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A Typical Machine Learning Pipeline

Optimization
e.g. Data Cleaning  Task-relevant X
Low-level Pre- Feature Feature f X —Y
sensing processing Extract Select

Inference,
Prediction,
Recognition

Label

Collection

Y

Evaluation
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e.g. SUPERVISED LEARNING

* Find function to map input space X to
output space Y

—————————————————————————————————————————————————————————————

* Generalisation: learn function / hypothesis

+ from past data in order to “explain”, “predict”,:
. “model” or “control” new data examples |

I”

N o e = = = = - —
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X, X, X, Y

A Dataset

fiXi—iY:

» Data/points/instances/examples/samples/records: [ rows |

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

* Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]
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Main Types of Columns

X, X, X, Y
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 Continuous: a real

number, for example,
age or height

* Discrete: a symbol, like

“Good” or “Bad”




e.g. SUPERVISED Classification

target/ class Training dataset consists
i of input-output pairs
B
= model
training
dataset i learn f
B
test ? B e.g. Here,
dataset ? - g targetYisa
- ;
! discrete target
? apply ; variable
? model A
Jx,)
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Today:

(] Data Representation
J Review of Linear Algebra and Matrix Calculus
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DEFINITIONS - SCALAR

€ a scalar is a number
— (denoted with regular type: 1 or 22)

DEFINITIONS - VECTOR

@ Vector: a single row or column of
numbers

— denoted with bold small letters
— row vector

a= [l 2 3 4 5]
— column vector (default)

"l

DNk wih—




DEFINITIONS - VECTOR

e \ector in R"is an ordered set
of n real numbers.

-eg.v=(1,6,3,4)isinR*

— A column vector: /

— A row vector:
\
1 6 3 4)

A LW N =

DEFINITIONS - MATRIX

€ A matrix is an array of numbers

— adn dn dis
A - |:a21 a» a23i|
® Denoted with a bold Capital letter
@ All matrices have an order (or dimension):

that is, the number of rows [¥] the number of
columns. So, A is 2 by 3 or (Z27¥] 3).

€ A square matrix is a matrix that has the
same number of rows and columns (n [¥] n)




DEFINITIONS - MATRIX

* m-by-n matrix in R™" with m rows and
n columns, each entry filled with a
(typically) real number:

* e.g.3*3 matrix , ,
4 78 6
9 3 2

Special matrices

0 0
b 0| diagonal
0 c

~—
S O Q

S O
e BEES VN

C
e } upper-triangular
f

a b 0 0 4 0 0

¢ d el tri-diagonal b ¢ 0| lower-triangular
0/ ¢ d e f

0 0 i j

S O

|

0 0
1 0| I (identity matrix)
0 1
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Special matrices:
Symmetric Matrices

A=4" (az=a;)

4 5 =3
e.g.: 5 7 2
-3 2 10
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1 2
A=|3 4
5 6

>

1
1
WN =
(@) ) @2 JELN
(o No o N|

Q

-]

Q.

(o]

Il
1
WN =
auUlh
[
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7 10
and B=|8 11 C=A-B=?

9 12

C=A+B=?

C=AB=?

C=BA=?
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Minimum

requirement
test
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Review of MATRIX
OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus

(1) Transpose

Transpose: You can think of it as
— “flipping” the rows and columns




(2) Matrix Addition/Subtraction

* Matrix addition/subtraction

— Matrices must be of same size.
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(2) Matrix Addition/Subtraction
An Example

e |f we have

1 2 7 10
A=|3 4| and B=|8 11
5 6 9 12

then we can calculate C=A + B by

1 2 7 10 8 12
C=A+B=|3 4|+|8 11|=|11 15
5 6 9 12 14 18
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(2) Matrix Addition/Subtraction
An Example

e Similarly, if we have

1 2 7 10
A=|3 4| and B=|8 11
5 6 9 12

then we can calculate C=A - B by

1 2|7 10 -6 -8
C=A-B=|3 4|-|8 11|=|-5 -7
5 6| |9 12 -4 -6
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OPERATION on MATRIX

