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next after classification ?

Kmeans +
GMM +
Hierarchical

dimensionality
reduction
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Where are we ? =
Five major sections of this course

‘ [ Regression (supervised) T

[ Classification (supervised)
) Feature selection

O Unsupervised models
- O Dimension Reduction (PCA)
O Clustering (K-means, GMM/EM, Hierarchical )

U Learning theory
O Graphical models
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\‘ s, DT % |An unlabeled
|

‘ s2 l Dataset X —‘

S3 N 'T(_Z_i Chwm. ine50§

Sq ) a data matrix of n observations on

p variables x;,x,,...x,

L_&_\ Ss

S6

Unsupervised learning = learning from raw (unlabeled,
unannotated, etc) data, as opposed to supervised data
where a classification/regression label of examples is given

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns]
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Today

m Dimensionality Reduction (unsupervised) with T
Principal Components Analysis (PCA)

- = Review of eigenvalue, eigenvector

m How to project samples into a line capturing the variation of the
whole dataset =» Eigenvector / Eigenvalue of covariance matrix

m Another explanation of PCA

m PCA for dimension reduction

. PCA for face recognition

11/9/15 5
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Review: Mean and Variance

‘ * Variance: Var(X)=E((X - 1)?) T
)
— Discrete RVs: 5
| V(X)zéi(‘vi—,u) P(X:vl-;
— Continuous RVs: V(X) :Jm(x—,u)z (x)dx
= tf_J
* Covariance:
Cov(X,Y)=E((X-p )Y —p ))=E(XY)-p pu

11/9/15 6
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Review: Covariance matrix
&-&-‘n \Grdow, vectoy (YI,YZ,”JX?r

‘ v(x )e(x,,X, ) c[xl,xp)

c(x,,X, ) V(X)) e c(xz,xp]

c[xl,xp)c[xz,xp) .......... v(xp)

If data is centered, «f dim

11/9/15

>

=E(XX")—pu’

c=%(X—u)(X—u)T=%(X—})(X—})T

If data is centered, C =%(XT
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Review: Eigenvector / Eigenvalue

e Where

\_

det(C-AL1)=0

C=UuDUT

o The eigenvalues A, are found by
solving the equation

* Eigenvectors are columns of the
matrix U such that

210......0
0 Apeooonni0
0

11/9/15
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Review: Eigenvalue, e.g.

L Let us take two variables with covariance ¢>0

Le= (1| cor= (I-M ¢
c 1 K\ c 1-A
det(C-AD)=(1-1)*-c? —()
<: Cu=\u
. . uz0
Solving this we ﬁm@= 1+c
\ ArFl-c < A, /

NS —

From Dr. S. Narasimhan

Review: Eigenvector, e.g.

* Any eigenvector U satisfies the condition

Cu=\u
Yy
N ,\1_'“7/ .
_ (% _ (1 ¢\ (aq a, +ca, \a leeﬁ
) D,
a, c 1) \a, ca, +a, Z\ﬁ% vl

<

Solving we find u, = ( 1? x% ) u, = ( 1; x%)
Ve Al

In practice, much more advance methods, e.g. power method

From Dr. S. Narasimhan
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Today

m Dimensionality Reduction (unsupervised) with T
Principal Components Analysis (PCA)

= Review of eigenvalue, eigenvector

m How to project samples into a line capturing the variation of the
whole dataset =» Eigenvector / Eigenvalue of covariance matrix

m Another explanation of PCA
m PCA for dimension reduction

» Eigenface = PCA for face recognition
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X, X, X

3
s, An unlabeled
|7 s2 Dataset X —‘

S3

Sq a data matrix of n observations on

p variables x;,x,,...x,
Ss
S6

» Data/points/instances/examples/samples/records: [ rows |

* Features/attributes/dimensions/independent variables/
covariates/predictors/regressors: [ columns]

11/9/15 12
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The Goal

We wish to eprainIe T
structurd) p

underlying variance-covariance
of a large set of variables through a few

Iwinahons ofﬂﬁ@ k

PCA is introduced by
Pearson (1901) and
Hotelling (1933)

11/9/15 13
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Applications

‘ e Uses: * Examples:

— Data\Visualization — How many unique “sub-sets are in the

sample?
— Data Eaduction] — How are they similar / different?
— Data Classification — What are the underlying factors that
— Trend Analysis influence the samples?
. — How to best present what is
— Factor Analysis “interesting"%
— Noise Reduction — Which “sub-set” does this new sample

rightfully belong?

