paired with additional
output metrics, ex. shorter answers

Efficiency: Assess computational and resource costs

Token Cost — Total number of tokens generated
during inference, intermediate + final

FLOPs-based Efficiency Analysis — Quantify
computational cost, comparison for similar
compute models

Underthinking Score — Initial correct thought
but fails to follow through, measures time +
length

GPQA LiveCode

Model AIME 2024 MATH-500 Diamond Bench CodeForces
pass@l cons@64 pass@l pass@1 pass@1 rating
OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
OpenAl-01-0912 744 83.3 94.8 77.3 63.4 1843
DeepSeek-R1-Zero 71.0 86.7 95.9 73.3 50.0 1444

Table 2 | Comparison of DeepSeek-R1-Zero and OpenAl ol models on reasoning-related
benchmarks.

DeepSeek-R1-Zero AIME accuracy during training

—8— rl-zero-pass@l

—8— rl-zero-cons@16
=== pl-0912-pass@l
-== pl-0912-cons@64

0.2 1

0 2000 4000 6000 8000
Steps

26

How Well to Scale

* Controllability: Assess if inference-time methods can
consistently align to constraints

o Control Metric — Quantify adherence to specific compute B Olympic.Bench
budget range c000 || AMC :
o Length-Deviation — Quantify model's ability to control P 1.98th Percentiles
output length g
8 3000
o K-€ Controllability — Prompt-based steerability, achieve £
some specific output H
T 2000
*Scalability: Assess TTS methods leverage increased compute to §
improve performance 5

. . . 000
o Scaling Metric — Average slope of performance gains as R O B W g Y
compute increases
512

o Scaling Curves — Visualize diminishing returns at higher 0
compute budgets (accuracy, pass rate, etc)

1024 2048 3600
Requested Length (tokens)

Method

STIMULATION

How

SEARCH

VERIFICATION

AGGREGATION

How WELL

DSC
(Snell et al., 2024)

MAY

(Lifshitz et al., 2025)
Mind Evolution
{Lee etal, 2025)

Meta-Reasoner
(Sui et al., 2025)
START

(Li et al., 2025b)
AID

(Jin et al., 2025)
CoD

(Xu et al., 2025h)

Parallel,
Sequential

Parallel
Sequential

Sequential

Parallel,
S ial

x

x

Rejection

Sequential

Sequential

x

X

= = = =

X

Self-Repetition
Self-Refine

CoT +
Self-Repetition
Hint-infer
Adaptive Injection
Decoding
Chain-of-Draft

Beam Search,
LookAhead Search

X
x

x
X
x
X

Verifier
Multiple-Agent
Verifiers

Functional
Bandit
Tool
x
x

(Weighted) Best-of-N
Stepwise Aggregation

Best-of-N

x

Math

Math, Code,

General

Open-Ended

Game,Sci,
Math

Math, Code
Math, Logical,
Commonsense

Math, Symbolic,
Commonsense

Pass@1, FLOPs-
Matched Evaluation
BoN-MAV (Cons @k).
Pass@1
Success Rate,
Token Cost
Accuracy,
Token Cost
Pass@1

Accuracy

Accuracy, Latency,
Token Cost

rStar-Math
(Guan et al., 2025)

{Liu et al., 2025a)

Tree of Thoughts
(Yao et al., 2023b)
MindStar

(Kang et al., 2024)
REBASE

{Wu et al., 2025a)
Ral.lUl

(Li et al., 2025¢c)
PlanGen

{Parmar et al., 2025)

Puri et al. (2025)

Archon

{Saad-Falcon et al., 2024)
AB-MCTS

(Misaki et al., 2025)

Hybrid

Parallel,
Hybrid
Hybrid

Hybrid
Hybrid
Hybrid
Parallel,
Hybrid
Hybrid
Hybrid

Hybrid

imitation

*

X
X
X
X
X
X
X
X

R A A T - R S

X

X
Propose prompt
Self-Repetition

X

X

Self-Refine
MoA
X

MoA,
Self-Repetition
Mixture-of-Model

MCTS

DVTS,
Beam Search

Tree Search
LevinTS

Reward Balanced
Search

Control Flow Graph
X

Particle-based
Monte Carlo

X

AB-MCTS-(M.A)

PEM
PEM
Self-Evaluate
PRM
RM
Self-Evaluate
Verification agent

PRM+55M

Verification agent.
Unit Testing

X

X
Best-of-N
X
X
X
Prompt Synthesis
Selection Agent
Particle filtering
(Ensemble) Fusion

X

MATH

Math

GAME.
Open-Ended
MATH

Math

MATH, Code
Math, General,
Finance
MATH
Math, Code,
Open-Ended
Code

Pass@1

Pass @1, Pass@k,
Mujority, FLOPS
Success Rate,
LLM-as-a-Judge
Accuracy,
Token Cost
Test Error Rate,
FLOPs
Pass@1