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(3) Products of Matrices

* We write the multiplication of two matrices A
and B as AB

* This is referred to either as
* pre-multiplying B by A
or
* post-multiplying A by B

e So for matrix multiplication AB, A is referred to as
the premultiplier and B is referred to as the
postmultiplier

(3) Products of Matrices

mxn gxp mxp

ayp  ayp . ay |[bu b . by i1 €12 - Cip

az dx . ap byy Dy . b:p | €21 € . Cap

... .. ... e e e ses  see  sas “ .. .. CU “ e

am1 Am2 : Amn bql bql : bqp Cm1  Cm2 : Cinp

n

" . = Cii =Y apby » «
Condition:n=q = Z by AB # BA




(3) Products of Matrices

* |In order to multiply matrices, they must be
conformable (the number of columns in the
premultiplier must equal the number of rows
in postmultiplier)

* Note that
can(mxn)x(nxp)=(mxp)
* an (mxn) x(p xn)=cannot be done
*a(lxn)x(nx1)=ascalar(1x1)
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Products of Matrices

* If we have A ;3 and B 5, then
dy; 4 Ay b11 I312 Cii Cp
AB = dy a9y dy (X b21 bzz =1Cy Cy =C
d;; d; dgp; 31 Y3

Cll = allbll + a12|:)21 + a13b31
C12 = a11|:)12 + a12|:)22 + a13b32
C21 = a21bll + a22b21 + a23|331

where

Cp = ayby, +a,by, + a23b32
Cy; = ayby; +a3,b,; +agb;,
Cy, = ayby, +3a5,b,, + 25505,
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Matrix Multiplication

An Example
. 1 4 7 1 4
Ifwehave A_|> 5 8| and B=|2 5
369 3 6
1 4 7] 1 4] [c, c,] [30 66
then ap-|2 5 8|x|2 5|=|c, c,|=|36 81
36 9| |3 6| |c; ¢, |42 96

where Cy; =aybyy +a,by +asby, = 1(1) + 4(2) + 7(3) =30
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Some Properties of
Matrix Multiplication

 Note that

* Even if conformable, AB does not necessarily
equal BA (i.e., matrix multiplication is not
commutative)

* Matrix multiplication can be extended beyond
two matrices

* matrix multiplication is associative, i.e.,
A(BC) = (AB)C
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Some Properties of
Matrix Multiplication

# Multiplication and transposition
(AB)T = BTAT

€ Multiplication with Identity Matrix

1 0 . 0
0 1 ) 0
0 0 . 1
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Al =14 = A, where I =

Special Uses for
Matrix Multiplication

* Products of Scalars & Matrices = Example, If we

have 1 2
A=|3 4| and b=35
5 6

then we can calculate bA by

1 2 3.5 7.0
bA=3.5|3 4|=|10.5 14.0
5 6 17.5 21.0

@ Note that bA = Ab if b is a scalar

30




Special Uses for
Matrix Multiplication

* Dot (or Inner) Product of two Vectors

* Premultiplication of a column vector a by
conformable row vector b yields a single value
called the dot product or inner product - If

aT=[3 4 6] and b= g

then their inner product gives us
aTb=a-b=[ 3 46 ] g =3(5)+4(2)+6(8)=71=b"a

which is the sum of products of elements in
e similar positions forthé' two vectors "

Special Uses for
Matrix Multiplication

e Quter Product of two Vectors

* Postmultiplication of a column vector a by
conformable row vector b yields a matrix
containing the products of each pair of
elements from the two matrices (called the
outer product) - If

]
8

aT=[3 4 6] and b=
15 6 24]

then abT gives us

ab” - [528]: 20 8 32

30 12 48
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3
4
6




Special Uses for
Matrix Multiplication

e QOuter Product of two Vectors, e.g. a special
case :

As an example of how the outer product can be useful, let 1 € R™ denote an n-dimensional
vector whose entries are all equal to 1. Furthermore, consider the matrix A € R™*™ whose
columns are all equal to some vector x € R™. Using outer products, we can represent A
compactly as,

T 1 - ITn Z1
o X9 ' ) )

A—!al:m--- z:|— S0 =17t 1] =21,
|| | : : IR :

Ty T ' T, T

9/9/15 Dr. Yanjun Qi / UVA CS 6316 / f15 33

Special Uses for
Matrix Multiplication

e Sum the Squared Elements of a Vector
* Premultiply a column vector a by its transpose

i

then premultiplication by a row vector a'
a’ =[ 5 2 8 ]

will yield the sum of the squared values of
elements for a, i.e.

