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OUR DATA-RICH WORLD

Biomedicine
Patient records, brain imaging, MRI & CT scans, ...
Genomic sequences, protein-structure, drug effect info, ...

Science

Historical documents, scanned books, databases from astronomy,
environmental data, climate records, ...

Social media
Social interactions data, twitter, facebook records, online reviews, ...

Business
Stock market transactions, corporate sales, airline traffic, ...

Entertainment

Internet images, Hollywood movies, music audio files, ...
www.cs.virginia.edu/yanjun

VAN /10 unfyex



BIG DATA CHALLENGES

Data capturing (sensor, smart devices, medical
Instruments, et al.)

Data transmission
Data storage
Data management
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High performance data processing
Data visualization

Data security & privacy (e.g. multiple individuals)

Data analytics
How can we convert this big data wealth to knowledge ?

—— o —
— e = —

E.g. Machine learning

N /

_______________________________________________________



BASICS OF MACHINE LEARNING

“The goal of machine learning is to build
computer systems that can learn and adapt
from their experience.” — Tom Dietterich
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“Experience” in the form of available data
examples (also called as instances, samples)

Available examples are described with
properties (data points in feature space X)
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TYPICAL MACHINE LEARNING SYSTEM

Low-level Pre- Feature Feature
sensing processing Extract Select
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Inference,
Prediction,
Recognition

Label fX_>Y

Collection
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BIG DATA CHALLENGES FOR
MACHINE LEARNING

LARGE-SCALE

—————————————————————————
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The situations / variations of
both X (feature,
representation) and Y
(labels) are complex !
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When to use Machine Learning
(ADAPT TO / LEARN FROM DATA) ?

1. Extract knowledge from data

Relationships and correlations can be hidden within large
amounts of data

The amount of knowledge available about certain tasks is
simply too large for explicit encoding (e.g. rules) by human

JAn /1o unfuex

2. Learn tasks that are difficult to formalise

Hard to be defined well, except by examples

3. Create software that improves over time
New knowledge 1s constantly being discovered.

Rule or human encoding-based system 1s difficult to

continuously re-design “by hand”. o _
www.cs.virginia.edu/yanjun



Interesting Data Challenges in BioMed
for Machine Learning

Noisy measurements (e.g. weak/partial labels)
Structured input (e.g. vector, strings, graphs)
Structured output (e.g. trees, sequences, graphs)

Combination of different data types is essential (e.g.
information fusion )

Large amount of data (e.g. lots of next generation
sequencing data)

www.cs.virginia.edu/yanjun
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THIS TALK COVERS

Project Topic Complexity | HOW ?

Protein Y Training with auxiliary labels
Interaction

1dentification
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Background

VIRUS VS. HUMAN PROTEIN INTERACTION

Human Immuno-deficiency Viruses, (e.g. HIV-1
Virus), can cause life-threatening infectious

diseases (like AIDS)

Virus must communicate with the host to invade
and infect
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Typical communication through interactions
between virus and human host proteins (potential
drug/vaccine targets)

[Y. Qi, et al, Bioinformatics 2010]
[Y. Qi, et al, Proteomics 2009]




Objective & Previous Work

* GOAL: to discover unknown direct physical interactions
between HIV-1 and human proteins

= (Help biologist prioritize potential interaction pairs)

oV

(HIV-1, human protein) pair = X

20873 =

Human Host Pf@tein — =17 ®ogen Prot 17 HIV-1
. Interactome Interactome

Proteins

Virus

,gQ.

““
““
.

