UVA CS 6316 – Fall 2015 Graduate: Machine Learning

Lecture 1: Introduction

Dr. Yanjun Qi

University of Virginia Department of Computer Science

8/31/15

Dr. Yanjun Qi / UVA CS 6316 / f15

1

Welcome

- CS 6316 Machine Learning
 - MoWe 3:30pm-4:45pm,
 - Mechanical Engr Bldg 341

<u>http://www.cs.virginia.edu/yanjun/teach/2015f</u>

• Your UVA collab: Course 6316 page

Course Logistics

- Course email list has been setup. You should have received emails already !
- Policy, the grade will be calculated as follows:
 - Assignments (50%, Five total, each 10%)
 - In-class quizzes (10%, multiple)
 - mid-term (20%)
 - Final project (20%)

8/31/15

Dr. Yanjun Qi / UVA CS 6316 / f15

5

6

Course Logistics

- Midterm: late Oct or mid Nov., 75mins in class
- Final project:
 - proposal + report + in-class presentation
- Five assignments (each 10%)
 - Due Sept 16, Sept 30, Oct 14, Nov 4, Nov 28
 - three extension days policy (check course website)
- Multiple in-class quizzes (total 10%)
 - About 10 small quizzes
 - Randomly distributed over the whole semester

- Homework should be submitted electronically through <u>UVaCollab</u>
- Homework should be finished individually
- Due at midnight on the due date
- In order to pass the course, the average of your midterm and final must also be "pass".

Course Logistics

 Calculus, Basic linear algebra, Basic probability and Basic Algorithm Statistics is recommended. Students should already have good programming skills, i.e. python is required for all programming assignments We will review "linear algebra" and "probability" in class 					
	Dr. Yanjun Qi / UVA CS 6316 / f15				
	Today				
Course Logist	ics				
🛛 My backgrou	nd				
Basics and ro	ough content plan				
Application a	ind History				

About Me

Today

□ My background

Basics and Rough content plan

Application and History

8/31/15

- Internet images, Hollywood movies, music audio files, ...

8/31/15

13

this

course

15

BIG DATA CHALLENGES

- Data capturing (sensor, smart devices, medical instruments, et al.)
- Data transmission •
- Data storage ٠ e.g. cloud computing
- Data management •
- High performance data processing
- Data visualization

.

- e.g. HCl Data security & privacy (e.g. multiple • individuals)
- Data analytics • How can we analyze this big data wealth? **O**E.g. Machine learning and data mining -----

Large-Scale Machine Learning: SIZE MATTERS

Those are not different numbers, those are different mindsets !!!

8/31/15

- One thousand data instances
- One million data instances
- One billion data instances
- One trillion data instances

Highly Complex

BIG DATA CHALLENGES FOR MACHINE LEARNING

Most of this course The situations / variations of both X (feature, representation) and Y (labels) are complex !

✓ Complexity of X
 ✓ Complexity of Y

26

STRUCTURAL OUTPUT LEARNING : [COMPLEXITY OF Y]

Many prediction tasks involve output labels having structured correlations or constraints among instances

Structured Dependency between Examples	Sequence	Tree	Grid
Input X	APAFSVSPASGACGPECA	The dog chased the cat	
Output Y	CCEEEEECCCCCCHHHCCC	Det N VP Det N	Sky Building Road

Many more possible structures between y_i, e.g. spatial, temporal, relational ... 8/31/15 29

MORE RECENT: FEATURE LEARNING [COMPLEXITY OF X]

