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Many genes and biological processes function in similar ways across di↵erent species. Cross-species gene expression
analysis, as a powerful tool to characterize the dynamical properties of the cell, has found a number of applications,
such as identifying a conserved core set of cell cycle genes. However, to the best of our knowledge, there is limited e↵ort
on developing appropriate techniques to capture the causal relations between genes from time-series microarray data
across species. In this paper, we present hidden Markov random field regression with L1 penalty to jointly uncover
the regulatory networks for multiple species. The algorithm provides a framework for sharing information across
species via hidden component graphs and can conveniently incorporate domain knowledge over evolution relationship
between species. We demonstrate the e↵ectiveness of our method on two synthetic datasets and one innate immune
response microarray dataset.

1. INTRODUCTION

The activity of genes in a living cell is coordinated by

a regulatory network that regulates gene expression

conditioned on environmental stimuli. With genome-

wide expression profiles, it is possible to reverse-

engineer gene regulatory networks 1, which is essen-

tial for understanding how the cell functions. How-

ever, it remains a challenging task due to inherent

and observational noise in expression data, the need

to identify for each gene a small number of regula-

tors among thousands of genes, and a very limited

number of samples in each experiment.

Combining expression data from multiple species

has been shown to help discover true associations be-

tween genes 2, 3. The motivation is that many genes

across species perform similar functions or share the

same regulatory relations so that one can exploit

information on related genes from multiple species.

Similarly, expression data from multiple environmen-

tal conditions or cell types can be used to improve

the prediction of gene functions 4, since many genes

may share similar activities and regulatory patterns

across various conditions and cell types.

In addition to improving prediction quality,

cross-species expression analysis can identify con-

served/common regulatory relations, which are more

likely to play essential roles, as well as species-specific

regulatory relations 5. In the case of di↵erent en-

vironmental conditions and cell types, a combined

analysis can identify common regulatory patterns as

well as those specific to one cell type and/or one

condition. With the exponential accumulation of mi-

croarray datasets, the benefits of cross-species anal-

ysis of expression data has become increasingly ap-

parent 6.

A number of methods have been proposed for

learning regulatory networks in a single species 7.

However, these methods do not take into account

temporal patterns in time-series gene expression

data. Other methods have been proposed to exploit

information in temporal expression patterns. 8 ap-

plies auto-regression methods to causality inference

on the expression data, which provides useful in-

sights on the regulatory relationships between genes.

More specifically, it combines Granger causality 9,

an operational definition of causality well known in

econometrics, and auto-regression algorithms with

⇤Corresponding author.
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L1 penalty to impose sparcity, for performing causal-

ity inference involving many variables. Similar meth-

ods have received considerable attention in other

data mining problems 10, 11.

Computationally, inferring regulatory networks

by cross-species analysis can be viewed as a multi-

task learning problem. A multi-task learning method

performs several related learning tasks simultane-

ously, borrowing information across tasks, instead of

learning each task independently. In our application,

one task refers to learning a regulatory network from

time-series microarray data of one cell type, in a sin-

gle species, and under some environmental condition.

To the best of our knowledge, there is no systematic

approach to jointly discover regulatory networks for

several species by leveraging information across mul-

tiple species, cell types, and environmental condi-

tions.

In this paper, we propose a novel probabilistic

graphical model, i.e. hidden Markov random field

with L1 penalty, to solve this problem. It is based

on the temporal causal models 10, 11, 8, but unlike
8, which can handle only one task (i.e. one species,

cell type or environmental condition), our proposed

method performs regulatory network discovery in a

multi-task learning manner. Specifically, we assume

the regulatory network for each task is generated

from a mixture of hidden “shared component net-

works” (which are unobserved and to be inferred).

Depending on the combination of species, cell type,

and condition, the selection of component networks

(which ultimately determines the regulatory network

for each task) varies and its value can be learned

from the data guided by the evolutionary distance

between species. We also prefer sparse component

networks by imposing L1 penalty in the likelihood

function. One major advantage of our model is the

natural transfer of knowledge from one species, cell

type or environment condition, to others. This is

extremely important for time-series microarray data

given the very limited number of samples (i.e. time

points) available in each dataset. In addition, do-

main knowledge on the evolution distance of species

can be naturally incorporated thanks to the graphi-

cal model framework.