.
os®
"
"

® Model each (HIV-1, human protein) pair with (X, Y)
® State-of-the-art performance: Random forest (Tastan et al. (PSB 2009))

Simplified view: lost spatial / temporal information of interaction pairs

[Y. Qi, et al, Bioinformatics 2010] [Y. Qi, et al, Proteomics 2009]
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Background: 18 Features describing each pair

0 Differential gene expression in O ELM-ligand feature (1)
HIV infected vs uninfected cells

(4)

(J Human PPl interactome
features (8)

0 Human protein expression in q g
: : Similarity of HIV-1 protein to >
HIV-1 susceptible tissues (1) y orriv=2p e
human protein’ s interaction ¢
>
.. . . artner (5
0 Similarity of the two proteins P ( ) .
: d Topological properties of
in terms of (4) _ )
Collular location ‘ human interaction graph (3)
Molecular process
Molecular function O
Sequence 9( )/ 0 >
O HquProtein HIV-1 protein

ractome .
o
A Evidence O @
& Fusion ~
2 I, Bioinformatics 2010

Y. Qi, et al, Proteomics 2009]



Label Complexity: Auxiliary “Partial” Labels Y’

= Improve with multiple tasking and semi-supervised learning

18 features per Lor
HIV-Human pair (1or-1)

X = f .Y

®
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Positive Y | Partial Positive Y' | Remaining Y’

~200 ~2000 ~350,000

Expert annotated ,| Literature Extracted

Highly skewed class distribution (much more non-

interacting pairs than interacting pairs)
[Y. Qi, et al, Bioinformatics 2010] [Y. Qi, et al, Proteomics 2009]



Method: How to Utilize “Partial” Labels Y’ ?

Multi-Tasking

Supervised Classification (using Y)
Auxiliary Task (using Y')
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Main Task: a candidate ‘ Qe
pair interacts OR not ?
Auxiliary Task: e.g. a pair is
more likely than random
pairs to interact OR not ?

, o , , , x denotes Y’
[Y. Qi, et al, Bioinformatics 2010] [Y. Qi, et al, Proteomics 2009]



Method: Main Classification + Three Possible Auxiliary Tasks

Zﬁ(f (xi),yi)+A Loss (Auxiliary Task)

i=1 Auxiliary task added as a regularizer on the
supervised main task

To Optimize:

L L
Main: MLP | >
! ), y;)= 0’ 1 —v: ). 3
classification IZI: (f (xi), yi) ;max( yif (xi)) i
Auxiliary (1): SMLC . -« /
classification Loss (Auxiliary Task)= Z max(0, 1 —y;g(x;))

j=L+1

Auxiliary (2): SMLR Loss( Aux.)=Y Y ‘max (0, 1 —f(x,)+f(x))

pairwise ranking pePneN

L+U

Auxiliary (3): SMLE% D PV
embedding - Loss(Aux) = ,,Zl (f (i), £(x)), Wij)

[Y. Q:,-et-al—Bmmfe#maﬂes—ZO%OJ—ﬂLef—et—&F—Pmteemies 2009]




Evaluation: Performance Comparison

Improved performance to Random Forest classifier

ROC curve
METHOD AUC50  AUC __
SMLR  0.310  0.919 o | o7 LA
© Ve ~
RF-P 0.230 0.896 s |
- I/
MLP-P 0.229 0.893 |
FP rate

Validation and confirmed by multiple recent available
functional assay related to HIV (siRNA data & Virion data )

Extra: similar framework applied to look for human protein
partners for receptor proteins

Five of our predictions were chosen for experimentally
tests and three were verified = 3 out of 5

If purely random chosen =» 1 out of ~20,000
[Y. Qi, et al, Bioinformatics 2010] [Y. Qi, et al, Proteomics 2009]
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Evaluation: Experimental Validation of Predicted PPl wrt
Human Membrane Receptors

= (Help biologist prioritize potential interaction pairs)

Five of our top predictions were chosen for

experimentally tests and three were verified

EGFR with HCK (pull-down assay)
EGFR with Dynamin-2 (pull-down assay)

RHO with CXCL11 (functional assays,
fluorescence spectroscopy, docking)

Experiments @ U.Pitt School of Medicine

Cco-immuno- functional assay  docking
precipitation 200
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Y. Qj, et al Proteomics2009
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THIS TALK COVERS

Project Topic Complexity HOW ?
o
II | Protein X&Y Unified feature learning fors
structure multiple related tasks
prediction
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To Save Cost = very time-consuming and
Target Problem expensive to measure protein structures

