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Where are we ? =
Five major sections of this course

‘ [ Regression (supervised) T

E>EI Classification (supervised)
O Unsupervised models
O Learning theory
O Graphical models

10/21/15 2
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Where are we ? =
Three major sections for classification

‘ * We can divide the Iar%e variety of classification T
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

|:> 2. Generative:

- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

10/21/15 3
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X, X, X, C

A Dataset for

|7 classiﬁcati(—)_?—‘

fiXi—ic

Output as Discrete
Class Label
C,C, ...,C,

» Data/points/instances/examples/samples/records: [ rows ] ' ‘ )
* Features/attributes/dimensions/independent variables/covagg{"e)s{)’ ';\Q
predictors/regressors: [ columns, except the last]

* Target/outcome/response/label/dependent variable: special
w0211€0lumn to be predicted [ last column ] 4
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Bayes classifier

‘ * Treat each attribute and class label as random
variables.

* Given a sample x with attributes ( x, X, ..., X, ):
— Goal is to predict class C.

— Specifically, we want to find the value of C, that

maximizes p( C; | Xq, X, ... , X, ).

« Generative Bayes classification
P(CIX) = P(X/C)P(C)=P(X,,"-,X,IC)P(C)
Difficulty: learning the joint probability P(X,,"--,X,1C)

10/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Probabilistic Models of text

documena;ﬁ-u‘ 2 Wi € Voc
a;;‘?*: ] N

Pr(D|C=c) P, D;(Wr)(f’z, -, Wee)

—

Pr(W, = true,W, = false...,.W, = true|C = c)

: Multivariate Bernoulli Distribution
e

- Pt(W, =n,W,=n,,..W =n_|C=c)

Multinomial Distribution

10/21/15
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Today : Generative Bayes Classifier

‘ v" Multinomial naive Bayes classifier as T
Conditional Stochastic Language Models

= A unigram Language model approximates
how a text document is produced.

Pr(W, =n,,...W =n_|C=c)

v" Maximum Likelihood Estimation of parameters
v’ Gaussian Naive Bayes Classifiers

10/21/15 7
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The Big Picture
|7 Probability eﬂﬂmﬁ w?,e V"lada{ T
Data
<

Estimation / learning / Inference / Data mining

04, MLE
But how to specify a model?

Build a generative model that
approximates how data is produced.

10/21/15 8

Model
i.e. Data generating
process
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Model 1: Multivariate Bernoulli

runnynose running  sinus  fever muscle-ache

« Conditional Independence Assumption:
Features (word presence) are independent

of each other given the class variable: - Bev
Pr(W, = true,W, = false,...,W, =true|C =c)

=PV, =true|C)°P(§V2\;\7m°---°P(Wk =true|C)

* Multivariate Bernoulli model is appropriate for
binary feature variables

10/21/15 9
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Review: Bernoulli Distribution
e.g. Coin Flips

‘ * You flip a coin

— Head with probability@
— Binary random variable

=

— Bernoulli trial with success probability p

ir(Wl. :true|C=j))

10/21/15 10
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Model 2. Multinomial Naive Bayes
- ‘Bag of words’ representation of text

|7word frequency Pr(VVI = nl""’VV;c = nk |C =5‘

grain(s) 3
: Can be represented as a multinomial distribution.
oilseed(s) 2
total 3 Words = like colored balls, there are K possible
wheat 1 type of them (i.e. from a dictionary of K words )
maize 1 .
Document = contains N words, each
soybean ! word occurs n, times (like a bag of N
tonnes 1
colored baIIs)
multinomialcoefﬁcient,‘ WLU
. . normally can leave out in )
WHY is this practical calculations. Na

naive ???

M
of ¢

PW =n,..W =n 1 .
10/21/15 11
A ln )
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Multinomial Naive Bayes as = a generative model
that approximates how a text string is produced

‘ e Stochastic Language Models: \
— Model probability of generating strings (each word in turn

following the sequential ordering in the string) in the
language (commonly all strings over dictionary ).