Accuracy,

F1 Score
Pass@1,
Budget vs. Accuracy
Puass@ |, Win Rate

Pass@ 1. RMSLE,
ROC-AUC

TPO

(Wu et al., 2024b)
SPHERE

(Singh et al.. 2025)
MA-LoT

(Wang ct al., 2025b)
OREO

(Wang et al, 2024b)
DeepSeek-R1
{DeepSeek-Al, 2025)

sl

{MuennighofT et al., 2025)
ol-Replication
(Qin et al., 2024)
AFT

(Lietal., 20250
Meta-CoT

(Xiang et al., 2025)
ReasonFlux

(Yang et al., 2025a)
11

{Aggarwal and Welleck, 2025

Marco-ol
(Zhao et al., 2024)

Internal,
Parallel
Internal,
Hybrid
Internal,
Sequential
Internal,
Sequential

Internal

Internal

Internal

Internal,
Parallel
Internal,
Hybrid
Internal,
Sequential

Internal

Internal,
Hybrid

=

X

imitation

X

warmup

distillation

imitation

imitation

imitation

X

X

distillation,

imitation

X
OREO

GRPO,
Rule-Based

X
x
X

meta-RL
PPO,
Trajectory
GRPO,
Length-Penalty
X

Think

Diiversity
Generation

MoA
X

X

Budget Forcing
X
X
Think

Thought Template

X

Reflection Prompt

X

X

Beam Search

X

X
Journey Learning
X
MCTS.A*

Retrieve

X

Judge models
Self-Reflect
Tool

Value Function

X

x
PRM. Critique

X

X

x

Self-Critic

X

X

x
Multi-Agents
Fusion
X
X

Open-Ended
Math
Math

Math, Agent

Math, Code,
Sci
Math, Sci
Math
Math,
Open-Ended
Math,
Open-Ended
Math

Math

Math

‘Win Rate
Pass@ 1
Pass@k

Pass@ 1, Success Rate
Pass@ 1, cons @64,
Percentile, Elo Rating,
‘Win Rate
Pass@ 1, Control,
Scaling

Accuracy

‘Win Rate

Win Rate
Pass@1
Pass@1,

Length Error
Puss@ 1, Pass @k

How
Method
SFT STIMULATION SEARCH

(Guan et al., 2025)

VERIFICATION AGGREGATION

PRM Pass@1

—>

Q-value
filtering

-~ Apply Verifiers

Lo (PPM/ python) Step 1

final step full solutions
—: O One step (b) Construction of per-step preference pairs based on Q-values
' Answer step ,@

(correct) Terminal-guided L v Terminal-guided SLM-T2 ppM-augmented 2LM-T3 PPM-augmented SLVI-T4
mMCT - ; MCTS] MCTS)
Answer step | CTS SLM+1 MCTS PPM-2 PPM-r3 PPM-r4

(wrong) Round 1 Round 2 = Round3 Round 4 % %

W 03

(c) 4 round§ of self-evolution
Figure 1: The overview of rStar-Math.

Organization and Trends

* 2022 -2023
o Emphasized structured inference to guide LLMs

© 2024
o Methods like PRM and MCTS enabled automatic supervision of reasoning
*2025
o Pure RL can also elicit comprehensive, sound reasoning
Pardllel
Scaling =’>A Fs"cﬁr':;
> | —e—o Hybrid Internal Hands-
= R S B et
@‘—H > J="=— Ssequential > g—.—._l' +“="~'=>@ GAeAr?er‘r?aliTza:#:n
GPT CoT Scaling PRM ToT MCTS o1 (2024.11) Techni
(2020.3) (2022.1) f-s (2023.5) (2023.5) (2023.12) R1 (2025.1) I?:s;r:g:e
¢ (z’stnga) F‘, Beyond
: — Effectiveness

Figure 4: From Emergence to the Next Frontier, the Evolutionary Path of Test-Time Scaling.

Hands-on Guidelines

© Q: Is there any difference when tuning other scaling formats into internal scaling, compared with directly
using the original scaling format?

® A: Yes, one intuitive difference lies in the efficiency aspect. Internal scaling tends to yield higher efficiency
as it only prompts the LM once, while other scaling techniques usually require multiple trials. However,
internal scaling requires non-neglectable resources for tuning, making it less available for practitioners.

© Q: If I want to quickly implement a T7S pipeline, what are the essential paths I should consider? How can
beginners use 775 at a minimal cost?

® A: Broadly speaking, there are three essential technical pathways for test-time scaling: i) Deliberate
reasoning procedure at inference time, i1) imitating complex reasoning trajectories, and 1i1) RL-based
incentivization. If your goal is to get a quick sense of the potential upper bound that a strong 77 can bring to
your task at a minimum cost, you can directly utilize a model that has been trained with (iii). If you want
to develop a TTS baseline at a minimum cost, you can start with (1). Once (1) yields a result that meets
expectations, you can apply (i1) to further verify and generalize the outcome.