- Layer-by-layer unsupervised training
- ✓ Layer-by-layer supervised training

	10 BREAKTHROUGH TECHNOLOGIES 2013			Yanjun Qi / UVA CS 4501-01-6501- Introduction The 10 Technologies Past Ye		
 DeepLearning	Temporary Social Media	Prenatal DNA Sequencing	Additive Manufacturing	Baxter: The Blue- Collar Robot		
With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.	Messages that quickly self-destruct could enhance the privacy of online communications and make people freer to be spontaneous.	Reading the DNA of fetuses will be the next frontier of the genomic revolution. But do you really want to know about the genetic problems or musical aptitude of your unborn child?	Skeptical about 3-D printing? GE, the world's largest manufacturer, is on the verge of using the technology to make jet parts.	Rodney Brooks's newest creation is easy to interact with, but the complex innovations behind th robot show just how hard it is to get along with people.		
Memory Implants	Smart Watches	Ultra-Efficient Solar Power	Big Data from Cheap Phones	Supergrids		
A maverick neuroscientist believes he has deciphered the code by which the brain forms long-term memories. Next: testing a prosthetic implant for people suffering from long- term memory loss. x/31/15	The designers of the Pebble watch realized that a mobile phone is more useful if you don't have to take it out of your pocket.	Doubling the efficiency of a solar cell would completely change the economics of renewable energy. Nanotechnology just might make it possible.	Collecting and analyzing information from simple cell phones can provide surprising insights into how people move about and behave – and even help us understand the spread of diseases.	A new high-power circuit breaker could finally make highly efficient DC power grids practical.		

http://scikit-learn.org/

Yanjun Qi / UVA CS 4501-01-6501-07

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ... – Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. – Examples

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ... – Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation, metrics. - Examples

Clustering

Simple and efficient tools for data mining and data analysis
Accessible to everybody, and reusable in various contexts

scikit-learn

Built on NumPy, SciPy, and matplotlibOpen source, commercially usable - BSD license

Machine Learning in Python

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, ... – Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction. — Examples

Dr. Yanjun Qi / UVA CS 6316 / f15 Scikit-learn : Regression Linear Regression + Variations Linear model regression fitted by minimizing a regularized Lasso empirical loss SGD with SGD ElasticNet Regressor SVR(kernel='rbf') EnsembleRegressors YES N few features <100K YES NOT should be samples WORKING important 'ES RidgeRegression NO SVR(kernel='linear') 37 Dr. Yanjun Qi / UVA CS 6316 / f15 Scikit-learn : Classification approximate the explicit feature classification mappings that correspond to kernel To combine the certain kernels predictions of approximation several base ΝΟΤ estimators built SVC WORKING with a given

Dr. Yanjun Qi / UVA CS 6316 / f15 What can we do with the data wealth? → REAL-WORLD IMPACT

MACHINE LEARNING IS CHANGING THE WORLD

RELATED DISCIPLINES

- Artificial Intelligence
- Data Mining
- Probability and Statistics
- Information theory
- Numerical optimization
- Computational complexity theory
- Control theory (adaptive)
- Psychology (developmental, cognitive)
- Neurobiology
- Linguistics
- Philosophy

How can we build more intelligent computer / machine ?

AMERICAN	TELEVISED HISTORY	THE WIZARD OF OZ	ST. PETER	OHWI.,	"KISS"ING MUSIC
\$100	\$100	\$100	\$100	\$100	\$100
\$200	\$200	\$200	\$200	\$200	\$200
\$300	\$300	\$300	\$300	\$300	\$300
\$400	\$400	\$400	\$400	\$400	\$400
\$500	\$500	\$500	\$500	\$500	\$500

Jeopardy Game Requires a Broad Knowledge Base 8/31/15

IBM Watson

→ an artificial intelligence computer system capable of answering questions posed in natural language developed in IBM's DeepQA project.

IEM. WATSON

Dr. Yanjun Qi / UVA CS 6316 / f15

How can we build more intelligent computer / machine ?

Apple Siri → an intelligent personal assistant and knowledge navigator

How may I help you,

- HW4: Visual object recognition (labeling images about handwritten digits)
- HW5: Audio speech recognition (HMM based speech recognition task)

55

References

Prof. Andrew Moore's tutorials

□ Prof. Raymond J. Mooney's slides

□ Prof. Alexander Gray's slides

□ Prof. Eric Xing's slides

□ http://scikit-learn.org/

Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.

Prof. M.A. Papalaskar's slides