— E.g., unigram model 1;{5 ‘ MMCD

Model C 1

0.2 the boy likes [ the | dog
0.1 a

0.01 0.02 | 0.2 0.0
0.01boy
0.01dog Multiply all five terms
0.03said
m P(s| C_1)=0.00000008

10/21/15 o, 12
Adapt From Manning textCat tutorial
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Multinomial Naive Bayes as
Conditional Stochastic Language Models

* Model conditional probability of generating T
any string from two possible models

WQ
0.2 the
0.01
0.0001
0.0001
0.0001
0.0005
0.01

10/21/15

boy
said
likes
black
dog

garden

0.2 the

0.0001 boy
0.03  said
0.02 likes
0.1 black

0.01 dog
0.0001 garden

Moo )

the boy likes black dog

0.2 0.01 0.0001 0.0001 0.0005
0.2 0.0001, 0.02 0.1 0.01

p ’F(O‘ICZ) ?(C"">
P(EC2) P(C2) > P(s|C1) P(CI)

=>» Sis more likely to be from cIa5153C2
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A Physical Metaphor

‘ * Colored balls are randomly drawn from (withT
replacement)

k:?) W,
W2

w3
A string of words

> e00e

P(ecee)= P(e)P(0)P(e) P(eo)

10/21/15

14
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Unigram language model =» More general:
Generating language string from a probabilistic model

(P (ooee)] g N

=P(e) Py IPlglecIplalecs)

[. Unlgragnl’l LangéJSge Models 6( ki Ve %:# Easy.

>P(‘) P(o) P( .) p Effective!

C | |

* Also could be bigram (or generally, n-gram) Language )
Models Bl BB B\bx  Ba|Bs |6
P(e)P(o]e)P(efo) P(e]e)

, 15
Adapt From Manning textCat tutorial
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Multinomial Naive Bayes =
a class conditional unigram language model

| Y B

7 I\

* Think of X, as the word on the i*" position in the
document string

» Effectively, the probability of each class is done as a
class-specific unigram language model

10/21/15

, 16
Adapt From Manning textCat tutorial
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Using Multinomial Naive Bayes Classifiers to
Classify Text: Basic method

‘ Attrlbutes are text positions, values are words. T
= by P
Crp = argmaXP(c ’We L,g\/ I:ke g«l/ ofoj

cEC

= argmax P(c; P(x1 "the"lc) P(x ="the"lc. )\

cEC

m Still too many possibilities
m Use same parameters for a word across positions
= Result is bag of words model (over word tokens)

10/21/15 17

Dr. Yanjun Qi / UVA CS 6316 / f15

Multinomial Naive Bayes:
Classifying Step

‘ Easy to
» Positions € all word positions in current implement, no \

document which contain tokens found in| need to construct

Vocabulary bag-of-words
vector explicitly !

Return c,;, where

th'e boy likes black dog v
0.2 0.01 0.0001 0.0001 0.0005 P
0.2 0.0001 0.02 0.1 0.01
W =n,.,W =n|C=c))
1 12°° 7 k k J

P(s|C2) P(C2) > P(s|C1) P(C1)
10/21/15

, 18
Adapt From Manning textCat tutorial




Unknown Words

How to handle words in the test corpus that did
not occur in the training data, i.e. out of
vocabulary (OOV) words?

Train a model that includes an explicit symbol
for an unknown word (<UNK>).
— Choose a vocabulary in advance and replace other

(i.e. not in vocabulary) words in the training
corpus with <UNK>,

Underflow Prevention: log space

Multiplying lots of probabilities, which are between 0 and
1, can result in floating-point underflow.

Since log(xy) = log(x) + log(y), it is better to perform all
computations by summing logs of probabilities rather
than multiplying probabilities.

Class with highest final un-normalized log probability
score is still the most probable.

cyp = argmaxlog P(c;)+ ZlogP(xl. c;)

cieC i€ positions

Note that model is now just max of sum of weights...

. 20
Adapt From Manning textCat tutorial
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Today : Generative Bayes Classifier

‘ v" Multinomial naive Bayes classifier as T
Conditional Stochastic Language Models

= A unigram Language model approximates
how a text document is produced.

Pr(W, =n,,...W =n_|C=c)

v" Maximum Likelihood Estimation of parameters
v’ Gaussian Naive Bayes Classifiers

10/21/15 21
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The Big Picture
|7 Probability eﬂﬂmﬁ w?,e V"lada( T
Data
<

Estimation / learning / Inference / Data mining

04, MLE
But how to specify a model?