Challenges and Opportunities

Domain
generalization

Clarifying the
techniques

More scaling
is the frontier

Optimizing
Scaling

J J J

More Scaling

* Transformative impact on reasoning-intensive tasks — as seen in o1l and R1

* Parallel
o Generating multiple responses and selecting best answer, leads to diminishing returns

* Sequential
o Maintaining coherence and preventing error accumulation

* Hybrid
o Blends parallel and sequential, more adaptive and practical, more specialized and less generalizable

* Internal
o On the fly computation modulation without external intervention, unique challenges

Techniques & Generalization

* Clarifying Techniques
o Gaps in scaling techniques, improving reward modeling, CoT reasoning priorities, and adaptive TTS

* Optimizing Scaling
o Comprehensive and comparable measurements of different strategies

* Generalization
o Balancing cost + accuracy, ensure domain-specific interpretability, and integrate external knowledge

Ananya Ananda
jat5rp

s1: Simple test-time
scaling

NIKLAS MUENNIGHOFF*134 ZITONGYANG=*1 WEIJIA SHI*23 XIANGLISALI*1 LI FEI-FEl1 HANNANEH HAJISHIRZI23

LUKE ZETTLEMOYER2 PERCY LIANG1 EMMANUEL CANDES1 TATSUNORIHASHIMOTO1

Test-Time Scaling

*Increase compute at test time for better results

*OpenAl ol — validated test-time scaling
o Using large scale RL (implying sizable amounts of data)

*DeepSeek R1 —replicated ol-level performance
o Employing RL w/ millions of samples and multiple training stages

BUT What's the simplest approach to achieve both test-time scaling and strong
reasoning performance?

s1-32B

* Trained on 1000 samples (from MATH, GPQA, AIME24)

* Sample test-time technique called budget forcing that controls thinking
duration

* SFT on off the shelf pretrained model (26 minutes & 16 H100 GPUs)
o Qwen2.5-32B-Instruct

* Competitive with OpenAl's o1-preview

1K Dataset

*3 well known reasoning benchmarks:

MATH, GPQA, AIME24

*3 main principles
o Quality
o Difficulty
o Diversity

*3 parts to each sample
o Prompt

o Reasoning trace
= Google Gemini Flash Thinking API

o Answer

et General
AppIOKi- g Statistics topology
mation Convex General
; geometry relativity Special
i functions
IR Cpoctne Linear Probabilty
tr research
algebra theory Computer ~ Comm-
o Grou science utative
ematical Statistical ﬂ'mrg Jatve
logic mechanics . o
ea Biolo Numerical
Differe Electro- functions o analysis ©quations
ntial dynamics
geometry Dynamical @Y
ysiems Complex Measure
Number functions eory
;11?; Difference €Mty “theory
education equations ca
alculis differential
Differential Quantum Suatione
Potential _STE0S' Caleulus of Combin— theory
ey variations atorics
Information
Algebraic i
Functional Thermo- Field structures theory
analysis dynamics theory
Mechanics Algebraic Harrmonic
i
nswdaé'ljw systems Astronomy analysis
—anics Associative Fluid o
nngs mechanics theury
Economics Algebraic
geometry

Data Filtering

* 59K -> 1K

* Quality
o Exclude API errors, formatting issues, inconsistent question numbering

* Difficulty
o Evaluate 2 models on each question: Qwen2.5-7B-Instruct & Qwen2.5-32B-Instruct

= Correctness assessed by Claude 3.5 Sonnet against reference solution

o Token length

* Diversity

Test Time Scaling: Sequential scaling

*Sequential — scales better because computations build on intermediate results
o Allow for deeper reasoning and iterative refinement

Competition Math PhD-Level Science Questions

(GPQA Diamond)
- (AIME24) -
o0 . .
Forcing 2048/4096 max thinking Sequential scaling ° 60% accuracy
tokens \ " s via Forcing with s‘l‘/ N4
< 9 3 /
40 < /
¢ 3 54 /
£ g /
] o d o -
g &} - - =&
< < 50 "" - ..'" .
Ignoring end-of-thinking 2x/4x/6x and '.ﬂ' Parallel scaling via Majority
20 appending “Wait"” thus forcing it to continue L™ voting with base model
-

° reasoning when it tries to stop

1024 2048 4096 8192
Average thinking time (tokens)

46

(Qwen2.5-32B-Instruct)

100,000 1 million
Output tokens (sum over all questions)

(a) Sequential scaling via budget forcing (b) Parallel scaling via majority voting

Test-Time Control Methods

*Token-conditional control

*Step-conditional control

*Class-conditional control

<lim_start/>user <lim_startI>user
What is the answer to Life, the Universe and Everything? What is the answer to Life, the Universe and Everything?
Think for up to 2048 tokens. Think for up to 64 steps.
<|im_startl>assistant <lim_startl>assistant
<lim_start|>think <lim_startl>64 steps left
Let me break down this question into the three parts it Let me break down this question into the three parts it is asking for:
is asking for: 1) Life 2) Universe 3) Everything 1) Life 2) Universe 3) Everything
Let me start with life... <lim_start|>63 steps left
Let me start with life...
<lim_start|>answer <lim_start|>answer
The answer is... The answer is...

