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Announcements: Rough Plan

 HWS3: due on Nov. 8th midnight T
* Midphase Project Report : due on Nov. 4th

e Late Midterm:
— Open note / Open lecture
— Nov. 18t / conflicts with many students’ conference trips
— Nov. 234 ?2?2?? / conflicts ??7?

* HWA4:

— 20 samples questions for the preparation for exam
— Due depending on Late-Midterm Date ; If 23", due on 20t
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Where are we ? =
Five major sections of this course

‘ [ Regression (supervised) T

E>EI Classification (supervised)
O Unsupervised models
E>EI Learning theory
O Graphical models
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Where are we ? =
Three major sections for classification

‘ * We can divide the Iar%e variety of classification T
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., logistic regression, support vector machine, decisionTree

2. Generative:
- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors
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Today :

!;K-nearest neighbor T

v' Model Selection / Bias Variance Tradeoff
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Nearest neighbor classifiers

|—-—Basic idea:
— If it walks like a duck, quacks like a duck, theﬂ

) compute
R — . distance

3\""37?/)\ N /c’,;) \

training .’ N /" choose k of the
—_ U ’

samples . —— . “nearest” samples
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Nearest neighbor classifiers

Unknown record
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Requires three inputs:
1. The set of stored
training samples

2. Distance metric to
compute distance
between samples

3. Thevalue of k, i.e., the
number of nearest
neighbors to retrieve

Nearest neighbor classifiers

Unknown record

®

To classify unknown sample:

1. Compute distance to
other training records

2. ldentify k nearest
neighbors

3. Use class labels of nearest
neighbors to determine
the class label of unknown
record (e.g., by taking
majority vote)
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Definition of nearest neighbor
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(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

k-nearest neighbors of a sample x are datapoints that

have the k smallest distances to x
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—

Voronoi diagram:

partitioning of a
plane into
regions based
on distance to
points in a
specific subset
of the plane.
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1-nearest neighbor
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Nearest neighbor classification

‘ « Compute distance between two points:
— For instance, Euclidean distance

-0 pstnG 3
'Q'pé' (loS\V\ﬂ/(:{ j@’«' d(X,y)= \/2 (x; =)

» Options for determining the class from
nearest neighbor list

— Take maijority vote of class labels among the
k-nearest neighbors

— Weight the votes according to distance
« example: weight factor w=1/d?

10/27/15
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Nearest neighbor classification

‘ » Choosing the value of k:

— If k is too small, sensitive to noise points

— If k is too large, neighborhood may include points
from other classes

(>q 77 SM/\I \y + ,//,x— - ) _\\“\‘ )
o i
o -..‘ ..
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Nearest neighbor classification

« Scaling issues
— Attributes may have to be scaled to prevent
distance measures from being dominated by
one of the attributes
— Example:
» height of a person may vary from 1.5 mto 1.8 m
» weight of a person may vary from 90 Ib to 300 Ib
« income of a person may vary from $10K to $1M

Nearest neighbor classification...

* Problem with Euclidean measure:

— High dimensional data
 curse of dimensionality

— Can produce counter-intuitive results

111111111110 100000000000
VS
011111111111 000000000001
d=1.4142 d=1.4142

# one solution: normalize the vectors to unit length
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Nearest neighbor classification

‘ » k-Nearest neighbor classifier is a lazy T
learner Vo
- Doesuild K (¢, )
— CIaSS|fy|ng unknown samples is relatively
expensive. kN: yu_tsin / alll b Su S
T%'t' %SVM bukr. 5w ppevt vect OFS /f°lh+9
* k-Nearest nelghbor classmer is a local
model, vs. global model of linear

classifiers.
10/27/15 15
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K-Nearest Nelghbor
Task classification
| |
Representation Local Smoothness
) }
Score Function g NA
 Z _; 1
Searchloi:timization NA
Models, Training
Parameters Samples
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Decision boundaries in global vs. local models
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What ultimately matters

GENERALIZATION

17
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K-Nearest-Neighbours for
Classification (Extra)
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* K acts as a smother
* For N — 00, the error rate of the 1-nearest-neighbour classifier is never more than

twice the optimal error (obtained from the true conditional class distributions).
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KNN METHODS IN HIGH
DIMENSIONS (Extra)

e In high dimensions, all sample points are close to the edge of the
sample

* N data points uniformly distributed in a p-dimensional unit ball
centered at the origin

Median distance from the closest point to the origin

1Y l/p
d(p,N)=[1—§ ]

+ 4d(10,500) = 0.52
— More than half the way to the boundary (unit ball’s boundary
edge is 1 distance to the origin)

10/27/15

VS kNN for W%ﬁ\/\mem%\d\ﬂ\‘)
Vs. Locally weighted regression

 aka locally weighted regression, locally T
linear regression, LOESS, ...