Build a generative model that
approximates how data is produced.

10/21/15 22

Model
i.e. Data generating
process
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Generative Model & MLE

‘ » Language model can be seen as a probabilistic , ““
automata for generating text strings i,

PO, =n ... W, =1, [N, ,...6,

* Relative frequency estimates can be proven to be
maximum likelihood estimates (MLE) since they
maximize the probability that the model M will
generate the training corpus 7.

6 = argmax k(T rain| M (0))]

/Q,'lfo [:[\qu

10/21/15 23
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Maximum Likelihood Estimation

A general Statement
w-\:g
‘ Consider a sample set|T=(X,...X_)Jwhich is drawn a probability
distribution P(X|\theta) where \theta are(parameters.
———

If the Xs are independent with probability density function P(X |
\theta), the join{ probability of the whole set is

P(X;...X,10) :
=l

this may be maximised with respect to \theta
to give the maximum likelihood estimates.

A

0= argmaxﬁ(Tmin | M (0)3: rgmax P(X;...X,10)
a_

0

10/21/15
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The ideais to

v assume a particular model with unknown parameters, @

v we can then define the probability of observing a given event
conditional on a particular set of parameters. P(x;10)
v" We have observed a set of outcomes in the real world.j(l)le..;}h

v' It is then possible to choose a set of parameters which are
most likely to have produced the observed results. /lé"[‘ﬂd

A

0 = argmax P(X,..X, | 0 ):}2
0
This is maximum likelihood. In most cases it is both
and@lt provides a standard to compare other
estimation techniques. ﬁ Ozk_gl‘fo /1

log(L(e))=§@g(P(xi/0)>}/ %

It is often convenient to work with the Log of the likelihood function.

10/21/15 25
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Review: Binomial Distribution
e.g. Coin Flips

o) N

— How many heads would you expect
— Head with probabilit
— Number of heads X: discrete random variable

Following Binomial distribution with parameters@
and

10/21/15 26
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Defining Likelihoo /(;(y,jyz .'.)(,,[r)

=> e.g., forn | |
. function of x_i
independent \
tosses of coins, PR fx |p)=p (1= p)
with unknown

n
x=3x
p =

LIKELIHOOD:
Observed data = nx 1—x X nex
x heads-up from n L(p)=H,.:1P '(1-p) "=p'(1-p)
trials T
10/21/15 function of p 27
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Deriving the Maximum Likelihood Estimate

maximize
.
log(L(p)=log| p*(1-p)"* |

Minimize the\negative log-likelihood P

I(p)=—log| p*(1-p)"™ |

likelihood

«
3
S
<
S
S
=
=
S

L(p)=p"(1-p)"™"

maximize

log(likelihood)
250 -150 -50 0
Y |
s
°
o |
0
o
&
o
2
o
&
o |
>
o
2
o |
&
o |
o
2

-

log(likelihood)
0 50 1
o _
2 [
o
aad
o |
2
o |
&
o |
>
o
2
o |
&
o |
o
2

©
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Deriving the Maximum Likelihood Estimate

=

Minimize the negative log-likelihood

I(p)=—log(L(p )=—10g[px(1— p)n—x]

I(p)=-log(p")—log((1-p)"™)
__/w_/

I(p) = - xlog(p) - (n—x)log(1- p)

S—

— ——

10/21/15 29
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Deriving the Maximum Likelihood Estimate
‘ I(p) - - xlog(p) - (n - ¥)log(1 [ ) __W

=-X+pn

0=-"1+ Minimize the negative log-likelihood

= MLE parameter estimation

i.e. Relative
frequency of a
binary event

o ~X1=p)+ p(n-x)
p(1- )

0=-x +X4%— D&

10/21/15 30
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Parameter estimation for
homework3-Q1

‘ e Multivariate Bernoulli model: \

- _ __fraction of documents of topic ¢;
P(Xw =1rue | Cj) — in which word w appears

Multinomial model:
a fraction of times in which
P(Xl. =W|Cj)= word w appears
across all documents of topic ¢;

— Can create a mega-document for topic j by concatenating all
documents on this topic
— Use frequency of w in mega-document