PROTEIN SEQUENCE = STRUCTURAL SEGMENTS
= Tnput X:Primary sequence

MTYKLILNGKTKGETTTEAVDAATAEKVFQYANDNGVDGEWTYTE
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= Qutput Y:

= Secondary structure (SS)

= Solvent accessibility (SAR)

= Coiled coil regions (CC)
DNA binding residues (DNA)
Transmembrane topology (TM)
Signal peptide (SP)
Protein binding residue detection (PPI)

...... Y. Qi, et al, PLoS ONE (2012), ICDM10,
CIKM10, SDM 14, ECIR 14




Target Problem

vINPUT: A STRING OF AMINO ACIDS (AA)
vOUTPUT: A STRING OF CLASS LABELS (OF AA)

Multiple Targets:

Secondary structures

Solvent accessibility

N

-
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Y. Qi, et al, PLoS ONE (2012), ICDM10,
CIKM10, SDM 14, ECIR 14
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Essentially Sequence Labeling/Tagging Tasks

Y. Qi, et al, PLoS ONE (2012),
ICDM10, CIKM10, SDM14, ECIR1

Window of Input Protein Sequence

{ \ A4 of interest
- pecmmo=- 1 (aa interes
Amino "M F : KA Y
Xy Xpi X3z X4 Xg! !
labels Y1 _Y_z_:_ Y3 1Y4 Y5 g

+

Labeling each residue amino acid (AA) using its context windows:

Using task "SS” as one example:

X [ ¢ Y

Each AA + its context window Class label in
terms of “SS”
for current AA

..... X;) Y=Y;




Previous systems : Issue (1)

e Previous approaches focus on one task at a time

e Tasks exhibit strong inter-task dependencies, e.g.

v' Most transmembrane protein segments are alpha helice

v’ Signal peptide prediction can be viewed as prediction of a
particular type of transmembrane segment

= Improve with multiple task learning

Y. Qi, et al, PLoS ONE (2012), ICDM10,
CIKM10, SDM 14, ECIR 14
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Previous systems : Issue (2)
* Previous work makes use of these dependencies in
a pipelined fashion,
v’ Hand-craft feature engineering for each task

v’ Errors from one classifier get propagated to
downstream classifiers

><
v
<
VAN /10 unfuep

= Improve with feature / Y2 [ predi -
representation learning i, )| oo |

Y. Qi, et al, PLoS ONE (2012), ICDM10,
CIKM10, SDM 14, ECIR 14



Method: Adapt deep CNN for Each Sequence Modeling Task

:Window of Input Protein Sequence “laazb-1-DOMAK”
: M F K A Y G Y

: Index: Si S2 S3 Sa S5 S6 S7

................................................................................................................

: Local Feature Extraction

F
PSI-Blast AA embedding
» Learn Feature Representation for
each amino acid e
o
H ~
................................................................................................................. .
I T — Learn Representation for each =
OO OO O B 0 o
segment around current position
e e
Linear [ | ‘
HardTanh | ] |
Line: : j e : :
el | Learning function to map from
HardTanh f— | representation to TAG/class label
Linear f— | §
Softmax () \ 4

Y. Qi, et al, PLoS ONE (2012), ICDM10,
CIKM10, SDM 14, ECIR 14



Method: Multi-Tasking to train a single, joint model for Ten
tasks

XNVLALDTSQRIRIGLRKGEDLFEISYTGEKKHAEILPV ... X

Multiple Targets: —~— _—

1
Secondary structures LBBBBBBLHHHBBBBBBBHHBBBBBBBBHLHHHHHHHHH ... Y
Solvent accessibility BBABABABABBBBBAABBBBAAAAAAABBBBBBBBBABB ... g/z
2
----- LEEEEEELSSSEEEEEEETTEEEEEEEESLGGGGGHHHH ... Y3
cC
<
>

INPUT

|

Parameters to learn 1 52 L—1 yL .
() = W l, l, l, l, AA Feature Extraction Layer
(assuming total T tasks) ' { 7 T 7 } '1' y