11/9/15 14
From Dr. S. Narasimhan
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Trick: Rotate Coordinate Axes

‘ Suppose we have a population measured on p random variables \
XX,

1o Xy
Our goal is to develop a new set of p axes (linear combinations of
the original p axes) in the directions of greatest variability:

This'could be accomplished by rotating the axes (if data is centeréd).
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Algebraic Interpretation

| B

* Given n points in a p dimensional space,

* forlarge p, how does one project on to g lower-
dimensional space while preservingbroad trendsin the
data and allowing it to be visualized?

Data is centered: =» (we subtract the mean along each dimension,
and center the original axis system at the centroid of all data
11/9/15  points, for simplicity) .
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Algebraic Interpretation — 1D

* Given n points in a p dimensional space, for large p, how does \
one project on to a 1 dimensional space?

. that fits the data so the points are spread out

well along the line

11/9/15 17
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Let us see it on a figure

‘ Good Better |
Direction in Data Direction in Data

Projection Projection

Q0D O AR TR o o - =40 00QCO

1 ) 1 2 3 2
= x

(we subtract the mean along each dimension, and center the
original axis system at the centroid of all data points, for simplicity)

11/9/15 18
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Algebraic Interpretation — 1D

‘ * Formally, minimize sum of squares of distances to the line. \

11/9/15 19
From Dr. S. Narasimhan
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Algebraic Interpretation — 1D

izihg sum of squares of distances tq the line is the same \
agmaximizing}the sugn of squares of the projections on that

line, thanks to Pythagoras.
QLS eroth)
X

&Q:C (cw"""'n \
N
%&L&“;a\ / max( vIXT Xv),
Q\“(K'Uet A) subject to VTV =1

(‘X Uy{l’ﬂ"
X: p*1 vector

%-X)"y
11/9/15 ,u - ((&“*(w&‘) V. p*l Vector

20
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Algebraic Interpretation — 1D

‘ * How is the sum of squares of prokectlon engths \
expressed in algebraic terms?
P . ig W —wz )| w

l

Uz

n*p P*l .
>21 VF

From Dr. S. Narasimhan

vl

11/9/15
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Algebraic Interpretation — 1D

* How is the sum of squares of projection lengths T
expressed in algebraic terms?

max( vIXT Xv), sujectto VIV =1
— J

11/9/15 22
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Algebraic Interpretation — 1D

* Rewriting this: ™! VIXT XV), subjectto VIV = 1 “
A X'Xv,=A=Av'v =/J(()\v) |
<=> V' (X'Xv—Av)=0

* Show that the maximumTvaIue of VTXTXV is obtained
for those u satlsfy!ng X XVL,_J AV

* So, find and uch that the

matrix when applied to u, yields a new vector
which isin the same direction as u, only scaled by a
factor A.

11/9/15 23
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Algebraic Interpretation — 1D

‘ * (X™X)v points in some other direction in general T

XTX)v

v

9@is an eigenvector and A is corresponding eigenvalue

/7439
xTx@: ASZ) )

11/9/15 24
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Algebraic Interpretation — beyond 1D

* How many eigenvectors are there? \

* For Real Symmetric Matrices

— except in degenerate cases when eigenvalues repeat, there are n
eigenvectors

u,...,u, are the eigenvectors
;...\, are the eigenvalues, large to small, ordered by its value

— all eigenvectors ar and therefore
form a new basis space

* Eigenvectors for distinct eigenvalues are mutually orthogonal

» Eigenvectors corresponding to the same eigenvalue have the property that any
linear combination is also an eigenvector with the same eigenvalue; one can then
find as many orthogonal eigenvectors as the number of repeats of the eigenvalue.