Figure 10. Token and step instruction data formats for controlling test-time compute. We only train our model on the reasoning trace
and the answer.

Test Time Scaling: Budget Forcing

*Budget Forcing — simple (How many r in raspberry? Question)
decoding time intervention by /Let's break down the process of counting the letter 'r' in the)
forcing a max/min number of word "raspberry" ...

* First letter: 'r' - Thisisan 'r', count = 1.
* Second letter: 'a' - Not an 'r', count remains 1 ...
* Sixth letter: 'e' - Not an 'r', count remains 1.

thinking tokens
o End-of-thinking token delimiter

("Final Answer") * Seventh letter: 'r' - This is an 'r', count = 2.
o "Wait" to encourage model to * Eighth letter: 'y' - Not an 'r', count remains 2 ...
reflect The number of 'r's in "raspberry" is 2.

Wait, let's re-read the question carefully. It asks "How many r
in raspberry?" ...*r-a-s-p-b-e-r-r-y..*First'r'... *
Qecond 'r'...*Third'r' ... Count=3 ... Reasoning tracy

My initial answer of 2 was incorrect due to a quick reading of
the word. Final Answer: The final answer is@ Response

Performance

Mathematical Competition PhD-Level
Problem Solving Math Science Questions
(MATH500) (AIME24) (GPQA Diamond)

60; ;
.. .'60 o °®
® 40 ¢

o ©
A

50 o ®

U1

20
° 40
L® . 0Le® | e
512 2048 512 2048 8192 1024 4096

Average thinking time (tokens)

Accuracy (%)
O
@)

o)
192

Figure 1. Test-time scaling with s1-32B. We benchmark s1-32B
on reasoning-intensive tasks and vary test-time compute.

Sample Efficiency

*S1-32B as the most sample efficient
open data reasoning model 100

o Model nearly matches Gemini 2.0 g
or1-32B has stronger performance g 9511 r&'diSti"
= But also trained on 800x more reasoning 5 ® Bespoke-Stratos QwQ
samples o 90
<
D "
8 ol-preview
T 85 *
< ky-T1
S ® Sky
80, - ' ,
000 17000 800000 N/A

Number of Examples

Sahlar Salehi
rmh7/ce

Recent Paper: Scaling LLM Test-Time Compute
Optimally canbe More Effective than Scaling
Model Parameters

Charlie Snell, Jaehoon Lee, Kelvin Xu, 2 Aviral Kumar
o Google DeepMind, UC Berkeley

If we give a model more inference time, can it improve accuracy enough that we can
decrease the model size and get comparable results to LLM?

o Powerful lightweight models

How do models best use additional inference time?

What is the tradeoff between test-time compute and pretraining compute?

How

Method WHAT WHERE How WELL
SFT RL STIMULATION SEARCH VERIFICATION AGGREGATION

DSC Parallel, X x Beam Search, Verifier (Wcigl?ted] Best-of-N Math Pass@ 1, FLOPs-
(Snell et al., 2024) Sequential LookAhead Search Stepwise Aggregation Matched Evaluation

Method WHAT

SFT RL STIMULATION
DSC Par allel, X X X
(Snell et al., 2024) Sequential
How WHERE How WELL
SEARCH VERIFICATION AGGREGATION
Beam Search, Verifier (Weighted) Best-of-N. Math Pass@1, FLOPs-
LookAhead Search Stepwise Aggregation Matched Evaluation

Use of Additional Test Time

* How is additional time used to improve model accuracy?

* Two ways we can improve model accuracy
o Modify the model's proposal distribution

= Proposal distribution : probability distribution of predicted tokens

o Use a post-hoc verifier to modify/select outputs

Moditying the Proposal Distribution

* Could augment prompt with tokens, but not effective at test time

* Better: use RL inspired finetuning, iteratively improve outputs
° Model produces output

o Self-critique technique to evaluate output
o Use evaluation to improve proposal distribution->output again

* Question: is it better to use additional test time to iteratively revise a single output, or should
it be used for model to generate multiple independent responses and select the best one?