T N Sequential Extraction Layer

By optimize Z Z Et(®taxnpyng) l'

L
t=1n;=1 Neural Network (NN) Layers

¢ '

NN Layer O’ NN Layer O

Y. Qi, et al, PLoS ONE (2012), ICDM10, l !
CIKM10, SDM 14, ECIR 14 OUTPUT OUTPUT



Method: Backpropagation & Stochastic Gradient Descent

« Backpropagation
« Using backward recurrence it jointly optimizes all parameters
« Requires all activation functions to be differentiable
 Enables flexible design in deep model architecture

 Gradient descent is used to (locally) minimize objective: B)
JL S

Wk+1 — Wk _ g

Tow™ >

« Stochastic Gradient Descent (SGD) (first-order iterative optimization

)

« SGD is an online learning method

« Approximates “true” gradient with a gradient at one data point
« Attractive because of low computation requirement

* Rivals batch learning (e.g., SVM) methods on large datasets

Y. LeCun et al. 1998. Efficient BackProp. Y. Qi, et al, PLoS ONE (2012), ICDM10,
Olivier Bousquet and Ulrike von Luxburg. 2004. Stochastic Learning. CIKM10, SDM 14, ECIR 14



Evaluation: Summary of Performance Comparison

tasks Multitask + Embedding + Pretrain + Viterbi

Embedding? v v * * * ‘
Multitask? v ve v e

Natural protein? v v v {, \
Task Single = Embed Multi Multi-Embed NP NP only All3 ; Al3+Vit  p-value Previous
ss | 0.7907  0.7964 0.8050 0.8130 0.7968 0.6766 0.8174 1 0.8141 1 le-4 —
cb513ss | 0.7610 0.7454 0.7976 0.8019 0.7479 0.6584 0.8020 ! 0.8033 1 le-3 0.800 [18]
dssp | 0.6548 0.6625 0.6708 0.6810 0.6627 0.5426 0.6821 ' 0.6821 I le-4 —
sar | 0.7836 0.7979 0.7920 0.8100 0.7981 0.7306 0.8104 : 0.8106 I le-4 <—
saa | 0.8069 0.8128 0.8170 0.8256 0.8130 0.7419 0.8263 | 0.8262 : le-4 S —
dna | 0.8241 0.8222 0.8528 0.8702 0.8230 0.8113 0.8864 | 0.8917 ; le-4 6.89 [7]
sp | 0.8092 0.8069 0.8363 0.8392 0.8071 0.6944 0.8408 1 0.9100 1 le-4 o —
sp (prot) | 0.9947  0.9947 0.9982 0.9983 0.9980 0.9981 0.9965 !  0.9977 1 5e-2 0-97 [26]
tm | 0.8708 0.8754 0.8896 0.8931 0.8765 0.8582 0.8944 : 0.9212 I le-4 E —
tm (seg) | 0.9095 0.9691 0.9738 0.9825 0.9674 0.9272 0.9837 | 0.9653 I le-4 0*94 [26]
cc | 0.8861 0.8988 0.9308 0.9421 0.9074 0.8725 0.9439 ;, 0.9660 : le-4 —
cc (seg) | 0.9067  0.9188 0.9454 0.9555 0.9198 0.8972 0.9573 1 0.9735 ; le-4 0.94 [41]
ppi | 0.6983 0.7020 0.7436 0.7334 0.7111 0.7104 0.7375 1 0.7380 1 le-4 0.68 [50]
» /

— - — -

Ten different tasks
v All reach state-of-the-art performance
= Unsupervised pretrain + Supervised pretraining (with large tasks)

v" One unified framework for all task

Y. Qi, et al, PLoS ONE (2012),
ICDM10, CIKM10, SDM 14, ECIR 14
v" No need for task-specific feature engineering

= Simple + powerful !