11/9/15 25
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Algebraic Interpretation — beyond 1D

‘ *  For matrices of the form (symmetric)@ \

— All eigenvalues are Qon-negative

— See Handout-1 “linear algebra review” / Page 18,19,20

— A;...A, are the eigenvalues, ordering from large to small,
* j.e. Ordered by the PC’s importance

11/9/15 26
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PCA Eigenvectors =2 Principal Components

— |

I I
2nd Principal
Component, u, o Ist Principal
Al ) Component, u,
3 - —

11/9/15 27
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Today

m Dimensionality Reduction (unsupervised) with T
Principal Components Analysis (PCA)

= Review of eigenvalue, eigenvector

m How to project samples into a line capturing the variation of the
whole dataset =» Eigenvector / Eigenvalue of covariance matrix

- m Another explanation of PCA

m PCA for dimension reduction

» Eigenface = PCA for face recognition

11/9/15 28
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PCA: explanation Il

\ T
= \/*) =X % N convert x into v,, v, coordinates —‘

A
Z is the mean / Consider the variation along direction v
° ;
=

of the orange

points ‘ W,‘ among all of the orange points: 'T \:( C
N0
\bo o\;)’u * var(v) = Z MT V||2

o orange point X

o | - m

v v(X)=3, (v-#)P(X=v)

< ;
VM (\/) E (C%: gll(x>x)l>v(|é When for
= ST (x - 1) (x — )Ty centered data:
= ; Tx —%)( yT <]i max(vXXY )

_ T - =T
=V Z(X -X)(x—=%)"|v subject to VTV = 1

- wher A=S x-0x-_x)"

CWNFN(! Md'fp( 7 X (@iteedFrom Dr.s. Narasimhan

11/9/15
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Today

m Dimensionality Reduction (unsupervised) with T
Principal Components Analysis (PCA)

= Review of eigenvalue, eigenvector

m How to project samples into a line capturing the variation of the
whole dataset =» Eigenvector / Eigenvalue of covariance matrix

m Another explanation of PCA
- m PCA for dimension reduction

» Eigenface = PCA for face recognition

11/9/15 30
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Interpretation of PCA

‘ From k original variables: x;,x,,...,x: \

Produce k new variables: u,u,,...,u,:

{ When p=2 J

ul = allxl + alzxz + ot + alka " Largest Principal o

~ o

U, =0 Xy + X, + o0+ 0 X,

/e © Smallest Principal
/ o Component

11/9/15 4 2 0 S Y

Dr. Yanjun Qi / UVA CS 6316 / f15

Interpretation of PCA

From k original variables: x,,x,,...,x,:
Produce k new variables: u,,u,,...,u,:

= '
Principal
Uy = O Xy + AoXo + o + 0 X, Components
such that:
When p=2

u,'s are uncorrelated (orthogonal)

u, explains as much as possible of original variance in data set
u, explains as much as possible of remaining variance

etc.

11/9/15

From Dr. S. Narasigrznhan
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Interpretatjon of PCA
P A Ceon‘eye/?X)

 The new variableg (PCs) have a variance equal

L ¢ e o,
'?\, &> small variance <> datachange little,

in the direction of component v,

PCA is useful for finding new, more informative,
uncorrelated features; it reduces dimensionality

s by rejecting low variance features -

Dr. Yanjun Qi / UVA CS 6316 / f15

PCA Eigenvalues

| s

A=
2 WM WS
2ud PCdiretiny

11/9/15 34
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PCA Summary until now

* Rotates multivariate dataset into a new \
configuration which is easier to interpret

e PCA is useful for finding new, more i tive,
uncorrelated features; it (educes dimensionality by
rejecting low variance features