5
aTa=[ 5 2 8 ]J 2 l=52+22+82=93
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Special Uses for
Matrix Multiplication

e Matrix-Vector Products (l)

Given a matrix A € R™*" and a vector z € R”, their product is a vector y = Az € R™.

If we write A by rows, then we can express Az as,

T T

— af — alz
y == A:L’ = T —
T T
i — a,, — 1 i a,,T 1
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Special Uses for
Matrix Multiplication

e Matrix-Vector Products (ll)

Alternatively, let’s write A in column form. In this case we see that,

I

| 1]
y=Arz=|a a --- a, . =|a |1+ | a
A

n

Ty .

To+ ...+ lan

In other words, y is a linear combination of the columns of A, where the coefficients of
the linear combination are given by the entries of z.
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Special Uses for
Matrix Multiplication

e Matrix-Vector Products (llIl)

to multiply on the left by a row vector. This is written, y* = 27 A for A € R™*" z € R™,

and y € R™.

| |

yYr=2TA=2"|a; ay --- an =[zTal zTay --- :z:Tan]
|

which demonstrates that the ith entry of y” is equal to the inner product of z and the ith

column of A.
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Special Uses for
Matrix Multiplication

e Matrix-Vector Products (V)

yT = zTA
N -
= (o oz o oz ]| “? -
e
T —J4z[— of —]+..+z[— of —]

= .’L‘l[— a;

so we see that y7 is a linear combination of the rows of A, where the coefficients for the

linear combination are given by the entries of z.
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MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(4) Vector norms

A norm of a vector ||x|| is informally a measure of
the “length” of the vector.

n 1/p
]|, = (Z -n”)
1=1

— Common norms: L,, L, (Euclidean)

n
ol = Jail el =
1=1

- I-inﬁnity

|00 = max; |x;)
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More General : Norm

* Anorm is any function g() that maps vectors
to real numbers that satisfies the following
conditions:

Non-negativity: for all z € R, g(z) >0
Strictly positive: for all z, g(x) = 0 implies that z = 0
Homogeneity: for all z and a, g(ax) = |a| g(x), where |a| is the absolute value.

Triangle inequality: for all z,y, g(x +y) < g(x) + g(y)
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Vector Norm (L2, when p=2)

v
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Orthogonal & Orthonormal

Inner Product defined between
column vector x and y, as Y1
n

€T9

> Xey= J'T,l/ eR = [ Ty To e Iy, ] : = Z Tili.
: i=1
yll

If uev=0, | |u|],!=0, ||v|],!=0
= u and v are orthogonal

If uev=0, | |ul],=1, [[v]],=1
- u and v are orthonormal
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Orthogonal matrices

« Notation:
’ “}T_ =[ay ay - ay] ty
a a . _ '
D " ,q wy = [ay ay -+ as,] 4= ul
. ‘
iy Ao . iy Uy = [aml (7 dmn] y

« A is orthogonal if:

u.up =0, for every j # k (u; 1s perpendicular to u;)

. o cos(@) —sin(@)
xampre: sin(@)  cos(0)

9/9/15 Dr. Yanjun Qi / UVA CS 6316 / f15 44




Orthonormal matrices

« A'is orthonormal if:
(1) up. 2y =1o0r ||| =1, for every &

(2) u;.u; =0, for every j # k (u; is perpendicular to uy)
« Note that if A is orthonormal, it easy to find its inverse:

A4T =AT4 =1 (ie, 4t =47)

|v|| (does not change the magnitude of v)

Property: | 4v]| =
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MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(5) Inverse of a Matrix

The inverse of a matrix A is commonly
denoted by Al orinv A.