In a related work, 12 proposes to use di↵erential

equations to infer regulatory networks by combining

evolutionary cost and gene expression data across

species. Unlike their work, which does not model

time lag e↵ect, our method explicitly takes into ac-

count the information from multiple previous time

points when inferring causality, in order to better

capture the properties of a biological system. There

are other related work that address alignment of bi-

ological networks across species 5. Network align-

ment methods take networks of the same type from

several species as input, and the goal is to identify

functionally conserved subnetworks. In contrast, our

method takes gene expression time series from multi-

ple species, and simultaneously infers the causal re-

lationship between genes as well as similar subnet-

works across species. Another related work is local

alignment of network motifs 13, but it aims to ad-

dress di↵erent goals, i.e. given the input of a single

network in one species and a list of motifs, finding

significant motifs present in the network. In 14, 4, a

gene’s dynamic property is summarized by comput-

ing an expression score from the time series, while

our method uses all time points to infer causality,

without first collapsing them into a single score.

The rest of the paper is organized as follows: we

first review the temporal graphical modeling based

on Granger causality in Section 2; then we motivate

the challenges in cross-species analysis and describe

the details of our proposed algorithms. We show ex-

periment results on two synthetic datasets and on

immune response expression data from human and

mouse in Section 3. Finally, we summarize the pa-

per and conclude with future work.

2. METHODOLOGY

Learning the graph structures of regulatory net-

works from microarray data have found great suc-

cess. Recently, L1-based auto-regression algorithms

have been adapted and combined with Granger ca-

suality 9 to discover the temporal “causal” networks

between genes from time-series microarray data that

reveals important dependency information between

current observations and histories 8. This approach

serves as the foundation of our proposed algorithm.

In what follows, we first review the temporal casual

model, and next introduce the hidden Markov ran-

dom field regression model (HMRF) for cross-species

gene regulatory network discovery.
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2.1. Notation

In this paper, we use the term “feature” to mean a

time series (e.g. x) and use temporal variables to refer

to the individual variables (e.g. xt). In the context

of microarray time series x with p number of genes

over T number of time steps, a feature xi denotes

the time series of expression levels of a gene i, while

a temporal variable xi,t refers to the expression level

of a gene i at a given time point t. A lagged vari-

able xi,t�1 . . . xi,t�L refers to concatenated histories

of gene i from time t � 1 to time t � L, where L is

maximal time lag to be considered in the model.

2.2. Graphical Granger Modeling

“Granger Causality” 9 was introduced by the No-

bel prize winning economist, Clive Granger, and has

proven useful as an operational notion of causality in

time series analysis in the area of econometrics. It is

based on the intuition that a cause should necessar-

ily precede its e↵ect, and in particular that if a time

series variable causally a↵ects another, then the past

values of the former should be helpful in predicting

the future values of the latter. More specifically, let

{x1,t}Tt=1 denote the time series variables for x1 and

{x2,t}Tt=1 the same for x2. A time series x1 is said to

“Granger cause” another time series x2, if given the

following two regressions:

x2,t ⇡
LX

j=1

ajx2,t�j +
LX

j=1

bjx1,t�j , (1)

x2,t ⇡
LX

j=1

a0jx2,t�j (2)

where L is the maximum “lag” allowed in past ob-

servations, eq (1) is more accurate than eq (2) with

a statistically significant advantage, such as F-test a.

The notion of Granger causality was defined only

for a pair of time series. Recently, several graphical

modeling approaches have been developed to deter-

mine the causal relationships between multiple time

series variables 19, 20, 8. These approaches are based

on L1 regularized regression (e.g. lasso), a more

convenient and e↵ective alternative to the exhaus-

tive pairwise Granger tests among all the time series.

Taking three time series x1, x2, x3 as an example, for

all i, these approaches regress xi,t in terms of the

previous d values of all the time series, applying an

L1 penalty on the coe�cients:

�̂ = argmin
�

X

t

(x1,t �
3X

i=1

LX

j=1

�
i,j

x
i,t�j

)2 + �k�k1 (3)

where � is the parameter that controls the number of

non-zero values in �. L1 regularization is well known

for variable selection, i.e. variables that are not sig-

nificantly improving the accuracy of the model will

have their values set to 0. This can be readily used

to determine causality in the Granger sense: if any

of the coe�cients corresponding to a past value of

xj is non-zero, it means that it helps significantly to

improve the accuracy of modeling the current value

of xi, and thus xj is a cause of xi in a Granger sense.

We can represent the causal relationships between

variables via a feature graph (see Figure 1(a) for an

example).