11/9/15 35
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PCA for dimension reduction
e.g. p=3 =» (pick top 2 PCs)

k=2 \
=5
e . * :
R [ . g :
; S8 /o ! g o
P {,_y,’ I/_ 7- é
1 % ‘Zﬁ?/ .y 3
[ SRS Iy =2
/ /fl/. N2, b 8
L] »".f/ ‘j//: g 3
// T TRAOTA ,’;'.f' ? & >
‘//' N Av ‘}/ ‘g’ -.
. "- { .'
. A i .
/ I ] .
.4’?: ¥
7/
) e
‘I_ T T T T T
-1.0 -05 0.0 0.5 1.0
First principal component

corresponds to choosing a

“2D linear plane”
11/9/15 36
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PCs, Variance and Least-Squares

* The first PC retains the greatest amount of variation in the T
sample

* The k™ PC retains the k™ greatest fraction of the variation in
the sample

* The least-squares view: PCs are a series of linear least
squares fits to a sample set, each orthogonal to all previous
ones

11/9/15 37
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Use PCA to reduce higher dimension

‘ * Suppose each data point is p-dimensional \

— The eigenvectors of data covariance matrix define a new
coordinate system

— We can(compress)(i.e. perform projection ) the data points by
only using theigenvectors

. 1 ”
* corresponds to choosing a " linear subspace

— represent points on a line, plane, or “hyper-plane”
* these eigenvectors are known as thg principal components

11/9/15 38
From Dr. S. Narasimhan
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How many components to keep?

* |. Variance: Enough PCs to have a cumulative“
variance explained by the PCs that is >50-70%

* |l. Scree plot: represents the ability of PCs to
explain th iation in data, e.g(keep PCs

Var (M) = Ak

11/9/15 39
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Dimensionality Reduction
e.g. check eigenvalue (l)

Scree Plot

i

\ i

Eigenvalue

S K 1

—B——

1 2 3|4 s 6 7 8 9 10 1 12 13

Component|Number

11/9/15 40
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Dimensionality Reduction(2)
e.g. check percentage of kept variance

Can ignore the components of lesser significance.
‘ 25 - \
] The relative variance explained

201 by each PC is given by \;/sum(\)

k= &

-
a
|

Variance (%)
]

[6)]
|

S W Hﬂﬂﬂﬂﬂm

PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if thefeigenvalues are small,{yod don’ t lose muc

— p dimensions in original data
— Calculate p eigenvectors and eigenvalues
— choose only the first k eigenvectors, based on their eigenvalues

— final projected data set has only k dimensions
11/9/15 41
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Today

m Dimensionality Reduction (unsupervised) with T
Principal Components Analysis (PCA)

= Review of eigenvalue, eigenvector

m How to project samples into a line capturing the variation of the
whole dataset =» Eigenvector / Eigenvalue of covariance matrix

m Another explanation of PCA
m PCA for dimension reduction

‘ » Eigenface =» PCA for face recognition

11/9/15 42
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Example 1: Application to image, e.g.
a task of face recognition
1. Treat pixels as a vector T

B =

k = argininHykT — XH

43
From Prof. Derek Hoiem
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Example 1: the space of all face images

e When viewed as vectors of pixel values, face images are
xtremely high-dimensional
‘ _ 100x100image@ /})_- (0, 5°0 T
— Slow and lots of storage
e But very few 10,000-dimensional vectors are valid face

images
e We want to effectively model the subspace of face images

8
' i
B
) B
B 5
.L,

@FR

11/9/15 A4
From Prof. Derek Hoiem
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Example 1:The space of all face images

* Eigenface idea: construct d low;jdimensional linear
subspace that(best explains the variation in the set \
of face images

° ~U
o .‘.../.
« | oo .
o ® 0,200 o
E [0, T2 e @
<
> o o © ....
f— ./
S (0% %%
o v [ ) ..
& |- [
, ,
'