Optimizing the Verifier

* Verifier selects best answer from proposal distribution
o Best-of-N sampling: sample N complete solutions, use verifier to select best

* Need to train process-based verifier, or process reward model (PRM)
o ldea: predict correctness of intermediate steps in solution

o Use step-wise predictions to tree search over solutions, find best process

* Question: what search technique (best-of-N, beam search, lookahead search) performs best
with PRM

Allocating Test-Time Budget

* Several hyperparameters
o How much time generating independent samples vs revising samples

o Which search algorithm for verifier

* Test time compute optimal scaling strategy
o Optimal hyperparameter configuration to maximize performance benefits on a specific prompt
o Strategy that works best will depend on the prompt/difficulty

Q;kﬂ*(q)(N) = argmaxg ({y-"Target(G,N,q) []ly=y*(q)]))

Estimating Question Difficulty

* Need to approximate difficulty to determine optimal strategy
o Put pass@1 rate estimated from 2048 samples in bins of increasing difficulty

* No ground truth difficulty-> rely on model-predicted notion of difficulty
o Use learned verifier to bin samples, adds additional one-time cost during inference

Experiments

Scaling test time compute via verifiers
o Best of N vs Beam Search vs Lookahead Search

Scaling test time compute via refining proposal distribution
o How to train and use revision models

o Parallel vs sequential sampling to optimize proposal distribution

Ratios of pretraining vs inference time

PaLM 2 base model, evaluated on MATH benchmark

Scaling via Verifiers: Search Methods

Best-of-N Beam Search Lookahead Search

------------- . | compenoammrsr |
i sump et | mpmmmnee
1

| enerate ntun souutions,
selocting

o bast ono with tha | | 2teschstepusingthe 1
PRI

Continue Search from
the top-N options

s s p p
¢ ¢ L .
Select the best final answer using the verifier Select the best final answer using the verifier e s i ss s s s s s s ERr T a e E N RS N
Key: r - _I
1 1= Apply Verifier = Full Solution = Intermediate solution step = Selected by verifier . = Rejected by verifier
[——

Figure 2 | Comparing different PRM search methods. Left: Best-of-N samples N full answers and then selects the best
answer according to the PRM final score. Center: Beam search samples N candidates at each step, and selects the top M
according to the PRM to continue the search from. Right: lookahead-search extends each step in beam-search to utilize a k-step
lookahead while assessing which steps to retain and continue the search from. Thus lookahead-search needs more compute.

Scaling via Verifiers: Results

Comparing PRM Search Methods Comparing Beam Search and Best-of-N by Difficulty Level
40
- Beam Search
o [Best-of-N Weighted
- 80 I- we Majority
S S
> 30 & 60 I
o o
3 3
3 8
L 25 <
17 B 40
ke | K
T 5 == Best-of-N Weighted T O
E == NMajority L—C
= == Beam; M := sqrt(N) =
afps Beam; M =4 20
15 == 1 Step Lookahead; M := sqrt(N)
== 3 Step Lookahead; M := sqri(N) -.
== 3 Step Lookahead; M := 4 Il —
1 3 5 7 9 4 5
2 pi 2 2 2
Generation Budget Test Questions Binned by Increasing Difficulty Level

Scaling via Verifiers: Results

Compute Optimal Search

40

35

30

25

20

MATH Test Accuracy (%)

w= Majority
=@= ORM Best-of-N Weighted

15 =@= PRM Best-of-N Weighted
af@= PRM Compute Optimal Oracle
== PRM Compute Optimal Predicted
10
1 3 5 7 9
2 2 2 2 2

Generation Budget

Scaling via Refining Proposal Distribution:
Training and Using Revision Models

* Model trajectory of incorrect answers approaching and arriving at a correct answer
o Want to correlate incorrect and correct answers to teach model to point out mistakes

* For each question

o Sampled 64 prallel responses, pairing correct answers with sequence of up to 4 incorrect answers in
context

o Select incorrect answer more closely related to final correct answer->trajectory from incorrect to
correct

Scaling via Rer

Parallel Samp

‘ining Proposal Distribution:
ing vs Sequential Revisions

Parallel Sampling

Q: Ifadaps=7
yaps, and §
yaps=3baps, —» LM

equal 42 baps?

independently, in
parallel

A If 7/4 yaps/dap ...]

LM proposes answers

Sequential Revisions

LM proposes a sequence of revisions, each |
conditioned on previous revisions]

Q: If4daps=7
yaps, and §
yaps = 3 baps,
how many daps
equal 42 baps?

— LM AIf7/4 ...

Using Revision Model + Verifier at KW-(-
|nf9r9l‘lc9 TimG |‘- ~ JI = Apply Verifier = Selected by verifier = Rejected by verifier
Parallel Best-of-N Sequential Revisions
o Verifier selects
® : the best answer
S . Verifier .
o : | selects
~ -~ | the best
(== | answer
. 1 R
[K
Question -
- (2 (2o (20 (oo s
:'.: ® 0 .0, 0 . .
s A A A (j-l ! Verifier
r== ., | selects the
\.,' Verifier selects the best | L_—_—‘ | best answer |
- U] answer within each chain |r.: ! across chains |
@' Ve e VT U
@, (ol g S
1 . 11 . 11 . 1 .I s
r__ L —— \-‘: L —— s._:f/
| - -
@ ===

Scaling via Refining Proposal Distribution:
Results

Revision Model Pass@1 At Each Step Revision Model Parallel Verses Sequential
26
== Sequential Best-of-N Weighted
25 ® 40 =@= Parallel Best-of-N Weighted
o © ®o® o0 @ PO ® ® == Sequential Majority
== Parallel Majority