2.3. Cross-species Regulatory Network
Discovery

In Introduction, we identified our task of cross-

species microarray analysis as an application of

multi-task learning. Multi-task learning is a ma-

chine learning approach that learns a problem to-

gether with other related problems at the same time,

using a shared representation 21. One of the domi-

nant approaches in multi-task learning is to model

the tasks as generated from a linear combination of

a set of base components (classifiers or networks). In

other words, the relationship between multiple tasks

can be explained by the fact that they share a cer-

tain number of hidden components 21. Borrowing the

idea, one simple approach to cross-species learning

is to assume that the networks are generated from a

mixture of hidden component networks. Mapping to

the temporal causal models, we can think of the gene

expression level xi,t of gene i at time t as generated

from a mixture of regressions over lagged variables

xt�1 . . . xt�L. Depending on the species, cell type

and environment condition, the mixture assignment

may be di↵erent.

aNotice that the Granger Causality is not meant to be equivalent to true causality, but is merely intended to provide useful
information regarding causation.
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One major di↵erence between our application

and most previous multi-task learning settings is: we

are also given rich prior knowledge on the relations

between these tasks (for example, the evolutionary

distance between species represented by the phylo-

genetic tree). This information can be abstracted as

a relational graph G, in which a node corresponds

to a species, cell type or condition, and there is an

edge between two nodes if they share the same cell

type, species, or condition b. The relational graph

G provides essential guidance for inferring the hid-

den component networks and mixture assignments.

The computational challenge is how to incorporate

the graph in the modeling framework.

2.3.1. Data processing and relational graph
construction

To conduct cross-species microarray analysis, the

first step is to decide on a common universe of genes

for study. Among the many possible ways, we choose

to select the subset of genes or orthologous genes that

are shared across all the datasets. More specifically,

we first choose a benchmark species that is close in

evolution to all the concerned species. It may or may

not appear in our collection of microarray datasets.

Next, for each microarray dataset, we map the genes

to their orthologous genes in the benchmark species.

It is possible that one gene might map to multiple

orthologs. In this case, we will keep the mapping as

a set of orthologs. Finally, we select the subset of

genes (from the benchmark species) that are shared

by all the datasets. In this way, we get a common

universe of genes for cross-species microarray analy-

sis. Notice that when outputting the gene regulatory

networks, we map the benchmark genes back to their

corresponding genes from the original species.

The evolution paths between species provide im-

portant guidance on how regulatory networks from

di↵erent species can be similar (or dissimilar). We

represent this qualitative information via the re-

lational graph G, in which a node represents one

species (or a cell type under some condition). There

is an edge between two nodes if the corresponding

microarray experiments are on the same species but

under di↵erent cell type/condition because we ex-

pect many genes would exhibit similar regulatory re-

lations; there is also an edge between two nodes rep-

resenting microarray data of the same cell type and

condition but from di↵erent species if two species are

evolutionarily related. The motivation is that some

genes may share similar regulated functions as their

orthologs.

Figure 1 shows an example of the species-level re-

lational graph G for three species, i.e. yeast, mouse

and monkey. Essentially it is a reduced phylogenetic

tree by removing all the unconcerned species. We

will show an example of the relational graph in Sec-

tion 3 for two species with di↵erent cell types and

conditions. Notice that our proposed model only

needs qualitative domain knowledge (i.e. the rela-

tional graph) as input and uses them as guidance for

multi-task learning. As discussed later, the model

automatically infers the degree of similarity between

species or cell types/conditions from the data, which

is also one of the major advantages of our model.

2.3.2. Hidden Markov Random Field
Regression

A hidden Markov random field (HMRF) 22 is a gen-

eralization of hidden Markov model (HMM). It is a

stochastic process generated by a Markov random

field whose state (which in our application refers to

the selection of component networks for each species)

cannot be observed directly but through other re-

lated observations. One important feature of the

HMRF model is the encoded contextual constraints

between the states of neighboring nodes in the rela-

tional graph. HMRF has been successfully applied to

many applications with relational information, such

as image segmentation, genetics, and disease map-

ping.

In order to integrate the species-level constraints

from domain knowledge with multi-task learning (i.e.

cross-species regulatory network discovery), we ex-

tend HMRF to regression. The basic assumption is

that the time-series are generated from a stochastic

process, where the current observation of node i (i.e.

species i) x(i)
t is from a mixture of regressions over

lagged variables x(i)
t�1, . . . , x

(i)
t�L. The hidden states

s(i) associated with species i determines the selec-

bNotice that this relational graph G is di↵erent from the output regulatory networks and the shared component networks.
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(a) (b) (c)

Fig. 1. (a) Demonstration to convert a temporal graph (A) to feature graph (B); (b,c) Demonstration of HMRF-regression for
cross-species gene regulatory network discovery. Input: microarray data from multiple species (c-Input 2) and domain knowledge
on the evolution path between species (cell-type or environment)(b-Input 1). Output: the regulatory networks for each species
(cell-type or environment). The algorithm assumes the regulatory networks of each species are generated from a linear mixture
of common component networks. By maximizing regularized likelihood of the data, we can infer the shared hidden component
networks as well as the value of hidden variable, i.e. the selection of hidden component networks, for each species.

tion of regression coe�cients (and ultimately deter-

mines which component networks contribute to the

output regulatory networks). More specifically, given

M number of time-series observations, where node i

corresponds to x(i) = [x(i)
1 , . . . , x(i)

N ]T , we can define

the joint probability of time-series observations and

hidden states as a product of node potentials and

pairwise edge potentials, i.e.