Pixel value 1

@ A face image
® A (non-face) image

11/9/15 45
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Example 1: Application to Faces, e.g.
Eigenfaces (PCA on face images)

1. Compute covariance matrix of face images T

2. Compute the principal components
(“eigenfaces’)
— K eigenvectors with largest eigenvalues

3. Represent all face images in the dataset as
linear combinations of eigenfaces

— Perform nearest neighbors on these coefficients

115M. Turk and A. Pentland, Face Recognition using Eigenfaces\CVPR 1991/,
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Example 1: Application to Faces
Training

magee L1 A ‘i@ BE '5&“5

,—'_['-v-r—-_..

1,‘.1 1

@
23

@ T
HHE
T “
‘.1' g_'
lﬂvﬂ

@BE
G WS Gl G™

7 x'. 1
:i—v:l’:; ;7:-(1\'
el el

-, -- s
™ - _— -
T PR PR TR W

i

&
i
¢
{
>
¢
d
i
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|
.
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«
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Example 1: Eigenfaces example
XX (-R)

Mean: p

Top eigenvectors: uy,...u, k:{q_

R=u=y T

11/9/15 s ol ] ~
From Prof. Derek H0|em
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Example 1: Visualization of eigenfaces

Principal component (eigenvector) u

EFEREASERY

@b o0 s e

AT S

11/9/15 .
From Prof. Derek H0|em
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Example 1: Representation and
reconstruction of original x

. Facexm “face spacg cg‘P)r(dlnates \

. X — [uf (X —p),..., up(x—p)]
8 E@ ’wkj} New representation

Remarkably few eigenvector terms are needed
to give a fair likeness of most people's faces.

=>» subtract the mean along each dimension, in order to center the
original axis system at the centroid of all data points
11/9/15 50
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Representation and reconstruction

‘ e Face x in “face space” coordinates: \

] x — [u(x—p),...,ul(x— p)]

= (0 BN EREPRREE. | .
1, Al New representation

S[XRUE vecomsmdion ersy
e Reconstruction:

m + iz&,cbv‘\"l

e @ + W1U1+W2U2+W\3‘13.+W4U4+---‘HA)KI‘M(

11/9/15 A human face may be considered to be a linear 51
combination of these standardized eigen faces From Prof. Derek Hoiem

-
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New representation in the lower-dim PC space

| N

5 . . ' or gined
'7(-\, — 5\’ 7(.J

jv = [, W)
fro)edao\

11/9/15 .52
From Prof. Derek Hoiem
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Key Property of Eigenspace Representation

Given ~ A
® 2 images xl s xz that are used to construct the Eigenspace

. g1 is the eigenspace projection of image Xl

J g2 is the eigenspace projection of image X2

Then, R R R R
g —g | = |Ix—x|

That is, @cance ’i-ntEigenspace s gpproximately equal)to the

distance between two'@gmal images. y

11/9/15 53
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Classify / Recognition with eigenfaces

Step I: Process labeled training images

* Find mean p and covariance matrix
Z=sum_i (x,— p) (x.— )T

* Find k principal components (i.e.
eigenvectors of Z) = u,,...u,

* Project each trajning image x, onto subspace
spanned by therincipal components:

(Wigyeo, W ) = (U T(X— ), .., U T (X — 1))

19N, Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 °>*
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Classify / Recognition with eigenfaces

‘ Step 2: Nearest neighbor based face classiﬁcata

Given a novel image x
* Project onto k PC’s subspace:
(W1; LWb = (u1T(X W, ..., u(x—p))
. Optlonal check reconstruction error x — X to
ether the image is really a face

assify as closest training face(s) in th
dimensional subspace

191, Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991 °°
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Is this a face or not?

e N\
StJaT Wy = weight(E, X)
T —V_Onglnal faces—v— - D = avg(distance(W,Wx))
trainingSet
l A
- </ D<o 7? B
g
E = eigenfaces(trainingSet) \/
Xis a face X is not a face
W = weights(E trainingSet)
L 4
Store X and Wi
Input unknown image X
End