24 s e © o, %) . .
g ‘e o 'o". £ 35
g 2 N 9
§ 22 e o4 E?;
2 * ® £ 30
g 2 g
2 ® ° 2
T 5] T
= [] = 25
<) 2

19

s @ 20

17

0 10 20 30 40 50 60 20 21 22 23 24l 25 28

Number of Generations Number of Generations

Scaling via Refining Proposal Distribution:
Parallel vs Sequential Ratio Results

Varying Sequential/Parallel with Verifier Revisions@128, Varying the Sequential to Parallel Ratio

45

40 102 ”
—_ = & r—— ./ - o
& ———t— g " " = =
g 5 > =
® - — . @ @ 60 =
3J a:’ 3 —
8 o 8 &
< 30 . . &) 2 5
E: 1 E @ =
2 10' 5 2@ 0 5
T o5 E T S
= — s = G
< = = g
= 3 g

20
20 III
15 - - - - - 10° 0 III II _mnmaBl_
P T 2 5 5 3 5 1 21 23 25 2? 1 2 3 4 5

Sequential/Parallel Ratio Test Questions Binned by Increasing Difficulty Level

Scaling via Refining Proposal Distribution:
Compute Optimal Results

Compute Optimal Revisions

MATH Test Accuracy (%)

Exchanging Pretraining and Test Time
Compute

Model pretrained with X FLOPs, we want to run Y FLOPs of inference on the model

We want to improve performance by increasing total FLOP budget by a factor of M
o Thatis M(X+Y) total FLOPs across pretraining and inference

Should we spend additional FLOPs on increased pretraining compute or increased test-time
compute?

Need to define exchange rate between pretraining and inference FLOPs
o X=6ND_pretrain, Y=2ND_inference

o Amount of inference compute we can use to match the FLOPs of the larger pretrained model
depends on ratio R=D_inference/D_pretrain

Results: Comparing Test-Time and
’retraining Compute

Comparing Test-time and Pretraining Compute

Revisions PRM Search

-1
—_— 1 _—
g 10 <
> > 80
® 80 o -2
< < 60 >
[60 T -
5 5 2 2
> > 40 3
3 Y 3 =
ke ke &)
£ = -4
(] 0O 2p
T~ 20 T
iz iz
= = e

Proportional to Inference FLOPs Proportional to Inference FLOPs

% Pretraining Compute == Test-time Compute == R=>>1 ==+ R~=1 —=- R<<1

Discussions and Future Work

*Test time compute and Pretraining compute not 1-to-1 exchangeable, depends on the prompt

*Difficulty assessment requires a non-trivial amount of additional test time compute, potentially
taking away from performance

Study focused purely on test time compute scaling and trading off for additional pretraining

o Potential direction for putting test-time compute into the base LLM to enable self-improvement during
inference

References

*https://openreview.net/forum?id=VTF8yNQM®66
*https://arxiv.org/abs/2402.18060

*https://arxiv.org/abs/2311.16502
*https://arxiv.org/abs/2501.12948

*https://arxiv.org/abs/2503.04697
*https://arxiv.org/abs/2503.04697

https://arxiv.org/abs/2402.18060
https://arxiv.org/abs/2311.16502
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2503.04697

Aaditya Ghosalkar
ag5jk

INFERENCE SCALING LAWS:
AN EMPIRICAL ANALYSIS OF COMPUTE-OPTIMAL
INFERENCE FOR LLM PROBLEM-SOLVING

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, Yiming Yang
o Institute for Interdisciplinary Information Sciences, Tsinghua University

o School of Computer Science, Carnegie Mellon University

Inference scaling laws
o Can we use better strategies to make smaller models perform as well as larger ones?

= Example: LLemme-7B + tree search > Llemma-34-B

Strategies researched
o Greedy search, Best of n, Majority & Weighted voting, Tree search

Motivation and Background

* Currentissue:
o Big models are more powerful but require more computing
o Smaller models are cheaper, but less capable

* Most research is based on optimizing training scaling laws, like Chinchilla Scaling Laws, and
how one would optimize a budget based on training size.

* Goal of this paper: Is it possible to make smaller models perform the same as larger ones by
reducing the overhead of a trained model generating answers

o The phase where a trained model is used to generate answers is called the Inference Phase

r N B
Compu'te,-Op‘t?Mal Compute-Op'timal

Training Inference
Y, _

_ Y,
Trodning MOJ;_T\" Inference
Tokens Size // STrategies

Greedy / Best-of-N /

" / Uqw\ymv‘ / -
\l W
Chinchilla Sco\hng Low Ours

Problem Statement — Compute Optimal
Inference

Question: Given a fixed FLOPs budget, how should one select an optimal model size for the policy
model, and an effective inference strategy to maximize performance (i.e., accuracy)?