The inverse of an n x n matrix A is the matrix
Alsuchthat AAl=1=A1A

The matrix inverse is analogous to a scalar
reciprocal

A matrix which has an inverse is called
nonsingular

(5) Inverse of a Matrix

For some n x n matrix A, an inverse matrix A
may not exist.

A matrix which does not have an inverse is
singular.

__________

- ————




THE DETERMINANT OF A
MATRIX

& The determinant of a matrix A 1s
denoted by |A| (or det(A)).

€ Determinants exist only for square
matrices.

OB IfA= o o

‘A‘ = 4,8y —a,a,,

THE DETERMINANT OF A
MATRIX

2x2
dyy dyp app Ay
:'I - . d{’f(A) - - (:-'-11(4'23 - ("2]_("]_2
a  dx ar A
3x3
dyp dyp dig
(>3 dy dis iy dis
1 dxp dyz | =dy ! + dz
(3; i3 Az dss G da3
G3; dz  diz

nxn

det(A) =

J

m .
_(—'l)ﬁkajk(fef(:'ljk), foranyk: 1 <k <m
=1




THE DETERMINANT OF A
MATRIX

det(AB) = det(A)det(B)
det(A + B) # det(A) + det(B)

[a;;, 0 . 0 ]

n
diagonal matrix: If 4= . then det(A4) =1 a;
. . : i=1

HOW TO FIND INVERSE MATRIXES?
An example,

oIf a b
0A=L d} and |A| [#] 0

_1 1 [ d —b}
g =
det(A) |—c a




Matrix Inverse

* The inverse A-! of a matrix 4 has the property:
AA=A14=1I

o Al exists only if det(A4) #0

e Terminology
— Singular matrix: 4-/ does not exist
— Ill-conditioned matrix: A4 is close to being singular

PROPERTIES OF INVERSE
MATRICES

B-IA-I

* (4B)"

¢ (AT)—I

Il
—_—
N

[N
~——

* 4 = 4




Inverse of special matrix

- For diagonal matrices D' = diag{d;",.... d-1

« For orthonormal matrices A—! = AT

— a square matrix with real entries whose columns and rows
are orthogonal unit vectors (i.e., orthonormal vectors)

Pseudo-inverse

* The pseudo-inverse 4" of a matrix A (could be
non-square, €.g., m X n) is given by:

A+ — (.‘ITA)_]-AT

* It can be shown that:

AtA4 =1 (provided that (47 4)™" exists)




MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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(6) Rank: Linear independence

e A set of vectors is linearly independent if none of them
can be written as a linear combination of the others.

SRS

x3 =-2x1+ x2

W N =
| o

=>» NOT linearly independent
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(6) Rank: Linear independence

* Alternative definition: Vectors v,,...,v, are
linearly independent if ¢,v;+...+c v, = 0
implies ¢;=...=¢,=0

|

0
vi v, v;|c |=1]0
0

[ R I e

0
u _lo
v] 0 (u,v)=(0,0), i.e. the columns are

linearly independent.

e.g.

1 0
2 3
1 3

(6) Rank of a Matrix

* rank(A) (the rank of a m-by-n matrix A) is
= The maximal humber of linearly independent columns
=The maximal number of linearly independent rows

b))

Rank=? Rank=?

« If Ais n by m, then
— rank(A)<= min(m,n)
— If n=rank(A), then A has full row rank
— If m=rank(A), then A has full column rank




(6) Rank of a Matrix

* Equal to the dimension of the largest square
sub-matrix of 4 that has a non-zero

determinant
45 2 14
3.9 6 21 has rank 3
Example: |8 107 28
PlC 1y 5 o 5
4 5 2
det(4)=0.butdet(3 9 6[))=6320
8 10 7
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(6) Rank and singular matrices

If A 1s nxn, rank(A) = n iff A 1s nonsingular (i.e.. invertible).
If A is nxn, rank(A) = n iff det(A) # 0 (full rank).