P (x(1), . . . , x(M), s(1), . . . , s(M)|�,⌃, w)

=
1

Z

MY

i=1

�(x(i), s(i)|�,⌃)
Y

(i,j)2edge

�(s(i), s(j)|w) (4)

where the node potential �(x(i), s(i)|�,⌃) is a prod-

uct of multivariate Gaussian distributions, i.e.

�(x(i), s(i)|�,⌃) =

N(i)Y

t=1

1

(2⇡)p/2|⌃|1/2

⇥ exp(�
1

2
(x

(i)
t

� o
(i)
t

�
s

(i) )
T⌃�1

s

(i) (x
(i)
t

� o
(i)
t

�
s

(i) )) (5)

o(i)t is a concatenated matrix of lagged observations

[x(i)
t�1, . . . , x(i)

t�L]
T , and p is the dimension of x(i)

t ;

⌃ is the covariance matrix and � is the coe�cient,

whose value determines the edges of the networks.

The edge potential �(s(i), s(j)|w) is defined as

�(s(i), s(j)|w) = exp(
X

k

w
k

�
k

(s(i), s(j))) (6)

where � is the indicator function, i.e.

�k=(s,s0)(s
(i), s(j)) = 1 if s(i) = s and s(j) = s0,

and 0 otherwise; w(s,s0) is the parameter to evaluate

the similarity between state s and s0, similar to the

transition probability in HMM; Z is the normaliza-

tion constant. By our definition of node potentials,

the value of Z will only be a↵ected by the edge

potentials, i.e.

Z =
X

s

(1)
,...,s

(M)

exp(
X

(i,j)2edge

w
s

(i)
,s

(j)�(s
(i), s(j))) (7)

In summary, the model aims to infer the hidden

component networks (captured by the regression co-

e�cients �s) via mixture of regressions 23 (i.e. the

node potential); in addition, the assignment of hid-

den states, i.e. the mixture selection, is constrained

by species-level graph from domain knowledge (i.e.

the edge potential).

There are three sets of parameters in the model,

namely �, ⌃ and w. Since the value of the state vari-

ables s(1), . . . , s(M) is not known, EM algorithm 24

can be applied to estimate the parameters. We skip

the details of the derivation due to limited space,

but note two observations: (1) it turns out that the

solution to �s can be achieved as a normal linear

regression by reweighting the observed variables o(i)t

and response variables x(i)
t with weights eP (i)(s), i.e.

the posterior probability of node i with state s; (2)

the exact estimation of eP (i)(s) is infeasible, and ap-

proximate inference algorithm, such as loopy belief

propagation 25, can be applied.
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2.3.3. Extending HMRF regression with L1

penalty

Next we examine how to extend HMRF regression to

L1 penalty so that the learned component network

are sparse. The model is referred to as HMRF-L1 in

later discussion. Following the idea in 26, we add a

Laplacian prior for � as follows:

P (�|�) = (�/2)N exp(��k�k1), (8)

where � is the hyperparameter and determines the

number of non-zero values in coe�cients �. As a re-

sult, the auxiliary objective function Q relevant to �

in the EM-algorithm has the following form:

Q
�

= �
MX

i=1

N

(i)X

t=1

X

s

(i)

P (s(i)|x(1), . . . , x(M), e�, e⌃, ew)⇥ (9)

(x
(i)
t

� x
(i)
t�1..t�L

�
s

(i) )
T⌃�1

s

(i) (x
(i)
t

� x
(i)
t�1..t�L

�
s

(i) )� �k�k1

Recent reexamination of gradient-based optimiza-

tion algorithms, such as the coordinate descent, has

shown that they are very e↵ective for solving lasso-

type regressions 27. We compute the first derivative

of Q� with respect to �s and then apply stochastic

gradient algorithms to get the solution of �. No-

tice that other regression algorithms with L1 penalty,

such as elastic net and group lasso, can also be ex-

tended similarly. We refer readers to 27 for details.

