Platform - Prompting Engineering tools / Prompt Compression
- SlideDeck: W5.1.Team5-Prompt
- Version: current
- Lead team: team-5
- Notes: Prompting survey
In this session, our readings cover:
Required Readings:
The Prompt Report: A Systematic Survey of Prompting Techniques
- URL
- [Submitted on 6 Jun 2024 (v1), last revised 30 Dec 2024 (this version, v5)]
- Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda Liu, Chenglei Si, Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff, Pranav Sandeep Dulepet, Saurav Vidyadhara, Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson Kroiz, Feileen Li, Hudson Tao, Ashay Srivastava, Hevander Da Costa, Saloni Gupta, Megan L. Rogers, Inna Goncearenco, Giuseppe Sarli, Igor Galynker, Denis Peskoff, Marine Carpuat, Jules White, Shyamal Anadkat, Alexander Hoyle, Philip Resnik
- Generative Artificial Intelligence (GenAI) systems are increasingly being deployed across diverse industries and research domains. Developers and end-users interact with these systems through the use of prompting and prompt engineering. Although prompt engineering is a widely adopted and extensively researched area, it suffers from conflicting terminology and a fragmented ontological understanding of what constitutes an effective prompt due to its relatively recent emergence. We establish a structured understanding of prompt engineering by assembling a taxonomy of prompting techniques and analyzing their applications. We present a detailed vocabulary of 33 vocabulary terms, a taxonomy of 58 LLM prompting techniques, and 40 techniques for other modalities. Additionally, we provide best practices and guidelines for prompt engineering, including advice for prompting state-of-the-art (SOTA) LLMs such as ChatGPT. We further present a meta-analysis of the entire literature on natural language prefix-prompting. As a culmination of these efforts, this paper presents the most comprehensive survey on prompt engineering to date.
Prompt Compression for Large Language Models: A Survey
- [Submitted on 16 Oct 2024 (v1), last revised 17 Oct 2024 (this version, v2)]
- URL
- Zongqian Li, Yinhong Liu, Yixuan Su, Nigel Collier
- Leveraging large language models (LLMs) for complex natural language tasks typically requires long-form prompts to convey detailed requirements and information, which results in increased memory usage and inference costs. To mitigate these challenges, multiple efficient methods have been proposed, with prompt compression gaining significant research interest. This survey provides an overview of prompt compression techniques, categorized into hard prompt methods and soft prompt methods. First, the technical approaches of these methods are compared, followed by an exploration of various ways to understand their mechanisms, including the perspectives of attention optimization, Parameter-Efficient Fine-Tuning (PEFT), modality integration, and new synthetic language. We also examine the downstream adaptations of various prompt compression techniques. Finally, the limitations of current prompt compression methods are analyzed, and several future directions are outlined, such as optimizing the compression encoder, combining hard and soft prompts methods, and leveraging insights from multimodality.
More Readings:
Harnessing the Power of Multiple Minds: Lessons Learned from LLM Routing
- KV Aditya Srivatsa, Kaushal Kumar Maurya, Ekaterina Kochmar
- With the rapid development of LLMs, it is natural to ask how to harness their capabilities efficiently. In this paper, we explore whether it is feasible to direct each input query to a single most suitable LLM. To this end, we propose LLM routing for challenging reasoning tasks. Our extensive experiments suggest that such routing shows promise but is not feasible in all scenarios, so more robust approaches should be investigated to fill this gap.