Similar Models Applied Successfully on NLP Tagging Tasks

Input Sentence (Text Window)

— word of interest
text the cat sat on the
words i X1 X2 X3 X4 Xs : X = (xl’,,_’xs) + y:%l
labels i Vi Y2 V3 Va4 V5 each example X & <

——————————————————————— ' , a window of words

Similar as natural language processing (NLP)
tagging tasks (e.g. part-of-speech, name entity

recognition)
Similar deep models have

achieved state-of-art

results on NLP tagging of English, German,

Chinese Y. Qi, et al, PLoS ONE (2012), ICDM10,
CIKM10, SDM 14, ECIR 14
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III | Biomedical X Add semi-supervision on
text mining features
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Why Text Mining for Biomedicine ?

Data Situation
» MEDLINE: over 70 million queries every month and about 20 million publications

» new terms (genes, proteins, chemical compounds, drugs) and discoveries
constantly created/added in

» Impossible to annotate manually

=2

Linking text to bio-databases

and ontologies is crucial, for "’\
» Efficient access and discovery of l 4_
facts and events in biosciences

|

New insights,
new knowledge

Y. Qi et al, ECML(2010),
SDM(2011), TRECMED(2012),

=» Need text mining to (help) analyze /
organize biomedical literature




Two Benchmark Tasks

Y >R > %

 Mena <binds> directly to-Profilinzan actin-binding protein that ..
Momplev composed ofSycN and YscB-functions as a spec:|f|c
T T

) 4

- o
Protein Protein Relation Related Tasks =
"  Protein Name
Mena Profilin bind to I PubMed Recognition
| — ] . |
SycN YscB I complex I PubMed Protein Intergc!non
) Event Recognition

\————

Y. Qi et al, ECML(2010),

SDM(2011), TRECMED(2012),
=» Many Similar Tasks

 Bio-Entity recognition (e.g. chemical terms, disease names,)
» Bio-Relational extraction (e.g. genetic interaction, disease to phenotype)



How to improve current approaches by learning from
Cha"enges unlabeled examples X* ( e.g. Pubmed articles) ?

Annotated training sets are small

Hardly cover words in vocabulary (~2 million in PubMed)

Millions of Pubmed articles freely available

To design learning methods able to measure semantic
similarity between words or word sequences

Rigid symbolic matching could not capture such similarity

VAN /10 unfue)

To search for
similar word
sequences In

[CDS is coupled to the protein-tyrosine kinase [)56|<:k.j

Test / '/ \
Instance _ .

CD5 ——— coupled p56ick training for
I nsubjpass | prep_to |
a new test
--------------------------------------------------------- sequence
I prep__for i I nsubj I
cb5 ——— ligand —— CDb72 @ _ -+

[The B-cell surface protein CD72 is the ligand for CDSJ

Y. Qi et al, ECML(2010),
SDM(2011), TRECMED(2012




Learn Word Representation Reflecting Semantic Similarity

Learn to embed each word into a vector of real values
(with dimensionality M)

o Based on unlabeled data (1.e. PubMed abstracts
1995-2009, ~1.3G word tokens, ~4.5M abstracts)

oSemantically similar words have closer embedding
representations

Input Sentence:
The variable HMG dosage regimen was found to offer

VvV vV V VvV VYV

051 0.22 0.01 0.99 0.11
0.18 0.18 0.17 0.01 0.32
0.53 0.01 0.33 0.01 0.80

VAN /10 unfue)
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Y. Qi, et al, NIPS(2009), ICDM(2009), ECML(2010), CIKM(2011), SDM(2011),
TRECMED(2012), NIPS(2012), ECML(2012), SDM (2014)



Local Embedding Based on Pattern of Short Text Window

____________________ 1

| Text Window | Pseudo supervised signals

|| Input Sentence: | — Positive examples: Text
' I window extracted from
|
|

S*:| The variable HMG dosage regimen'was found to offer.. unlabeled corpus randomly

| Th lable j d '
5 ¢ varlapie Jump cosage reglmen: — Negative examples: Text

v v v v v :v v v v window with middle word

!
U st ol 09| [oa1] | +— replaced by a randomaword
' loas|  |oas oot| |o3z| | o
L los3| [oon 001| oso| | <
e | M =
' l
' l
|
o= 1 1 L1 1 1 : -
Y. Qi et al, ECML(2010),
[ Classical NN Layer(s) ] = f(-) SDM(2011), TRECMED(2012