2.4. HMRF-L
1

for Regulatory Network
Discovery

After applying the HMRF regression to cross-species

microarray data, we need to output the regulatory

network for each combination of species, cell type

and condition by selecting a subset of the shared

component graphs. In this paper, we use a heuris-

tic weighted average approach: for each gene i,

reweighting the base graph of state s (represented

by coe�cient �s) with its mixing proportion eP (i)(s).

Then we decide that there is an edge between two

nodes if and only if the corresponding coe�cients in

the weighted average matrix
P

s
eP (i)(s)�s are above

some threshold. In our experiment, the threshold is

set to 0.05. A summary of the workflow is demon-

strated in the following algorithm.

Algorithm: HMRF-L1 for temporal graph struc-
ture learning

1. Input: For each gene i, we are given time se-

ries data x

(i) = {x(i)1 . . . x

(i)
N(i)

} where x

(i)
t is a

p-dimensional vector;
Parameters: (1) time lag L; (2) number of hid-
den states K; (3) threshold ✓

Function input: regression function f

2. Run HMRF-L1 and output coe�cients �s for
each state s, the mixing of hidden states e

P

(i)(s)

3. For each gene i, iterate the following steps:

3.1 Initialize the adjacency matrix for the p fea-
tures, i.e. G = hV,Ei where V is the set of p

features.

3.2 For each feature xu 2 V place an edge xu ! xv

into E, if and only if at least one of the corre-
sponding coe�cients for xu in

P
s
e
P

(i)(s)�s is
above threshold ✓.

3. EXPERIMENT RESULTS

The goal of the experiments is to demonstrate multi-

task learning (i.e. cross-species regulatory networks)

by our proposed model is able to achieve better re-

sults than learning each single task independently or

naively concatenating the observations from di↵erent

tasks and yielding one output for all tasks. Therefore

we compare the performance of HMRF-L1 with two

other baselines: one is ALL, namely aggregating all

the observations from di↵erent tasks (or microarray

datasets for di↵erent species or cell type/condition)

and learning one single graph; the other is SUB,

namely learning a graph from the observations of in-

dividual task without considering those from other

tasks. Both ALL and SUB use the auto-regression al-

gorithm with L1 penalty as discussed in Section 2.2.

We conduct experiments on two simulation datasets

and then apply our model to cross-species innate im-

mune response analysis.

3.1. Simulation data

The two simulation datasets are both generated from

a 2-state MRF, whose graph structure is a 10 ⇥ 10

grid (notice that this corresponds to species-level

graph in the application of cross-species regulatory

network discovery), and the coe�cients are defined

as follows: w(i, i) = 1 and w(i, i0) = 0.5 for i 6= i0.
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The observations of each node (i.e. each task) are

generated from Gaussian distributions using exam-

ples of the AR models used in 17, 18 (notice that this

corresponds to the gene-regulatory networks of in-

dividual species in the application of cross-species

regulatory network discovery). More specifically:

Simulation Data I assume that state 1 corresponds

to a AR(1) model with the inverse of the covari-

ance matrix as follows: (
P�1)ii = 1, (

P�1)i,i�1 =

(
P�1)i�1,i = 0.5, and state 2 corresponds to sparse

scenario, (
P�1)ii = i. The goal of conducting exper-

iments on this dataset is to verify whether our algo-

rithm is able to recover the sparse component graph

from data mixed with dense component graph.

Simulation Data II contain data generated from

Gaussian distributions of inverse covariance with

similar graph structures: state 1 corresponds to the

same distribution as state 1 in Simulation Data I,

and state 2 corresponds (
P�1)ii = 1, (

P�1)i,i�1 =

(
P�1)i�1,i = 0.5, (

P�1)i,i�2 = (
P�1)i�2,i = 0.25.

Our goal is to examine whether the algorithm can re-

cover the true graphs when the underlying two com-

ponent graphs are similar, which better mimics our

application data on cross-species gene regulatory net-

works.

In the experiment, we sample the values of un-

derlying hidden states for all the nodes using Gibbs

sampling; then for each node, we generate 20 sam-

ples from the underlying distributions determined by

the value of hidden states. The penalty terms � are

selected by cross-validation. We evaluate the perfor-

mance of structure learning methods using the F1-

measure, i.e. viewing the causal modeling problem

as that of predicting the inclusion of the edges in the

true graph, or the corresponding adjacency matrix.

Recall that, given precision P and recall R, the F1-

measure is defined as F1 = 2PR/(P +R), and hence

strikes a balance in the trade-o↵ between the two

measures (see 28 for example of using these metrics

in evaluation of structural learning methods).

We repeated the experiments 30 times and re-

port the average on Table 1. As we can see,

HMRF-L1 achieves better performance than compet-

ing methods on both Simulation Data I and II.