Figure 1: High-level functioning principle of the eigenface-based facial recognition
11/9/15 algorithm 56
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Example 2: e.g. Handwritten Digits

2333333333
‘ °C16 X 19 gray scale 2333233333
* Total 658 such 3’s
« 130is shown 't;;QS(,
* Image x; : R
e Compute principal

WILUORCH I
“mumwmem

)33
333
333
333
333
233
333
335

WWHMNMWM

k)
2
3
3
3
]
3
3

wmwuwwwu
gﬁﬁ&ﬁﬁﬁﬁﬁﬁi
| IR o

1 G OIOs
(IO

]
-
0
&
=
=
-
IS
)
©
n.

e of 130 han sho

components
Mz k;l

X = /V\ I
3= |:3|+w1+w23-

11/9/15 e.g. From ESL book 57

[

s <+ 2_ 0 2 & & 8 +w, [T+ w, ,

FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.

11/9/15 e.g. From ESL book 58

K=2 @ Figure




Principal Components prgjection of the digits (time 0.02s)

The new
reduced
representation
is easier to
visualize and
intepret

Dr. Yanjun Qi / UVA CS 6316 / f15

PCA summary

| B

* General dimensionality reduction technique

* Preserves most of variance with a much more
—~—— ———————— —_—
compact representation

storage requirements (eigenvectors + a few

numbers per face/sample)

— Faster matching (since matching within lower-dim)

11/9/15 60
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PCA & Gaussian Distributions.

e PCAis similar to learning a Gaussian T
distribution for the data.

e [l is the mean of the distribution.

 Then the estimate of the covariance.

* Dimension reduction occurs by ignoring the
directions in which the covariance is small.

11/9/15 61
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(1) Limitations of PCA

* PCA is not effective for some datasets. T
* For example, if the data is a set of strings

* (1,0,0,0,..),(0,1,0,0...),..,(0,0,0,...,1) then the
eigenvalues do not fall off as PCA requires?
| DO QipmiPlue - [1,0.1)
( 0

),
0 1\

11/9/15 62
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(2) PCA Limitations

‘ e The direction of maximum variance is not
always good for classification (Example 1)

Q@
@
+ Ideal for ¢ )
capturing global o @
variance ! (©)
0®
® :j.
+ Not ideal for ® | o
discrimination
® 7'.
@
;»—.
11/9/15 First PC

63
From Prof. Derek Hoiem

PCA and Discrimination

* PCA may not find the best directions for
discriminating between two classes. (Example 2)

e Example: suppose the two classes have 2D Gaussian
densities as ellipsoids.

» 1%t eigenvector is best for representing the
probabilities / overall data trend

« 2" eigenvector is best for discrimination.

11/9/15 Dr. Yanjun Qi / UVA CS 6316 / f15 64
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PCA Limitations: lllustration of good
projection for classification purpose

e (Example 3)
x2 4

Poor Projection
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x1 x1

Good
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Principal Component Analysis

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters
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Dimension Reduction

1

Gaussian assumption

Direction of maximum
variance

Eigen-decomp

!

Principal
components
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Extra: A 2D Numerical Example
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PCA Example —=STEP 1

e Subtract the mean from each of the data
dimensions.

e Subtracting the mean makes variance and
covariance calculation easier by simplifying their
equations. The variance and co-variance values are
not affected by the mean value.

From Dr. S. Narasimhan

PCA Example —=STEP 1

ZERO MEAN DATA:

DATA:
x1 | x2 x1 | x2
2502.4 .69 .49
0.5/0.7 -1.31] -1.21
2.22.9 .39 .99
1.92.2 .09 .29
3.13.0 1.29 | 1.09
2.32.7 49 | .79
2 16 19 | -31
i i 1(15 -81 | -81
1110.9 -31 | -31
-71 -1.01 From Dr. S. Narasimhan
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PCA Example —STEP 2

‘ e (Calculate the covariance matrix \

cov= | .616555556 .615444444
.615444444 716555556

* since the non-diagonal elements in this covariance
matrix are positive, we should expect that the x1 and
X2 variable increase together.