If A 1s nxn, rank(A) < n iff A4 1s singular
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MATRIX OPERATIONS

1) Transposition

2) Addition and Subtraction
3) Multiplication

4) Norm (of vector)

5) Matrix Inversion

6) Matrix Rank

7) Matrix calculus
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Review: Derivative of a Function

a+h)—f(la
%ingf( 2 f< ) is called the derivative of [at .

We write: f’(x) = %grol

f(x+h)—f(x)
h

“The derivative of f with respect to X is ...”

There are many ways to write the derivative of )} = f (X)
=>» e.g. define the slope of the curve y=f(x) at the point x
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y=x"-3

Review: Derivative of a Quadratic Function

(x+h)2 —3—()62 —3)

N = O e \S B VS B S V) B e

e h

] ,:hm)(f+2xﬁ+}>7\—)/

; y h—0 Yq‘

: 0
V' =lim2x -+

i h—0

:: y,zzx
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Some important rules for taking derivatives

Scalar multiplication: 0[af(z)] = a[0, f(z)]
Polynomials: 9, [xk] — fgpk—1

Function addition: 0,[f(z) + g(z)] = [0, f(z)] + [0rg(z)]

Function multiplication: 0,[f(x)g(x)] = f(x)[0.9(x)] + [0 f(x)]g(x)

f(z) ] — [0z f(2)]g(z) = f(2)[0z9(x)]
g9(=) lg(@)]?

Function composition: 9,[f(g(x))] = [0z9(x)][0xf](g9(z))

Function division: 0, [

Exponentiation: 0;[e*] =e* and 0;[a®] = log(a)e”

Logarithms: 9,[logz] = 1
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Review: Definitions of gradient
(Matrix_calculus / Scalar-by-matrix)

Suppose that f: R™*™ — R is a function that takes as input a matrix A of size m x n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of

=» Denominator layout

o —

o g o
ofA) ofd) ... 9fA)

vAf(A) E Rmxn — 6A21 3.422 aAgn
In principle, gradient : : - :
tliral Gxiehdlonofipatea of(A) Of(A) ... Of(A)

derivatives to functions of | 0Am1 OAm>2 OAmn
multiple variables.
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Review: Definitions of gradient
(Matrix_calculus / Scalar-by-vector)

e Size of gradient is always the same as
the size of

=» Denominator layout

78 |cgn | R™
Vi@ = | P cR" ifx €
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__________________________________

For Examples

- ox'a  da'x
ox . ox Y
dalXb T
X — ab
Ha:;);Tb _ bt
DalXa B Dal X a B
0X 0X B
o T
ox* Bx ~ (B+B)x
ox
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aa
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Exercise: a simple example

1
T

f(w)=w X=[W1,W2,W3] 2 [=w +2w,+3w,

3

=» Denominator layout

af ,
011'1 T 1
of _s ﬂ=8WX=X= )
Owo ow ow
. 3
o _,
()u'g B
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Even more general Matrix Calculus

Types of Matrix Derivatives

Scalar Vector Matrix
: dy dy _ (dwi| | AY _ [vi
Sca]a'l dz dz [a;r de = | 92
Vector | 4 = | 2v| | &¥ — | Dui
e dx dx; dx O,
Matrix X = [E)mﬂ-]

By Thomas Minka. Old and New Matrix Algebra Useful for Statistics
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Review: Hessian Matrix / h==2 case

Singlevariate - multivariate F(xy)

F
. . . dax
o 1stderivative to gradient, g=Vf = ”
dy
’f  &f
H ar axdy
« 2" derivative to Hessian | 2 2y
dxdy ay_z
9/9/15 Dr. Yanjun Qi / UVA CS 6316 / f15 72




Review: Hessian Matrix

Suppose that f : R™ — R is a function that takes a vector in R™ and returns a real number.
Then the Hessian matrix with respect to z, written V2f(z) or simply as H is the n x n
matrix of partial derivatives,

B e B
il 01102y oz10z,,
Pl P | Pl
Vif(-’l?)ERnxn: 0xq011 6x% 0xq0zn

L 0z,0z; Oz,0zo 02
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Today Recap

(] Data Representation
O Linear Algebra and Matrix Calculus Review
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