1
' K)L (xi ° xo ) | linear_func(x)->y
>
o could represent
o] only the neighbor

I
1
1
8} I
I
: region of x_0
1
1
1

[
I
I
1
I
1
[
0 1
I
I
: Use RBF function to
i pick out/emphasize
: the neighbor region
I ofx 0=>»
I

X K, (x;,x,)

10/27 8 5igm"e- 2: Inlocally weighted regr 55510!1; points are weighted by proximity to the current x in question using
akernel A regression is then computed using the weighted points.
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regression

‘ « Separate weighted least squares at each T
target point x,:

X, a(xg).p(xy)

HENG min EK)L(xi’XO)[yi _a(xo)_ﬁ(xo)xi]z

f(x0) = 8(x) + Bx)x,

2
(e K_(x,,x0)= exp(— (x, =x0) )

2
T

unction &7
y=e€" 21
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Today :

=

v’ K-nearest neighbor
v' Model Selection / Bias Variance Tradeoff
W) v EPE
v' Decomposition of MSE
v’ Bias-Variance tradeoff
v" High bias ? High variance ? How to respond ?
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e.g. Training Error from KNN,
Lesson Learned

“ When k =1, 1-nearest neighbor averaging \

* No misclassifications (on
training): Overtraining

* Minimizing
training error is
not always
good (e.g., 1-
NN)

10/27/15 23
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Statistical Decision Theory

‘ « Random input vector: X _‘

« Random output variable:Y
Joint distribution: Pr(X,Y)
Loss function L(Y, f(X))

Expected prediction error

= E(L(Y,f(X))) =UL(y,f(x))Pr(dx,dy)
) Consider
c.g.= f()’ —f%)) Pr(dx,dy) ( population

10/27/15 ﬁ i i i i " i i i i i 24
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Expected prediction error (EPE)

—
distribution
EPE(f)=E(L(Y, f(X))) = f L(y, f(x))Pr(dx,dy)

e For L2 l0SS: co.- (- foylPrcax, ay)
under L2 loss,or EPE (Theoretically) is :

Conditional M

l mean
€.g. KNN NN methods are the‘ direct implementation iapproximation )l

« For 0-1 loss: L(k, £) =1-d,

A

fx=c, if
Pr(C, |X:x):m%xPr(g|X:x)

10/27/15 Bayes Classifier

25
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LR VS. KNN FOR MINIMIZING
EPK

‘ * We know under L2 loss, best estimator for EPE (Theoretically) is : \

Conditional
mean  f(x)=E(Y| X =x)

* Two simple approaches using different approximations:

— Least squares assumes that f(x) is well approximated by a globally
linear function

— Nearest neighbors assumes that f(x) is well approximated by a locally
constant function.

10/27/15




Review : WHEN EPE USES DIFFERENT LOSS

Loss Function Estimator f(z)

L(e)

L, f(z) = BY|X = «]
| > €
L(e)

L, ‘ F(z) = median(Y|X = z)
| > €
L(e) A

0-1 ‘ f(z) = arg myaxP(Y|X =1x)

51 ¢ » € (Bayes classifier / MAP)
Today :

v’ K-nearest neighbor
v" Model Selection / Bias Variance Tradeoff
v" EPE
ﬁ\) v' Decomposition of MSE
v’ Bias-Variance tradeoff
v" High bias ? High variance ? How to respond ?
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Decomposition of EPE

— When additive error model: T
— Notations Y = f(X)+e e~ (0,02)

* Output random variable: Y
* Prediction function:

—~

+ Prediction estimator: f

iEPE(xo)) = B[ - N7IX = =0

= B =) + (- M3X = o]
= E[(Y - f)?X = zo] + E[(f — /)?|X = z0]

