1

UVA CS 6316 – Fall 2015 Graduate: Machine Learning

Lecture 14: Generative Bayes Classifier

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

4

^{10/21/1}**column to be predicted [last column]**

Model 1: Multivariate Bernoulli

Dr. Yanjun Qi / UVA CS 6316 / f15 Review: Bernoulli Distribution e.g. Coin Flips

- You flip a coin
 - Head with probability p
 - Binary random variable
 - Bernoulli trial with success probability p

$$\Pr(W_i = true \,|\, C = c)$$

- How to handle words in the test corpus that did not occur in the training data, i.e. *out of vocabulary* (OOV) words?
- Train a model that includes an explicit symbol for an unknown word (<UNK>).
 - Choose a vocabulary in advance and replace other (i.e. not in vocabulary) words in the training corpus with <UNK>.

23

Language model can be seen as a probabilistic automata for generating text strings

$$P(W_{1} = n_{1},...,W_{k} = n_{k} | N, \theta_{1},...,\theta_{k}) \oplus (\theta_{1}^{n_{1}},\theta_{2}^{n_{2}}...,\theta_{k}^{n_{k}})$$

• Relative frequency estimates can be proven to be *maximum likelihood estimates* (MLE) since they maximize the probability that the model M will generate the training corpus T. like libood

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(Train \mid M(\theta))$$

Dr. Yanjun Qi / UVA CS 6316 / f15 MLE Maximum Likelihood Estimation A general Statement Consider a sample set $T = (X_1 \dots X_n)$ which is drawn from a probability distribution P(X|\theta) where \theta are parameters. If the Xs are independent with probability density function P(X_i) \theta), the joint probability of the whole set is $P(X_1...X_n \mid \theta) =$ $C(X_i | \theta)$ this may be maximised with respect to \theta to give the maximum likelihood estimates. $= \operatorname{argmax} P(X_1 \dots X_n \mid \theta)$ $\hat{\theta} = \operatorname{argmax} P(Train \mid M(\theta))$ 10/21/15

25

The idea is to

- \checkmark assume a particular model with unknown parameters, θ
- ✓ we can then define the probability of observing a given event conditional on a particular set of parameters. $P(X_i | \theta)$
- \checkmark We have observed a set of outcomes in the real world. χ_1, χ_2, χ_h
- It is then possible to choose a set of parameters which are most likely to have produced the observed results.

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left(P(X_1 \dots X_n \mid \theta) \right)$$

This is maximum likelihood. In most cases it is both consistent and efficient. It provides a standard to compare other estimation techniques.

$$\log(L(\theta)) = \sum_{i=1}^{n} \log(P(X_i \mid \theta))$$

It is often convenient to work with the Log of the likelihood function.

Deriving the Maximum Likelihood Estimate

$$l(p) = -\log(L(p)) = -\log\left[p^{x}(1-p)^{n-x}\right]$$

$$l(p) = -\log(p^{x}) - \log((1-p)^{n-x})$$

$$l(p) = -x\log(p) - (n-x)\log(1-p)$$

10/21/15

29

<section-header>Derived the determinant of the product of the produ

Naive Bayes: Time Complexity

· Very good in domains with many equally important features

Decision Trees suffer from fragmentation in such cases - especially if little data

- A good dependable baseline for text classification (but not the best)!
- Optimal if the Independence Assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- Very Fast: Learning with one pass of counting over the data; testing linear in the number of attributes, and document collection size
- Low Storage requirements

39

Multivariate Gaussian Distribution

A multivariate Gaussian model: $\mathbf{x} \sim N(\mu, \Sigma)$ where

Here μ is the mean vector and \Sigma is the covariance matrix, if p=2 $\mu = \{\mu_1, \mu_2\}$

• The covariance matrix captures linear dependencies among the variables

10	121	1 / 1	
TO	/ 4 -	т/ т	. J

10/21/15

42

Gaussian Naïve Bayes Classifier

Continuous-valued Input Attributes

- Conditional probability modeled with the normal distribution

$$\hat{P}(X_{j} | C = c_{i}) = \frac{1}{\sqrt{2\pi\sigma_{ji}}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$$

- μ_{ji} : mean (avearage) of attribute values X_j of examples for which $C = c_i$
- σ_{ii} : standard deviation of attribute values X_i of examples for which $C = c_i$
 - Learning Phase: for $\mathbf{X} = (X_1, \dots, X_p)$, $C = c_1, \dots, c_L$ Output: $p \times L$ normal distributions and $P(C = c_i)$ $i = 1, \dots, L$
 - Test Phase: for $\mathbf{X}' = (X'_1, \dots, X'_p)$

- Calculate conditional probabilities with all the normal distributions
- Apply the MAP rule to make a decision

Dr. Yanjun Qi / UVA CS 6316 / f15 $\operatorname{argmax} P(C_k | X) = \operatorname{argmax} P(X, C_k) = \operatorname{argmax} P(X | C_k) P(C_k)$ $= \operatorname{argmaxlog}\{P(X|C_k)P(C_k)\}$ $= \arg \max \log \left(\frac{1}{k} \log_{k} p(x_{k}) + \log(k) \right)$ $= \arg \max \log \left(\frac{1}{k} \log_{k} p(x_{k}) + \log(k) + \log(k) \right)$ $= \log \frac{1}{k} \log \frac{1}{k} \log \log_{k} p(x_{k}) + \log(k) +$ 10/21/15 51 Define Linear Discriminant Function $\delta_{k}(x) = -\frac{1}{2}(x - \mu_{k})^{T} \sum_{k=1}^{n-1} (x - \mu_{k}) + \log \pi_{k}$ $\delta \kappa(x) = \delta \sigma(x)$ The Decision Boundary Between class k and l, {x : $\delta_k(x) = \delta_l(x)$ }, is linear $\frac{\pi_k}{\pi_\ell} - \frac{1}{2} (\mu_k + \mu_\ell)^T \Sigma^{-1} (\mu_k - \mu_\ell)$ (4.9)log -Boundary points X : when $+ x^T \Sigma^{-1} (\mu_k - \mu_\ell),$ Equals to zero $P(c_k|X) == P(c_l|X)$, the left linear equation ==0, a linear line / plane 10/21/15 52

LDA on Expanded Basis

10/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

(3) Regularized Discriminant Analysis

QDA. The differences are small, as is usually the case.

- A compromise between LDA and QDA.
- Shrink the separate covariances of QDA toward a common covariance as in LDA.
- Regularized covariance matrices:

$$\hat{\Sigma}_k(\alpha) = \alpha \hat{\Sigma}_k + (1-\alpha) \hat{\Sigma}$$
.

• The quadratic discriminant function $\delta_k(x)$ is defined using the shrunken covariance matrices $\hat{\Sigma}_k(\alpha)$.

• The parameter α controls the complexity of the model.

References

Prof. Andrew Moore's review tutorial

Prof. Ke Chen NB slides

Prof. Carlos Guestrin recitation slides

Prof. Raymond J. Mooney and Jimmy Lin's slides about language model

10/21/15

57