10/21/15 . 31
Adapt From Manning textCat tutorial
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Deriving the Maximum Likelihood
Estimate for multinomial distribution

Lonin T olaww..%
‘ =
LIKELIHOOD: argmax P(d,,....d; ‘9 > ’9) C’CJ—)T

0, .6, LJ(
. — ‘ D
functionof 8 = arggnga (dt | 91 ,..,Qk)
9k

1

T
__=argmax Y, L 0""6,"".0"
0.0, o C’lm' Q /2\\ /T

T

lz\argirg?x?}ﬂ g, 9 A @%\ Q kl Lﬂlk

10/21/15 32
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Deriving the Maximum Likelihood
Estimate for multinomial distribution

rg max log(L(6 _
‘gg,,,,@k g(L(9) Constrained k T

optimization S.t.zﬁi =1
= argmaxlog(nﬁ RN AR

" log(6,) + E My log(6,)+...+ E My log(6,)

N——— t=1,.T “S———— t=1,.T ———o——o

n; 4
Constrained = t=1..T =
optimization E n .+ n. . +..+ E n
. 1,d 2,d k,d
MLE estimator ! ! !
t=1,..T t=1,...T t=1,..T

=> i.e. We can create a mega-document by
concatenating all documents d_1tod_ T
= Use relative frequency of w in mega-document

How optimize ?
See Handout -
EXTRA
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Naive Bayes: Learning Algorithm
for parameter estimation with MLE

From training corpus, extract Vocabulary \
« Calculate required P(c;) and P(w; | ¢; terms
— Foreach ¢;in Cdo

* docs; é subset of documents for which the target
class is ¢

|docs, |
| total # documents |

= Text, < is length n and is a single document containing all docs;

m for each word wy in Vocabulary
= 17, € number of occurrences of w, in Text; n is length of Text;

n+a | Vocabulary |

Relative frequency of word w_k appears
10/ across all documents of class c; 34
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Naive Bayes: Time Complexity

|D| num. doc
|V| dict size
|C| class size

‘ * Training Time: O(|D|L, + |C||V]))
where L is the average length of a document in D.

— Assumes V and all D;, n;, and n; pre-computed in O(|D|L,)
time during one pass through all of the data.

— Generally just O(|D|L,) since usually |C||V| < |D|L,

 Test Time: O(|C| L))
where L, is the average length of a test document.

— Very efficient overall, linearly proportional to the time needed
to just read in all the data.

— Plus, robust in practice

10/21/15 A , 35
Adapt From Manning textCat tutorial
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Naive Bayes is Not So Naive

Naive Bayes: First and Second place in KDD-CUP 97 competition, among
16 (then) state of the art algorithms
Goal: Financial services industry direct mail response prediction model: Predict if the

recipient of mail will actually respond to the advertisement — 750,000 records.

Robust to Irrelevant Features

Irrelevant Features cancel each other without affecting results
Instead Decision Trees can heavily suffer from this.

* Very good in domains with many equally important features
Decision Trees suffer from fragmentation in such cases — especially if little data
* A good dependable baseline for text classification (but not the best)!

Optimal if the Independence Assumptions hold: If assumed independence is
correct, then it is the Bayes Optimal Classifier for problem

Very Fast: Learning with one pass of counting over the data; testing linear in the
number of attributes, and document collection size

* Low Storage requirements
10/21/15 36
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Today : Generative vs. Discriminative

v/ Multinomial naive Bayes classifier as T
Stochastic Language Models

v a unigram Language model approximates
how a text document is produced.

v' Maximum Likelihood Estimation of parameters
» v’ Gaussian Naive Bayes Classifiers
= Gaussian distribution
= Gaussian NBC
= LDA, QDA

10/21/15 37
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The Gaussian Distribution

N(zlu,0?) 1 1

Nialiso?) = e {omte—n)

20

Toh

NI, %) = Gy s o0 { 50— 78 x|

v

Covariance Matrix
Mean

10/21/15 Courtesy: http://research.microsoft.com/~cmbishop/PRML/index.htm 38




Multivariate Gaussian Distribution

¢ A multivariate Gaussian model: x ~ N(y, \Sigma) where

Here u is the mean vector and \Sigma is the covariance matrix,
if p=2
M= {ly U2}

\Sigma = | var(x,) COV(X4,Xy)
cov(Xq,X,) | var(x,)

e The covariance matrix captures linear dependencies among the variables

MLE Estimation for
Multivariate Gaussian

* .. e We can fit statistical models by maximizing the
"+ probability / likelihood of generating the observed
- samples:

- L(xy, ... ,x, | \theta) = p(x, | \theta) ... p(x, | \theta)
~ (the samples are assumed to be IID )

| ! | ! |
S b L e . N ow

. % + 4 o i+ + 4+ . *Inthe Gaussian case, we simply set the mean
and the variance to the sample mean and the
sample variance:




Probabilistic Interpretation

of Linear Regression

‘ * Let us assume that the target variable and the inputs are A _‘
related by the equation:

YVi= eTXi@

where € is an error term of unmodeled effects or random noise

* Now assume that ¢ follows a Gaussian N(0, 0) then we

have:
Py |x;0)= ‘@:Xp[ j
L0

D ey

* By IID assumption:

LO)=]]r,|x:0)= |: :
10/21/15 i=

a1
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Probabilistic Interpretation of
Linear Regression (cont.)

‘ * Hence the Iog-likelihood is: T

16)=nlog——— J— . 12?_1<yi—9Txi>2
. ]

* Do you recognize the last term?

J(@%i(xﬁe—y»?
i=1

Yes it is:

* Thus under independence assumption, residual
square error (RRS) is equivalent to MLE of 9!

10/21/15

47
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Today : Generative vs. Discriminative

v/ Multinomial naive Bayes classifier as
Stochastic Language Models

v’ a unigram Language model approximates
how a text document is produced.

v' Maximum Likelihood Estimation of parameters
v’ Gaussian Naive Bayes Classifiers

. @/aussiadeistribuﬁon

= Gaussian NBC :

= LDA, QDA

10/21/15 43

Dr. Yanjun Qi / UVA CS 6316 / f15

Gaussian Naive Bayes Classifier

argmax P(C | X) = argmax P(X,C) = argmax P(X | C)P(C)
c C C

Naive PX1C)=P(X,,X,, X, 1C)
Bayes

Classifier = P(X1 |X2,"',XP,C)P(X2,’”,XP |C)
= P(X,1C)P(X,, X, IC)

=E@P(X2 1C)-+ P(X, IC)]

- 1 (X;~1;)*
P(X;IC=¢ =F -—1
( ] Cz) ! ,_27Z'O'ﬁ exp[ 2 0-]21

:mean (avearage) of attribute values X; of examples for whic@
0; :standard deviation of attribute values X; of examples for whic
10/21/15
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Gaussian Naive Bayes Classifier

. ntinuous-valued Input Attributes
— Conditional probability modeled with the normal distribution |

_(Xj_tuji)z)

P(X.IC=c)=
&, 2 20;

1
ex
V27O,
u; : mean (avearage) of attribute values X; of examples for which C=c,

0 ; . standard deviation of attribute values X, of examples for which C =;

— Learning Phase: for X = X, -,Xp)’ C=c, ¢,
Output: p x L normal distributionsand P(C =¢,;) i=1,""",L

— Test Phase: for X,=(X1',”',X;,)

¢ (Calculate conditional probabilities with all the normal distributions

e Apply the MAP rule to make a decision
10/21/15 45
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Naive Gaussian means ? MM»

P(X,,X,, X, 1C) = / _‘
1 1

N %)= Gryor 7 e,Xp 0

- dhin vomdom Vertsr
P C=c,)=P(X,IC)P(X,1C)-+P(X,|C)

_ (Xj_tljii)z OQ:{F—\' K/t’)

Ji

1
= ex
H V2mo

Each class’
. : covariance
Diagonal Matrix 2 Ck = A Ck matrix is

108721155 diagonal 46




argmax P(C _k | X)=argmax P(X,C) = argmaxP(X'1 CYP(C)
k k k

Generative Bayes Classifier

...............................................

Task classification
| |
Representation Prob. models p(X|C) |
| P(X,;;X,1C)
Score Function : EPE with 0-1 loss 2
likelihood
L _i
Searchloiwtimization Many options
Models, Prob. Models’
Parameters Parameter

aussian -~ X —Uu. 2
P(X1C=c)=———exp X, #;,k)
Bernoulli ’ R /2 T Ojk 2 o
Naive p(w =l‘rue|ck)=pi’k Vi
.
nlk .I’lzk ...l’lvk .