Table 1. Comparison Results of Structure Learning
on Simulation Data

Algorithm Simulation I (F1) Simulation II (F1)
State 1 State 2 State 1 State 2

HMRF-L1 0.8674 0.6093 0.8396 0.5853
ALL 0.8214 0.3763 0.8352 0.5115
SUB 0.5356 0.4508 0.6258 0.4879

3.2. Applications to Cross-Species Gene
Regulatory Network Discovery

Most multicellular organisms rely on their immune

system to defend against the infection from a mul-

titude of pathogens. There have been many studies

using microarray data to compare immune gene ex-

pression programs under di↵erent conditions 29–31.

To understand the roles and possible interplays be-

tween di↵erent types of immune cells, it is important

to identify both regulatory relations common to dif-

ferent immune cells and those specific to a certain

cell type. While each of these subsets of experiments

(macrophages vs. dendritic cells, human vs. mouse

etc.) can be analyzed separately and then compared

to each other, the learned biological networks be-

come much less reliable due to the noise and limited

samples in gene expression data. It is therefore de-

sirable to combine microarray gene expression data

from di↵erent studies to overcome these challenges

and jointly infer regulatory networks involved in im-

mune response.

We applied our algorithm to learn the causal

networks between genes for immune response sys-

tem. Specifically, we collected time-series microar-

ray datasets on innate immune response of hu-

man and mouse from the supporting websites of
30, 32–34, 31, 29, 35–37. The gene expression experi-

ments were done on macrophages (M) and dendritic

cells (DC) in humans and mice, under the infec-

tion of two types of bacteria, Gram-positive (P) and

Gram-negative (N). The only exception is mouse

dendritic cells, where we only found data on Gram-

negative bacteria. The 39 microarrayexperiments

are grouped into seven datasets, and referred to

as “human.DC.N”, “human.DC.P”, “human.M.N”,

“human.M.P”, “mouse.DC.N”, “mouse.M.N” and

“mouse.M.P” respectively (see 14 for full details of

the data).

In order to exploit information shared across

species/cell types, we process the data as follows:
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for those experiments on the same species, we only

select the genes that appear in all the experiments.

This results in 3869 genes for mouse and 1651 genes

for human; next we obtain the human and mouse

orthologs from Mouse Genome Database 38, and se-

lect the common candidate regulatory genes where

either themselves or their orthologs can be found in

our dataset. This results in a set of 789 common

genes across species. We construct the species-level

graph as follows: there is an edge between two ex-

periments on the same species if they share the same

cell type or the same infection type; there is also an

edge between the same cell type and infection type

across di↵erent species because we expect that some

of the genes may share the similar regulated func-

tions as their orthologs. This results in the species-

level graph as Figure 2(a).

(a) Species-level Graph

(b) In-degree Distribution (c) Out-degree Distribution

Fig. 2. (a) Species-level Graph. Red/blue edges: depen-
dency due to same species (i.e. human/mouse); green edges:
dependency due to same experiments; (conveniently generated
from domain knowledge) (b) Distribution of in-degree counts
(c) Distribution of out-degree counts

We varied the number of hidden component

graphs from 2 to 7 and choose 4 by Bayesian infor-

mation criterion (BIC) score. We ran experiments

for a maximum lags of 2. There is an edge in the

component graph if and only if the absolute value

of its corresponding coe�cients are larger than 0.05.

In the end, we have around 2000 edges in each com-

ponent graph. Generally, the degree of the nodes in

the component graph roughly follows the power law

(Figure 2(b, c)).

3.2.1. Component-Independent Regulations

In order to better examine the results, we divided

the genes in a component graph into three classes

based on their connectivity: genes with only out-

going edges, genes with only incoming edges, and

genes with both types of edges. As we show later,

genes in each class have demonstrated di↵erent char-

acteristics.

We identified the top ten well-connected genes

that have only out-going edges and common to all

component graphs (Table 2). The list contains a

number of chemokines and receptors, which are con-

sistent with the hypothesis that genes in this class

serve to sense environment and inter-cellular com-

munication. E.g. IL1R2 is a receptor for pro-

inflammatory interleukin 1 (IL-1) and related to cell

migration 39. NFkB is a transcription factor that can

be activated by intra-/extra-cellular stimuli includ-

ing cytokines and bacterial products. CXCL10 is a

chemokine which can trigger many e↵ects including

stimulation of immune cells.

We identified the top ten well-connected genes

with only incoming edges (Table 3). These genes are

involved in various cellular processes. E.g. CCT5

is a member of TCP1 ring complex that folds vari-

ous proteins including actin and tubulin. CYP2E1

is an enzyme that catalyzes many reactions involved

in drug metabolism. CD1 mediates the presentation

of primarily lipid and glycolipid antigens of self or

microbial origin to T cells.