N is the Model size, T is the number of tokens generated, and S is the inference strategy

The goal is to minimize the Error rate E under the test time compute constraint of FLOPS(N,T,S) = C

(Nopt (C), Topt (C); S) = arg min E(N,T;S)
(N,T,S) s.t. FLOPs(N,T,8)=C

NoptbC€) and TopthC) denote the optimal allocation of a computational budget C

Inference Strategies

The paper aims to examine between different inference strategies on the performance and the
cost using the metrics discussed.

Sampling-based methods
o Greedy Decoding — fastest, picks most likely token, doesn't explore alternatives
o Majority voting — generates multiple completions, chooses the most common answer
o Weighted majority voting — like majority voting, but tanks completion by confidence or reward

Tree-based methods
o MCTS (Monte Carlo Tree Search): based on game playing Al, it simulates multiple paths

o REBASE : proposed inference strategy by the paper

Voting-Based Inference

Majority Voting:
o Run the model multiple times with the same prompt
o Collect the outputs and pick the most frequent answer
o Assumes that common answers are more likely to be correct

Weighted Majority Voting:
o Like majority voting, but each answer is scored (e.g., by a reward model)
o Select the answer with the highest total weighted score

Limitations:
o Performance depends on number of samples
o More samples = more compute = diminishing returns
o Eventually, sampling more does not yield better results
o These methods are simple, but they reach a plateau. To go further, we need structured search.

Majority Voting Weighted Majority

9 —e— 410M o 70 - —e— 410M
oo /07 \ 1.4B 0 60 - 1.4B
9 60- e —— 6.9B © —— 6.9B
S . —— 12B 840- —— 12B
£ 501 N\ 7 3
Q o 30
2 7
= =
40
2 8 32 128 512 2048 2 8 32 128 512 2048
Infer. FLOPs per question (x10'%) Infer. FLOPs per question (x10'!)

Tree-Based Inference

Why sampling isn't enough:
o Sampling generates full completions blindly
o It lacks structure and wastes compute on bad outputs

Enter tree search:
o Builds solutions incrementally (step-by-step)

o Allows dynamic allocation of compute to promising paths

Example: MCTS (Monte Carlo Tree Search)
o Simulates many possible completions (rollouts)
o Assigns rewards based on full solution outcomes
o Backpropagates rewards to improve search decisions

Drawback:
o MCTS is compute-heavy — expensive rollouts for every path
o Doesn’t scale well for LLM inference, especially with long solutions

The goal is to find a tree search that's lightweight, greedy, and guided.

REBASE

Step-by-step generation:
oREBASE builds answers token-by-token, as a tree

oEach node = a partial solution

Reward-guided expansion:
oA learned reward model scores each partial solution

oNodes are expanded based on softmax-normalized scores
oHigher scores - more children explored

Compute-efficient:
oAvoids full rollouts (like MCTS)

oPrioritizes only the most promising paths

- W™ e e e e e e e e e e " e ® ® e ® ® " ® ® ® e g

[R R 3 :Io.lj 3

e [Observe that 2 + 2 = 4... IOB] Explore more

[We'll solve this as follows..f.jl 0.4 l

Explore based on
reward model scores

5: Process
: [Step 1: ...][Step 2: ...][Step 2+ 2= 5]—’ —» [0,1]
; ; reward model

Solution-so-far

Experiment Setup

Benchmarks:
0GSMB8K — Grade-school math word problems (easy, short reasoning)

oMATH — High school competition problems (long, multi-step reasoning)

Models tested:
oLlemma-7B and Liemma-34B (fine-tuned for math)

oPythia and Mistral-7B (open LLM baselines)

Inference methods evaluated:
oGreedy decoding, Sampling, Majority & Weighted voting
oMCTS (baseline tree search)
OREBASE (proposed method)

Evaluation metric:
oTest error (lower is better)
olnference FLOPs per question — total compute used to generate a final answer

~
o

Test error on MATH

U
o

Inference scaling (Weighted Majority)

(o) N @) BN |
o U1 O

9]
ol

—e— Sampling (7B)
Sampling (34B)
MCTS (7B) l
MCTS (34B)
REBASE (7B)

REBASE (34B)

4 16 64 256 1024
Inference FLOPs per question (x10%?)

Test error on GSM8K

[
N

N N N W
o H OCON

[
(o))

Inference scaling (Weighted Majority)

Sampling (7B)
Sampling (34B)
REBASE (7B)
REBASE (34B)

2 4 8 16 32 64 128 256
Inference FLOPs per question (x10%?)

