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Where are we ? =
major sections of this course

‘ [J Regression (supervised) T

[ Classification (supervised)
() Feature selection

O Unsupervised models
1 Dimension Reduction (PCA)
# O Clustering (K-means, GMM/EM, Hierarchical )

U Learning theory

O Graphical models
O (BN and HMM slides shared)
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An unlabeled
Dataset X —‘

a data matrix of n observations on

p variables x;,x,,...x,

Unsupervised learning = learning from raw (unlabeled,
unannotated, etc) data, as opposed to supervised data
where a classification label of examples is given

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns]

11/11/15
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What is clustering?

‘- Find groups (clusters) of data points such that data points in a \
group will be similar (or related) to one another and different from

(or unrelated to) the data points in other groups

Intra-cluster
distances are
minimized

Inter-cluster
distances are
maximized

between
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Web Images News Videos Shopping More ~ Search tools

About 37,200,000 results (0.43 seconds)

JaguarUSA.com - Jaguar® Convertible Car (6]
www.jaguarusa.com/ ¥
Real Comfort Comes From Control. Schedule Your Test Drive Today.

Y .
_(//6\/\ Jaguar USA has 1,261,482 followers on Google+
' Build & Price Locate A Retailer

Design A Jaguar Car to Your Driving Find Your New Dream Car At Your
Style and Personal Tastes. Closest Jaguar Retailer Today.
Naughty Car. Nice Price. Request A Quote

Unwrap A Jaguar® Vehicle During Our Get A Quote On Your Favorite Model
Winter Sales Event On November 3rd From Your Local Jaguar Retailer.

Jaguar: Luxury Cars & Sports Cars | Jaguar USA
www.jaguarusa.com/ ¥ Jaguar Cars ~
The official home of Jaguar USA. Our luxury cars feature innovative designs along with

b * legendary performance to deliver one of the top sports cars in the ...
pplication Mocon e X 30

Jaguar - Wikipedia, the free encyclopedia

(I) 3 S en.wikipedia.org/wiki/Jaguar ~ Wikipedia ~
. e arc The jaguar Panthera onca, is a big cat, a feline in the Panthera genus, and is the only
Panthera species found in the Americas. The jaguar is the third-largest ..
Jaguar Cars - Jaguar (disambiguation) - Tapir - List of solitary animals

Re Su1t Jaguar Cars - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Jaguar_Cars ~ Wikipedia ~
Jaguar Cars is a brand of Jaguar Land Rover, a British multinational car manufacturer

( j lusterin E headquartered in Whitley, Coventry, England, owned by Tata Motors since ...

Images for jaguar Report images

More images for jaguar
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Application (II): Navigation

Entertainms

ectory - Mozilla Firefox FEX)

Fle Edt View Hstory Bookmarks Tooks Help

@- -@ (% [ http:ffair yahoo. e [=]»] <)
# Getting Started 5 Latest Headlines
Yahoo! My Yahoo! Mail Welcome, Guest [Sign In] Directory Home Help &

Search: OtheWeb | @the Directory | Othis category
QQJ! DIRECTORY =

I~
Email this page  Suqgest s Site  Advanced Search (Gfa }\

SPONSOR RESULTS

w Value City Furniture SPONSOR RESULTS

wwnw. vef. com Quality Home Entertainment Packages Browse Today and Find a Store.

YaH

Entertainment

Directory > Entertaip

Entertainment
= Center Furniture
Save 30-60% On A
) Variety Of Furniture
Top Categories For Any Room Thru
Music (76772) New: Television Shows (17085) New: nns
—_— T JCPenney.com

CATEGORIES (Whats This?)

.
.

+ Actors (19211)Newr * Humor (3927)
 Movies and Film (40031) New: * Comics and Animation (5778)New: w
i

Additional Categories g:.iiﬁ:ﬂnem
¢ Amusement and Theme Parks (449) ¢ Magic (353) E"‘r;';:'“"’ Factory
* Awards (59) ¢ News and Media (443) www. StudioTech. com
¢+ Blogs@ * Organizations (33)
+ Books and Literature@ + Performing Arts@ %nainment
+ Chats and Forums (47) + Radio@ FEurniture
« Comedy (1730) + Randomized Things (57) zi‘:zr;f’d‘t?:?%
+ Consumer Electronics (1355)News * Reviews (32) www. bushfumniturecolle.
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Application (III): Visualization