Dr. Yanjun Qi / UVA CS 6316 / f15

Today : Generative vs. Discriminative

v' Multinomial naive Bayes classifier as T
Stochastic Language Models

v a unigram Language model approximates
how a text document is produced.

v' Maximum Likelihood Estimation of parameters
v’ Gaussian Naive Bayes Classifiers

= Gaussian distribution

= Gaussian NBC

= Not-naive Gaussian BC = LDA, QDA

10/21/15 48
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(1) covariance matrix are the same across classes

=» LDA (Linear Discriminant Analysis)
O ( ?24’ kf) Each class’ covariance

Linear Discriminant Analysis : 2., = 2. VK atrix is the same

The Gaussian Distribution are shifted versions of each
other

Class k Class /
10/21/15 Class k Class / 49

D Uinear Discriminart Analysis f15

Optimal Classification

‘ argmax P(C _k|X)=argmax P(X,C)

k k
= arg max
5 e
1
__| r —
2 Vi
i ]. v . y & ‘ N
= argmax Tr— ) L o (r— lﬂ' log ()
> 5\ &

- Note Linear Discriminant Function for LDA

L )T o= ) [ 1 1
—5 - pe) E7 (@ — ) =E/TE_IM - 3}1,{13_1;1;3 - 341311]

50

10/21/15
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argmaxP(C JX)= argmaXP(X ,C )=argmaxP(X|C, )P(C, )
k

—argmaxlog{P(X |C )P(C,)}
k—\_J

= %M‘\X Uy ¢0<lfv<> t ﬂﬁ’(&) ’,7 @

\-’\_/\

Dolicon Bawn ch‘ﬁ

(’Dm‘fl
X"?) g0 _ g / (>(><Ia<) /

gt

= L ®(xlco) - Layp(Ap) Jr/@yﬂ

10/21/15 51

)

Define Linear Discriminant Function

1 -1
6 = =5 G—m)" ) (=) + logmy
A ERYLS |

=» The Decision Boundary Between class k and /,
{x:6,(x)=06/x)}, is linear

pricy, pey WX

P(C, 1X) tlog
P(XIC) P(C)//o

P(C | X)
<~

log log

1 _ 4.9
log — 5 (ke + pe)TE T (ke — pre (4.9)
[T H ‘ Equals to —Ezmdary points X : when

+ 2T g — pe)) P(c_k|X) == P(c_I|X), the left

linear equation ==0, a linear

10/21/15 line / plane 52
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Visualization (three classes)

S
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(2) If covariance matrix are not same
e.g. = QDA (Quadratic Dlscrl inant Analy5|s)

2
kP2 +kp)
» Estimate the covariance matrix 2 separately for each class k,

k=12 ..K.

» Quadratic discriminant function: /) Z
- 1
0k(x) = —3 |08; i = 5= p) T Z (x — k) + log “k
L
» Classification rule: D() ~D

G(x) = arg max Ik (x) . 06%) |

» Decision boundaries are guadratic equations in x.
» QDA fits the data better than LDA, buthias more parameters

to estimate.
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LDA on Expanded Basis

‘ » Expand input space to include X1 X5, X2, and X3. T
» Input is five dimensional: X = (X1.X2.X1X2.X2.X22).
Pl < [ DA
\.. ODA

LDA with
quadratic basis
Versus
QDA

Figure 4.6: Two methods for fitting quadratic bound-

aries. The left plot shows the quadratic decision bound-

aries for the data in Figure 4.1 (obtained using LDA in

the five-dimensional space T1, T2, 12,11, 73). The right

plot shows the quadratic decision boundaries found by

10/21/15 QDA. The differences are small, as is usually the case. =
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(3) Regularized Discriminant Analysis

‘ » A compromise between LDA and QDA. T

» Shrink the separate covariances of QDA toward a common
covariance as in LDA.

» Regularized covariance matrices:

Ay

Si(a)=aS, +(1—a)s .

» The quadratic discriminant function d,(x) is defined using the

» The parameter @ controls the complexity of the model.
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