Build a paiwise ranking task to train word embedding
(first layer 1n deep neural network)

f(-) measures how likely a word segment exist in Pubmed ?
Pairwise rank loss to optimize: Zmax (0, 1— f(3+) + f(s_))



Global Embedding using Similarity between Text Documents

2+ Pseudo supervised signals
by splittir_lg each Pubmed
g N~ 9(d.2) abstract into two
1xn 1xn =21 documents (each with half)
1+ Output: 1xn 1+ Output: 1xn S|m|lar |f from the Sa@e
Hodule t ‘ Hodule 2 | Dissimilar otherwise 3
T Input: 1xd T Input: 1xd :%
document_1 document_2

g(-) =» learned representation of each text document
first layer of g(-) maps to “global” word embedding

Each document is represented as “bag-of-words”

Learning g(-) by forcing g(-) of two documents
with similar meanings to have closer representations,

with different meanings to be dissimilar
Y. Qi et al, ECML(2010), CIKM(2011), SDM(2011), TRECMED(2012),



Results: Nearest Words of Sample Query Word

protein ligand, subunit, proteins,
receptor, molecule phosphoprotein, isoform,
medical surgical, dental, hospital, investigated, %
preventive, research, urology 2
reconstructive S
Iinteract cooperate, compete, Interacting, member,
interfere, react assoclate, ligand
lmmunopre co- coexpression, two-hybrid,
cipitation Immunoprecipitation,  phosphorylated, tbp
EMSA,
autoradiography,
RT-PCR

Y. Qi, et al, NIPS(2009), ICDM(2009), ECML(2010), CIKM(2011), SDM(2011),
TRECMED(2012) NIPS(2012) ECML(2012). SDM (2014)



Results: Performance

— Achieved the state-of-the-art performance (by using large amount of

unlabeled data from Pubmed)
With word features only

Added on single base classifier (string kernel + SVM)

— Previous best systems used complex combination of many classifiers

with many more linguistic features, dictionaries, and etc

— Semi-supervision IMPROVES both benchmark tasks

= Bio-Entity tagging
(genes, proteins, etc) —>

= Protein-Protein Interaction

(PPI) event extraction ' . =

Y. Qi, et al, NIPS(2009), ICDM(2009), ECML(2010), CIKM(2011), SDM(2011),
TRECMED(2012), NIPS(2012), ECML(2012), SDM (2014)
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Project Topic | Complexity HOW ?
2
2
IV | Conditional X Model data example with
dependency feature interactions
graph among
Genes / TFs
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MODEL FEATURE DEPENDENCY TO
GET BETTER FEATURES

Feature variables have correlations or high-
order conditional dependency relationship

N samples

M features

E.g. genes work with other genes together to affect
certain disease

Hypothesis:

= May model samples better if
considering feature
dependencies / interactions

Y. Qi, et al, NIPS (2012), ECML (2012), Patent (2013), PSB (2014)
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Y. Qi, et al, NIPS (2012), ECML (2012), Patent (2013), PSB (2014)



Task: Learning Dependency between Hidden Feature Groups

SLFA Lasso Lasso SVM PCA
overlapped-group

Cross-validation 342242 .58 35.31+£2.05 36.42+2.50 36.93+2.54 36:85+3.02

error rate

Tumor classification based on gene expression values of 8141 genes for

295 breast cancer tumor samples. SLFA does not use prior knowledge
like biological gene network graph.

VAN /10 unfue)

NIPS(2012)

Same model successfully applied to learn dependency between text topics for
modeling text documents NIPS (2012)

A similar / simpler model successfully applied to learn conditional
dependency between transcription factors using ENCODE data

Patent (2013)
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MORE NOT COVERED OF MY

PROJECTS

www.cs.virginia.edu/yanjun

CCo

Protein Interaction
(Pairwise edges)

P e e e e e e ]

KEEEEERE
e R S I

Disease Diagnosis
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