Islands of Music

Analysis, Organization, and Visualization of
Music Archives

Islands of music
(Pampalk et al., KDD’ 03)

piece of music: member of a music collection and inhabitant of islands of music. Groups of
similar pieces of music (also known as genres) like to gather around large mountains or small
hills depending on the size of the group. Groups which are similar to each other like to live
close together. Individuals which are not members of specific groups usually live near the
beach and some very individualistic pieces might be found swimming in deep water.

islands of music: serve as graphical user interface to a music collection and are intended to
help the user explore vast amounts of music in an efficient way. Islands of music are
generatéedsautomatically based on psychoacoustics models and self-organizing maps. 7

SO N\Application (III): Visualization

(feature changes =» clusters’ change)

Islands of music (Pampalk et al., KDD’ 03, http://www.ofai.at/~elias.pampalk/kdd03
Visualizing Changes in the Structure of Data for Exploratory Feature Selec4tic_)ﬂu
\/\__\ —




Dr. Yanjun Qi / UVA CS 6316 / f15

Roadmap: clustering

‘ = Definition of "groupness” T

= Definition of "similarity/distance"
= Representation for objects
= How many clusters?
= Clustering Algorithms
®) = Partitional algorithms
= Hierarchical algorithms
" Formal foundation and convergence

11/11/15 9
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Clustering Algorithms

‘ e Partitional algorithms .T‘

. % . “4
— Usually start with a random P | %
(partial) partitioning B | ak )
— Refine it iteratively g‘;“ "‘; %’A .3,

* K means clustering =
* Mixture-Model based clustering

e Hierarchical algorithms
— Bottom-up, agglomerative
— Top-down, divisive

11/11/15
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(1) Hierarchical Clustering

Task Clustering

| |
Representation | n/a
' |
: | No c+early
Score Function § defined loss
 Z _i
T i greedy bottom-up (or
Searchloi:tlmlzatlon | top-down)
| (tree)

11/11/15
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) Partitional Clustering

e Nonhierarchical
e Construct a partition of n objects into a set of

K

clusters

e User has to specify the desired number of
clusters K.

(L ‘
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Partitional clustering (e.g. K=3)

Original points Partitional clustering

Partitional clustering (e.g. K=3)

> age
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Clustering Algorithms

‘ * Partitional algorithms ‘T‘

— Usually start with a random %
(partial) partitioning 1;

— Refine it iteratively 8 /
» * K means clustering
* Mixture-Model based clustering

n ,,.’

;b

o
- g

11/11/15
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Partitioning Algorithms

| B

* Given: a set of objects and the number K

* Find: a partition of K clusters that optimizes a
chosen partitioning criterion

“ov0
( — Globally optimal: exhaustively enumerate all\> @(twm

partitions

— Effective heuristic methods: K-means and K-
medoids algorithms

11/11/15




‘ Algorithm

1.
2.
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K-Means

Decide on a value for@

Initialize thefk cluster centermif necessary.

3. Decide the(class memberships'pf the N objects hy assigning them to the
nearest clus i

zeCk

4, <Re W by assuming the memberships found

above are correct.

5. If none of the N objects changed membership in the last iteration, exit.
Otherwise go to 3.

11/11/15
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K-means Clustering: Step 1 -
random guess of cluster centers

® ®
4 L 4 ’0’
'k S
1 \ 4 °
3
®
L 2 .k
2 2 o ®
® ° ¢
® L 4
1 0’ ° L 2
®
X .k; ® R
0 T T T = T

11/11/15
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K-means Clustering: Step 2

- Determine the membership of each data points

11/11/15

|7 5
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K-means Clustering: Step 3
- Adjust the cluster centers
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K-means Clustering: Step 4
- redetermine membership

o a
o SN
4 ® .k!! <><>
1<> o
3
L 4
2 M * ® o *
\4 ue
}.l( ¢ ‘ ks Slluster
1 ’;-’ ® ¢ jjgets
X o ¢ o m‘?ri‘
0 | | | points
0 1 2 3 4 5
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K-means Clustering: Step 5
- readjust cluster centers
o a
® * o
¢ 4
4 .—1?1 o
¢ <
3
L 4
2 : ® * .
¢ 4(2 M .k
1 @ 3 &
® L 4
X o ¢ ’
0 . T T .
0 1 2 3 4 5
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How K-means partitions?

11/11/15

When K centroids are set/fix;‘
they partition the whole data
space into K mutually exclusive
subspaces to form a partition.

