UVA CS 6316 – Fall 2015 Graduate: Machine Learning

Lecture 11: Probability Review

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

10/7/15

Dr. Yanjun Qi / UVA CS 6316 / f15

1

Announcements: Schedule

- Midterm Nov. 18th or 19th / 3:30pm 4:45pm / open notes
- HW4 is totally for sample midterm questions
- HW4 will be out next Wed, due on Nov 16th (i.e. for a good preparation for midterm. Solution will be released before due time.)
- HW3 will be out next Monday, due on Nov 6th
- Project proposal is due on Oct 11 midnight (2 pages min.)
- Grading of HW1 is available on Collab
- Solution of HW1 is available on Collab
- Grading of HW2 will be available next week
- Solution of HW2 will be available next week

10/7/15

3

Announcements: Proposal

- The following sections are expected in the proposal ,
 - Abstract / Summary (300 words limit)
 - Introduction of the target task
 - Previous solutions for the target task
 - Why is this related to machine learning?
 - Proposed Method (optional for this phase)
 - Experimental design / where to get data / data statistics / details of the data ?

Please use the provided template (in collab proposal page);

- Why are you the right person/team for implementing this plan ?
- References (not included in the page counts)

10/7/15

Today : Probability Review

10/7/15

Notation Digression

- P(A) is shorthand for P(A=true)
- P(~A) is shorthand for P(A=false)
- Same notation applies to other binary RVs: P(Gender=M), P(Gender=F)
- Same notation applies to *multivalued* RVs: P(Major=history), P(Age=19), P(Q=c)
- Note: upper case letters/names for *variables*, lower case letters/names for *values*

10/7/15	25
Dr. Yanjun Q	i / UVA CS 6316 / f15
Discrete Random Variable	S
 Random variables (RVs) which may take a countable number of distinct values 	on only
 X is a RV with arity k if it can take on exavalue out of {x₁,, x_k} 	actly one
10/7/15	26

e.g. Coin Flips cont.

- You flip a coin
 - Head with probability p
 - Binary random variable
 - Bernoulli trial with success probability p
- You flip *k* coins
 - How many heads would you expect
 - Number of heads X: discrete random variable
 - Binomial distribution with parameters k and p

31

• Uniform $X \sim U[1,...,N]$ - X takes values 1, 2, ..., N - P(X=i)=1/N- E.g. picking balls of different colors from a box • Binomial $X \sim Bin(k,p)$ - X takes values 0, 1, ..., k - $P(X=i)=\binom{k}{i}p^i(1-p)^{k-i}$ - E.g. coin flips k times

Conditional Probability

Conditional Probability Example

What is the probability that the 2^{nd} ball drawn from the set $\{r,r,r,b\}$ will be red?

Using marginalization,
$$P(B_2 = r) = P(B_2 = r \land B_1 = r)$$

 $+ P(B_2 = r \land B_1 = b)$
 $= P(B_1 = r) P(B_2 = r \mid B_1 = r) + P(B_1 = b) P(B_2 = r \mid B_1 = b)$
10715
 $= P(B_2 = r) = \left(P(B_2 = r \mid B_1 = r) P(B_1 = r) + P(B_2 = r \mid B_1 = b) P(B_1 = b) \right)$
 $P(B_2 = b \mid B_1 = r) P(B_1 = r \mid B_1 = b) P(B_1 = r) + P(B_2 = r \mid B_1 = b) P(B_1 = b) \right)$
 $= \left[P(B_2 = b \mid B_1 = r) P(B_1 = r) + P(B_2 = r \mid B_1 = b) P(B_1 = b) \right]$
 $P(B_2 = b \mid B_1 = r) P(B_2 = r \mid B_1 = b) P(B_1 = b) P(B_1 = b) \right]$
 $P(B_2 = b \mid B_1 = r) P(B_2 = r \mid B_1 = b) P(B_1 = b) P$

For short, we write this using vectors and a stochastic matrix:

Today : Probability Review