Llemma-7B Llemma-34B Mistral-7B

80 75 80
75 —e— Sampling W.M. —e— Sampling W.M. —e— Sampling W.M.
; 701 , 751 :

T 0. —+— Sampling BoN - —+— Sampling BoN T - —=— Sampling BoN
<Er_ —+— REBASE W.M. % 65 —e— REBASE W.M. <Et 70 N —e— REBASE W.M.
c 65 REBASE BoN c —e— REBASE BoN p \. —— REBASE BoN
© G 601 o 65 \
5 ©0 5 5
= £ 55- £ 60
3 55- o 3 °0
@ 0 @
@ 50 Q@ 501 Q 55-

45 50

L | T i R — | T T T 45 LI T T T T 1 — T - | T T T
4 16 64 256 1024 16 32 64 128 256 5121024 4 8 16 32 64 128256512
Infer. FLOPs per question (x10%2) Infer. FLOPs per question (x10'?) Infer. FLOPs per question (x102)

Llemma-7B on MATH-easy Llemma-7B on MATH-hard Llemma-34B on MATH-easy Llemma-34B on MATH-hard

42 BEE Sampling | 75 B Sampling 39 B Sampling | 77! B Sampling
S 39/ i REBASE 79 i REBASE 36 i REBASE 69 i REBASE
530 69, 33 66
w 331 66 63
‘61'30_ 30
i 63 601

27 57/

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
Number of Samples Number of Samples Number of Samples Number of Samples

Conclusion

1. Small models + smart inference > big models

* Better performance at the same compute budget
2. Sampling saturates

* More samples # better results after a point

3. REBASE is compute-optimal

* Best accuracy-cost trade-off across all budgets

	Slide 1: Inference Test Time Scaling Law
	Slide 2: Daniel Slyepichev dos8nw
	Slide 3: What, How, Where, and How Well? A Survey on Test-Time Scaling in Large Language Models
	Slide 4: Test Time Scaling vs. Pre Training Scaling
	Slide 5
	Slide 6: What & How: Summary
	Slide 7
	Slide 8: What to Scale: Parallel Scaling
	Slide 9: What to Scale: Sequential & Hybrid
	Slide 10: What to Scale: Internal Scaling
	Slide 11
	Slide 12: How to Scale: Tuning Based Approaches
	Slide 13: How to Scale: Tuning Based Approaches
	Slide 14
	Slide 15: How to Scale: Inference Based Approach
	Slide 16: How to Scale: Inference Based Approach
	Slide 17: How to Scale: Inference Based Approach
	Slide 18: What & How: Summary
	Slide 19: Akira Durham zup9su
	Slide 20
	Slide 21: Where to Scale: Reasoning Tasks
	Slide 22
	Slide 23: Where to Scale: Reasoning Tasks
	Slide 24
	Slide 25: Where to Scale: General Tasks
	Slide 26: How Well to Scale
	Slide 27: How Well to Scale
	Slide 28
	Slide 29
	Slide 30: Organization and Trends
	Slide 31: Hands-on Guidelines
	Slide 32: Challenges and Opportunities
	Slide 33: More Scaling
	Slide 34: Techniques & Generalization
	Slide 35: Ananya Ananda jaf5rp
	Slide 36: s1: Simple test-time scaling
	Slide 37: Test-Time Scaling
	Slide 38: s1-32B
	Slide 39: 1K Dataset
	Slide 40: Data Filtering
	Slide 41: Test Time Scaling: Sequential scaling
	Slide 42: Test-Time Control Methods
	Slide 43: Test Time Scaling: Budget Forcing
	Slide 44: Performance
	Slide 45: Sample Efficiency
	Slide 46: Sahlar Salehi rmh7ce
	Slide 47: Recent Paper: Scaling LLM Test-Time Compute Optimally canbe More Effective than Scaling Model Parameters
	Slide 48
	Slide 49: Use of Additional Test Time
	Slide 50: Modifying the Proposal Distribution
	Slide 51: Optimizing the Verifier
	Slide 52: Allocating Test-Time Budget
	Slide 53: Estimating Question Difficulty
	Slide 54: Experiments
	Slide 55: Scaling via Verifiers: Search Methods
	Slide 56: Scaling via Verifiers: Results
	Slide 57: Scaling via Verifiers: Results
	Slide 58: Scaling via Refining Proposal Distribution: Training and Using Revision Models
	Slide 59: Scaling via Refining Proposal Distribution: Parallel Sampling vs Sequential Revisions
	Slide 60: Scaling via Refining Proposal Distribution: Results
	Slide 61: Scaling via Refining Proposal Distribution: Parallel vs Sequential Ratio Results
	Slide 62: Scaling via Refining Proposal Distribution: Compute Optimal Results
	Slide 63: Exchanging Pretraining and Test Time Compute
	Slide 64: Results: Comparing Test-Time and Pretraining Compute
	Slide 65: Discussions and Future Work
	Slide 66: References
	Slide 67: Aaditya Ghosalkar ag5jk
	Slide 68: INFERENCE SCALING LAWS: AN EMPIRICAL ANALYSIS OF COMPUTE-OPTIMAL INFERENCE FOR LLM PROBLEM-SOLVING
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Voting-Based Inference
	Slide 74
	Slide 75: Tree-Based Inference
	Slide 76: REBASE
	Slide 77
	Slide 78: Experiment Setup
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Conclusion