Next, we look at densely connected subgraphs

in the learned component graphs. To further enforce

sparcity, we apply a more stringent threshold (0.2)

on the absolute value of the edge weights. Here we

show one example of the subgraphs (Figure 3). The

genes with only out-going edges in this subgraph in-

clude a number of genes located on the membrane,

e.g. CD14 40, and HLA class II histocompatibility

antigen (HLA-DRA), which are expressed in antigen

presenting cells and play a central role in the immune

system 41. The middle layer of the subgraph includes

GTP binding protein (GTPBP1), and CDKN1A, a

cell cycle regulator, and VIM, which is involved in

attachment, migration, and cell signaling 42. The
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Fig. 3. An example of densely connected subgraphs in the learned component graphs. The regulation relation can be either
positive (red edges) or negative (blue edges).

bottom level of the graph includes genes mediate

signal transduction (CD83), important chemokines

(CCL5), and interferon-induced GTPase (GBP1).

Table 2. Top 10 Well-connected Genes by Out-going Edges

Out-degree Symbol Description
43 FTH1 ferritin, heavy polypeptide 1
25 RPL37 ribosomal protein L37
20 IL1R2 interleukin 1 receptor, type II
18 NFKB1 nuclear factor of kappa light polypep-

tide gene enhancer in B-cells 1
18 CXCL10 chemokine (C-X-C motif) ligand 10
17 CYTIP cytohesin 1 interacting protein
14 DUSP2 dual specificity phosphatase 2
12 PTGS2 prostaglandin-endoperoxide synthase

2
12 MMP12 matrix metallopeptidase 12
12 LSP1 lymphocyte-specific protein 1

Table 3. Top 10 Well-connected Genes by In-coming Edges

In-degree Symbol Description
28 CCT5 chaperonin TCP1 subunit 5
28 PCNA proliferating cell nuclear antigen
21 CYP2E1 cytochrome P450, family 2, subfamily

E, polypeptide 1
20 NEDD4 neural precursor developmentally

down-regulated 4
16 ZFHX3 zinc finger homeobox 3
15 EXT2 exostoses (multiple) 2
13 CLK3 CDC-like kinase 3
12 NMT1 N-myristoyltransferase 1
10 CBX5 chromobox homolog 5
10 CD1D T-cell surface glycoprotein CD1d

Table 4. Example of Component-specific Hubs

Graph Name Genes
Component 1 HLA-DRA, ID1, CTSB, ELK1, CDKN2A
Component 2 TSC22D3, ACVR2A, EPHA5, NFE2, PCTK3
Component 3 PIK3R1, TK2, IL1R1
Component 4 ASNS, MAP4K1, KCNH2, INPPL1, COL9A2

3.2.2. Component-specific Regulations

Next we compare the component graphs and identify

characteristics specific to each graph. First, we com-

pare the hub genes in each component graph, which

are defined as genes with at least 5 outgoing edges

and no incoming edges. We identify a total of 40

component specific hub genes. For component graph

1, the list includes genes involved in cell cycle control

(E2F1, CDKN2A) and wound repair (MMP3). In

addition, ITGA7 is involved in cell-cell interaction,

and MAP3K8 can induce the production of NFkB.

For component graph 2, the list includes TSC22D3,

which plays a key role in the anti-inflammatory pro-

cess. Hub genes in component 3 include Il1R1, inter-

leukin 1 receptor, and PIK3R1, which is involved in

metabolism of insulin. For component 4, hub genes

include IRF9, a regulatory factor of interferons (pro-

teins released by cells in response to pathogens), and

MYH9, which has a function in the maintenance of

cell shape. Some of the component-specific hub genes

are listed in Table 4.

To characterize the genes with high incoming

edges in each component graph, we examine the

genes with at least 20 incoming edges and confirmed

enriched GO categories 43. For example, some of

the top enriched categories include “Regulation of

Glucose Transport” (component 1; corrected pval =

0.002), “Leukocyte Homeostasis” (component 2 and

3; corrected pval < 0.001), “Locomotory Behavior”

(component 2 and 3; corrected pval < 0.006), and

“Double-strand break repair” (component 4; cor-

rected pval = 0.034).
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Table 5. Top Five Component-Specific Enriched Biological Processes