A partition amounts to a

Voronoi Diagram

Changing positions of centroids
leads to a new partitioning.

Dr. Yanjun Qi / UVA CS 6316 / f15

K-means: another Demo

Auton’s Graphics =

x1

* K-means
— Start with a random
guess of cluster o8
centers
— Determine the 05

membership of each
data points

— Adjust the cluster
centers

0.4

0.2

11/11/15
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K-means: another Demo

- Bfas s ZE| 1. User set up the number
clusters they’d like. (e.g.
k=5)

08 T

06 T

0.4 T

0z T
4 0 0,2 0.4 0,6 0.8 1 0
11/11/15
Dr. Yanjun Qi / BBA CS 6316 / f15
n
K-means: another Demo

4i Auton’s Graphics e f dl

d 1. User set up the number
clusters they’d like. (e.g.
K=5)

08 T
2. Randomly guess K cluster
Center locations
06 T
0.4 T
02 T
0 0,2 0.4 0.6 0.8 1 «0

11/11/15
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K-means: another Demo

fAuton’s Graphics

[l

x1

0.8

0.6

0,4

0.2

11/11/15

1.

User set up the number
clusters they’d like. (e.g.
K=5)

Randomly guess K cluster
Center locations

Each data point finds out
which Center it's closest to.
(Thus each Center “owns” a
set of data points)
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K-means: another Demo

Auton’s Graphics

x1

0.8

0.6

0.4

0,2

11/11/15

G
1.

User set up the number
clusters they’d like. (e.g.
K=5)

Randomly guess K cluster
centre locations

Each data point finds out
which centre it's closest to.
(Thus each Center "owns” a
set of data points)

Each centre finds the
centroid of the points it owns
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K-means: another Demo

Auton’s Graphics ] * I J|

[ﬂ

0.8 T
06 T
0.4 T -

0.2 t+

0.4 0.6 0.8 1

x0

11/11/15

1.

User set up the number
clusters they’d like. (e.g.

K=5)

Randomly guess K cluster
centre locations

Each data point finds out
which centre it's closest to.
(Thus each centre “owns” a
set of data points)

Each centre finds the
centroid of the points it owns

...and jumps there

Dr. Yanjun Qi / BOA CS 6316 / f15

K-means: another Demo

=

Auton”s Graphics ] 1

11/11/15

User set up the nhumber
clusters they’d like. (e.g.

K=5)
Randomly guess K cluster
centre locations

Each data point finds out
which centre it's closest to.
(Thus each centre “owns” a
set of data points)

Each centre finds the
centroid of the points it owns

...and jumps there
...Repeat until terminated!
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K-means

= fAuton’s Graphics =]

k| Aclr 11icar haw manvu FIIIC+QPJ

Computational Complexity: O(n)
where n is the number of points?

0.8 T

Cen cations

3.| Each datapoint finds out
which Center it’ s closest to.

4. Each Center finds the
centroid of the points it o4 T
owns

0.6 T

Any Computational Problem?

11/11/15 1 : : : 31 x0
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Time Complexity

‘ * Computing distance between two objs is O(p) where ﬂ

is the dimensionality of the vectors.

S"(e[? 3
e Reassigning clusters: istance computations,
Step L

* Computing centroids: Each obj gets added once to
some centroid: O(np).(

e Assume these two steps are each done once for
iterations: O(/Knp). O ( 2, ~ (JML
\(\ | > HIW

11/11/15
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Roadmap: clustering

‘ = Definition of "groupness” T

= Definition of "similarity/distance"
= Representation for objects
= How many clusters?
= Clustering Algorithms
= Partitional algorithms
= Hierarchical algorithms
®) = Formal foundation and convergence

11/11/15 33

Dr. Yanjun Qi / UVA CS 6316 / f15

How to Find good Clustering?

‘- Find groups (clusters) of data points such that data points in a \
group will be similar (or related) to one another and different from

(or unrelated to) the data points in other groups

Inter-cluster

Intra-cluster distances are
C> distances are maximized
minimized

11/11/15 34
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How to Find good Clustering? E.g.
—

Auton’s Graphics =

s

* Minimize the sum of
distance within clusters

x1

. V=6 n - - \2 | o8 T
aligm1n2 D m ; (xl. - Cj)
{Cj’mi,j} =Ll
0.6 T

—

1 X, € the j-th cluster ‘
] 0 x, ¢ thej-thcluster | ,, | .

6
z m. . =1
N LJj 0.2
J=1
— any x. € a single cluster v
! 1 0 0,2 0.4 0,6 0.8 1
11/11/15 35 x0
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How to Efficiently Cluster Data?

| ; B

6 n ~

argminZZml.j()_c’i -C
{Com }imti=t

Memberships {ml., j} and centers {C j} are correlated.