11/9/15 71
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PCA Example —STEP 3

‘ e Calculate the eigenvectors and eigenvalues oﬂ
the covariance matrix

eigenvalues = 1.28402771
.0490833989
eigenvectors = -.677873399 -.735178656

-.735178656 .677873399
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PCA Example —STEP 3

Mean adjusted data with eigenvectors overlayed ° eige nvectors are p|0tt9d as
2 — ; diagonal dotted lines on the

. (o S
sl \ (- 6711855252~ 740632463)" , | plot.
\\ eNote they are
r N\ * + . perpendicular to each other.
. \ + ’ *Note one of the
I AN yd * 1 eigenvectors goes through
. AN the middle of the points, like
k AN drawing a line of best fit.
o8 / \\\ ] *The second eigenvector
4L ++ ‘\\ | gives us the other, I.ess
o \ important, pattern in the
15 -’ \\ 1 data, that all the points
N S L follow the main line, but are
2 45 4 05 0 05 1 15 2 off to the side of the main

Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of line by some amount.

the covariance matrix overlayed on top.
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PCA Example —STEP 4

‘ * Reduce dimensionality and form feature vector \
the eigenvector with the highest eigenvalue is the principle

component of the data set.

In our example, the eigenvector with the larges eigenvalue
was the one that pointed down the middle of the data.

Once eigenvectors are found from the covariance matrix, the
next step is to order them by eigenvalue, highest to lowest.
This gives you the components in order of significance.
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PCA Example —STEP 4

“—Feature Vector

FeatureVector = (eig, eig, eig; ... eig,)
We can either form a feature vector with both of the

eigenvectors:

-.677873399 -.735178656
-.735178656 .677873399

or, we can choose to leave out the smaller, less
significant component and only have a single

column:
-.677873399
-.735178656

11/9/15

Now, if you like, you can decide to ignore the
components of lesser significance.

You do lose some information, but if the
eigenvalues are small, you don’ t lose m%ch
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PCA Example —STEP 5

* Deriving the new data

FinalData = RowFeatureVector x RowZeroMeanData
RowFeatureVector is the matrix with the eigenvectors in the

columns transposed so that the eigenvectors are now in the
rows, with the most significant eigenvector at the top

RowZeroMeanData is the mean-adjusted data
transposed, ie. the data items are in each column,
with each row holding a separate dimension.
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PCA Example —STEP 5

FinalData transpose: dimensions
along columns

wl w2
-.827970186 -.175115307
1.77758033 142857227
-.992197494 .384374989
-.274210416 .130417207
-1.67580142 -.209498461
-.912949103 175282444
.0991094375 -.349824698
1.14457216 .0464172582
438046137 .0177646297
1.22382056 -.162675287
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PCA Example —STEP 5

Data transformed with 2 eigenvectors

" idolblevecfinal dat” ' +
15 |
1+
05
¥
+ + +
0 + +.
+
¥
-05
A1k
15|
-2 1 1 1 L L L
-2 -1.5 -1 -05 0 05 1 15 2

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.
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Reconstruction of original Data

*If we reduced the dimensionality, obviously, when
reconstructing the data we would lose those
dimensions we chose to discard.

* In our example let us assume that we considered
only the wl dimension...
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Reconstruction of original Data

Original data restored using only a single eigenvector

wl 4 T
-.827970186
1.77758033 T
-.992197494
-.274210416 I L
-1.67580142 Al .
-.912949103 ‘
.0991094375 :
1.14457216
438046137 B T T R

1.22382056 Figure 3.5: The reconstruction from the data that was derived using only a single eigen-
vector

A |-
" flossyplusmean.dat +
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