MSE

Y Trreducible / Bayes error

Dr. Yanjun Qi / UVA CS 6316 / f15

Bias-Variance Trade-off for EPE:

| B

EPE (x_0) = nokée? \+ bias? + variance

Error due to
Unavoidable Error due to variance of training

error incorrect samples
assumptions

10/27/15 30
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BIAS AND VARIANCE TRADE-OFF for MSE
(more general setting !!! ):

Ty

‘ o &true value (normally unknown) ) %J(j(%

: estimator |

o
D),

|

D

: = F[A] (mean, i.e. expectation of the estimator)
— ————

« Bias E[(@-6)7]
— measures accuracy or quality of the estimator
— low bias implies on average we will accurately
estimate trueor func| from training data
 Variance 5 _ )2 o owid be £ W & LR
E[(0-5)2] ¢ 15 o oo
— Measures precision or specificity of the estimator

— Low variance implies the estimator does not change
much as the training set varies

10/27/15
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BIAS AND VARIANCE TRADE-OFF for MSE
of parametfr eiiamati n:

|7 1»&?\&%7\15[{- X=X M§E—‘

MSE(0) = E[(é—e]
T o
@:hm(e)% EL@ — 8)2] + 610 — 0)2] + 2E[(0 — 0)(7 — 0)]
— VK§(§)+Bia 2\(9‘)+o

Error due to Error due to

variance of training 'nco"?_Ct
samples assumptions

MSE(A) = E[(0 — 0)*] = Bias*(0) + Var(0)

10/27/15




€.g., BIAS AND VARIANCE IN KNN (Extra)

* Prediction
- k
fe(zo) = % > flxy)
=1

* Bias i 2
Bias?(fi(z0)) = EZ[f(z0)—fr(z0)] = [f(wo) —% > f(wz)]

=1

 Variance

o2

Var(fi(ao)) = 7

* When under data model:
Y = f(X)+e e~ (0,02)

Today :

v’ K-nearest neighbor
v" Model Selection / Bias Variance Tradeoff
v" EPE
v' Decomposition of MSE
v’ Bias-Variance tradeoff
v" High bias ? High variance ? How to respond ?
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Bias-Variance Tradeoff/ Model Sglection eYW‘
(A C

|rk\LHigh Bins Lo ;; ﬁ E‘)E_‘
: g ‘
i Samﬁ\"o"f FO y\(\ow&/\
¥ % « 244
/ overps¥fon
{@NX- Q\z:‘rzn Training Sarmple — %‘\’M (KCBB

Low High
Model\Complexity
35

-

Prediction Error
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Which is the best?

X X
Highest Bias Medium Bias Smallest Bias
Lowest variance Medium Variance Highest variance

Model complexity = low Model complexity = medium Model complexity = high

Why not choose the method with the
best fit to the data?

Prediction Error

How well are you going to predict future data?

Low Hi
10/27/15 Model Complexity 36
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Bias-Variance Trade-off

‘ y Sample? * Models with too few \
1 parameters are inaccurate

« /o because of a large bias (not
enough flexibility).

* Models with too many
parameters are inaccurate
because of a large variance
(too much sensitivity to the
sample randomness).

10/27/15 37

Training vs Test Error

N High Bias Low Bias
H Low Variance High Variance
*| Training error S

can always be =
reduced when

0

increasing . 87
model &
. s ©o | Expected Test Error
complexity, 35 °
&
<
* But risks over-
fitting and S
g . ° Expected Training
generalize
o |
poorly. ° l l l l | | l

Model Complexity (df)
38




Regression:
Complexity versus Goodness of Fit

A
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‘ 1 Training data Too simple?
y y )
(<] (<] ° .”’ -
.. o. e o ® R o./”,o’ e 0\3%"’?5:"\
2 /7—5« )
° 7 e
x AN,
* UG vagangd)
High Bias
A "\ |\ Too complex ? X About right ?
y o d
! ! v 8 y
LR e R tmin(
'.'1'0 bo ! .\ '.“\ !'E. 9"!_;"0‘: - D“ﬁm n
ARNERYRY " TS
|I v 1 \ \\ 4 ,’ ed!
.II ‘\ 7 > ,//. . %Wr(-ﬁ
F \Il X X Js '*ru