Component 1 Component 2 Component 3 Component 4

regulation of glucose import response to organic substance response to organic substance double-strand break repair
glucose import leukocyte homeostasis leukocyte homeostasisstimulus response to abiotic stimulus
regulation of glucose transport homeostasis of number of cells cellular response to stimulus cellular response to stimulus
response to organic substance cellular response to stimulus response to chemical stimulus response to heat
response to peptide hormone
stimulus

positive regulation of cellular
process

positive regulation of cellular
process

positive regulation of catabolic
process

3.2.3. Comparison with Other Approaches

We also compare the learned networks generated by

HMRF-L1 with those by two other baselines: one is

aggregating the samples from all microarray datasets

and learn one network (”ALL”), and the other is

to learning a network from individual dataset only

(”SUB”). Compared with SUB, our method has ma-

jor advantages since some datasets, for example, Hu-

man.DC.P and Mouse.M.N, have very limited num-

ber of time-series observations (1-2), and no rea-

sonable graph can be generated by SUB. For fair

comparison (in favor of SUB method), we choose

the dataset with the largest number of time-series

observations (Human.M.N), to compare the results

of di↵erent methods. One general observation is

that the networks by ALL (31,218 edges) and SUB

(14,346 edges) are much denser than that by HMRF-

L1 (7458 edges) while the three graphs share 4,071

edges in common. Sparse graphs do not necessarily

suggest better performance, but among all the edges

uncovered by HMRF-L1, around 54.6% of them are

also found in other methods, which seems to suggest

higher precisions. Figure 6 lists an example of 10

genes with the highest number of out-degrees in the

learned networks. From the results, we can see that

HMRF-L1 not only shares some top-ranked genes

with the other two algorithms, such as CXCL10,

but also uniquely identifies important immune genes,

such as IL1R2, HLA-DRA, and CD14, as well as

B2M (Beta-2-microglobulin), which is a serum pro-

tein found in association with the major histocom-

patibility complex (MHC) class I heavy chain on the

surface of nearly all nucleated cells; MSN (Moesin),

which is localized to filopodia and other membranous

protrusions that are important for cell-cell recogni-

tion and functions as cross-linkers between plasma

membranes and actin-based cytoskeletons.

Table 6. Top 10 Genes by Out-degress in the Learned Networks
by Di↵erent Methods

HMRF-L1 ALL SUB
EntrezID Count EntrezID Count EntrezID Count
FTH1 182 PTGS2 170 ACVR2A 224
IL1R2 110 ACVR2A 157 VPS45 179
B2M 104 CXCL10 154 PTGS2 175
VIM 75 DUSP2 145 NFE2 172

CXCL10 74 PPIB 140 FTH1 168
RPL37 71 FMO1 136 FOS 167
LSP1 70 PECAM1 135 PECAM1 162

HLA-DRA 68 NR4A1 132 FPR1 160
MSN 66 MCM4 131 CDC6 157
CD14 60 IL7R 128 LSP1 140

3.2.4. Bootstrap Evaluation

In addition, we also evaluate the performance of our

method by applying the Bootstrap procedure, which

is a technique widely used in statistics for evaluat-

ing statistical accuracy (see 44 for a review). More

precisely, given the original lagged data matrix, we

randomly draw B datasets by sampling with replace-

ment the rows of the original data matrix, so that

each dataset has the same number of rows as the orig-

inal lagged data matrix. We then apply our method

to each of the B bootstrap datasets. Comparing the

original network (i.e. the network obtained by us-

ing the original dataset) with the bootstrap networks

(i.e. those obtained using the bootstrap datasets) al-

lows us to get a measure of confidence in the causal

relationships identified in the original network. In

particular, for each causal relationship identified in

the original network, we can get confidence in that

relationship by counting the number of times it ap-

pears in the bootstrap networks. As shown in Table

7, the causal relationships identified by our method

in the original network appear on the average 75.2%

of the time in the bootstrap networks, which demon-

strates that HMRF-L1 produces stable networks.
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Table 7. Percentage of Overlap between
Bootstrap Networks and Original Networks

Species Type % of Overlap
human.DC.N 0.7572
human.DC.P 0.7569
human.M.N 0.7541
human.M.P 0.7575
mouse.DC.N 0.7713
mouse.M.N 0.7510
mouse.M.P 0.7527

4. CONCLUSION

In this paper we examine the problem of discovering

regulatory networks from multi-species time-series

microarray data by leveraging the common regula-

tion information across species. We develop hid-

den Markov random field regression with L1 penalty

to extend temporal Granger modeling to multi-task

learning. We show that our method is able to un-

cover causal relations on two synthetic datasets, as

well as conserved regulatory network common to two

types of cells in humans and mice and shared be-

tween response to di↵erent types of bacteria. For

future work, we are interested in more systematic

evaluation of the experiment results. We also plan to

apply our model for other types of cross-species reg-

ulatory network discovery, such as antifungal drug

resistance.
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