Low Bias
/ High Variance
107/27M5

What ultimately matters: GENERALIZATION

Decision boundaries in global vs. local models

Classification,

Dr. Yanjun Qi / UVA CS 6316 / f15

—_—

72N

Low Variance /
High Bias
linear regression
« global

« stable
« can be inaccurate

What ultimately matters: GENERALIZATION

10/27/15

TN
G=©

15-nearest neighbor

Low Variance /
High Bias

1-nearest neighbor

KNN

* local Low Bias
* accurate / High Variance
* unstable

40
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Model “bias” & Model
“vaﬂance”

o Mlddle RED: Low Variance High Variance
— TRUE function

« Error due to bias:
— How far off in general

from the middle red

Low Bias

« Error due to variance:

— How wildly the blue
points spread

High Bias

41
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neEd to make aSSUmpﬁODfﬁanauthcsalf/ﬁs
are able to generalizg

‘ » Components of generalization error \
— Bias: how much the average model over all training sets differ fro
the true model?

» Error due to inaccurate assumptions/simplifications made by the

model
— Variance: how much models estimated from different training sets

differ from each other
» Underfitting: model is too “simple” to represent all the
relevant class characteristics
— High bias and low variance
— High training error and high test error
» Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
— Low bias and high variance
102775 LOW training error and high test error 0




MODEL COMPLEXITY CONTROL,
EXAMPLES (Extra)

* Regularization (Bayesian)
PRSS(fIN) = £ (i = f@)) + A [ @)

* Kernel methods and local regression

N
RSS(fp;w0) = ¥ Kx(wo, ;) (yi — fo(w:))?

=1

 Basis functions
fo= % Omhm(z)

m=1

Today :

v’ K-nearest neighbor
v" Model Selection / Bias Variance Tradeoff
v" EPE
v' Decomposition of MSE
v’ Bias-Variance tradeoff
v" High bias ? High variance ? How to respond ?
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High variance

Typical learning curve for high variance: A\ or
W
S Could also use
o
5 Test error ’7 "7
® 0

Desired perfgrmance

/
Training error
m (training set size)

e Test error still decreasing as m increases. Suggests larger training set will help.
e Large gap between training and test error.

wrrs e Low training error and high test error >

Dr. Yanjun Qi / UVA CS 6316 / f15

How to reduce variance?

| B

Choose a simpler classifier
e Regularize the parameters
Get more training data

* Try smaller set of features

10/27/15 46
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High bias

Typical learning curve for high bias:

oA
i N ot

% Test error

k/(\ Training error

error

L

Desired performance

m (training set size)

¢ Even training error is unacceptably high.
¢ Small gap between training and test error.

10/27/15 High training error and high test error Y
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How to reduce Bias ?

e N

- Get additional features
- Try adding basis expansions, e.g. polynomial

- Try more complex learner

10/27/15 48




Dr. Yanjun Qi / UVA CS 6316 / f15

For instance, if trying to solve “spam

detection” using (Extra)
[ ]

L2 - logistic regression, implemented with gradient descent.

Fixes to try: If performance is not as desired

— Try getting more training examples. Fixes high variance.
— Try a smaller set of features. Fixes high variance.
— Try a larger set of features. Fixes high bias.
— Try email header features. Fixes high bias.

Run gradient descent for more iterations. Fixes optimization algorithm.
Try Newton’s method. Fixes optimization algorithm.

Use a different value for . F?xes opt?m?zat?on obj:ect?ve.
Try using an @\( o0 Fixes optimization objective.
Wy
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Model Selection and Assessment

‘ * Model Selection T

— Estimating performances of different models to choose
the best one

e Model Assessment

— Having chosen a model, estimating the prediction error
on new data

10/27/15 50




Model Selection and Assessment
(Extra)

* Data Rich Scenario: Split the dataset

Train Validation Test

Model Selection Model assessment

* |Insufficient data to split into 3 parts
— Approximate validation step analytically
* AIC, BIC, MDL, SRM
— Efficient reuse of samples
* Cross validation, bootstrap

Today Recap:

v’ K-nearest neighbor
v" Model Selection / Bias Variance Tradeoff
v" EPE
v' Decomposition of MSE
v’ Bias-Variance tradeoff
v" High bias ? High variance ? How to respond ?
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