5]

- 1 j=argmin(¥,—C,)*
Given centers {Cj}, m, .= k S

0 otherwise

Given memberships {ml. ; }, C. ===

11/11/15 i=1 36
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Convergence v,

B S I R SV S =)

‘ * Why should the K-means algorithm ever reach a fixed poi‘nt? |
— A state in which clusters don’ t change.

. @ is a of I ineral procedure known as the

Expectation Maximizatio lgorithm.
— EM is known to converge.
— Number of iterations could be large.

* Cluster goodness measure / Loss function to minimize
sum of squared distances from cluster centroidj

* Reassignment monotonically decreases the goodness measure
since each vector is assigned to the closest centroid.

11/11/15
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Seed Choice

* Results can vary based on random seed selection.
‘ . \

® '3
. ° &°
@ — Py
k, P o
3
o
9 M SN Y
A4 ‘ * ¢
3 f *
1 ° XS
*
X3 ." ¢ ¢
k °
0

sub-optimal Flusterings.

od seeds using a heuristic (e.g., do o any

existing mean)
— Try out{ultiple starting points i ti!!)
— Initialize with the results oflanother method. ,

11/11/15

° ome seedjan result in poor convergence rate, or convergence to

— Selectg
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(2) K-means Clustering

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

11/11/15

Clustering

1

n/a

Sum-of-square
distance to centroid

K-means algorithm

Cluster
membership &
centroid

39
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Roadmap: clustering

‘ = Definition of "groupness” T

= Definition of "similarity/distance"

= Representation for objects

= How many clusters?
= Clustering Algorithms

®) = Partitional algorithms
= Hierarchical algorithms

" Formal foundation and convergence

11/11/15

40
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Other partitioning Methods

‘ * Partitioning arouno(mgd_&_dsj@;@: instead“of averages, \
use multidim medians as centroids (cluster “prototypes ).
Dudoit and Freedland (20Q2).

. §e|f—organ§,zing map . add an underlying( >
topology (neighboringstructure on a lattice) that relates
cluster centroids to one another. Kohonen (1997), Tamayo

et al _(1999).
. L k-means: allow for a “gradation” of points between

clusters; soft partitions. Gash and Eisen (2002).

* Mixture-based clustering:/implemented through an@
(Expectatiorm-Maximization)algorithm. This providessofi
_partitioniag, and allows for modeling of clusterCentroids)

and. Yeung et al. (2001), McLachlan et al. (200

11/11/15
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A Gaussian Mixture Model for Clusteriﬁg>

Ai Auton’s Graphics (=]
-I Assume that data are x ,

generated from a mixture of
Gaussian distributions

08 T
* For each Gaussian distribution
— Center: ILL

— Variance:  ; (ignored in the T
following for simplified

equations)
0.4 T

* For each data point

— Determine membership

z; « 1f x; belongs to j-th cluster

1 0 0.2 0.4 0.6 0.8 1
11/11/15 , 42
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Learning a Gaussian Mixture

(with known covariance)

‘ * Probability p(x=x;) @ T

p(x=xi)zzp(x=xi’:u :ﬂj)zzp(ﬂ =ﬂj)\0(x:xi | =)

M H —

Total low of probability \

11/11/15 43
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Learning a Gaussian Mixture

(with known covariance)

‘ * Probability p(x=x;) T

px=x)=Y plx=x,1=4;)= Zp(u ﬂ,)p(x x| 1= ﬂ,)‘d
H;

21
:zp(/ﬂ:/;) 1 H ‘UJH
m / (27:0 )M Assuming

Log-likelihood of data logp(x1, T2, T3, ...

n | x,-—ﬂju
S log p(x=x)= D log| Y p(p = pt;) ———exp| ———52
i=\ i i (27[0'2) 20

),

Apply MLE to find optimal parameters {

11/11/15
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Learning a Gaussian Mixture

(with known covariance)

‘ Wy - ket _‘

E-Step  E[z;]=plu=u; |x=x)

WWJ;CWQL"V k (x=ux; |u=u;)p(u=u;)
’43 Al p & Y px=x; | =) p(u=pL;)
. n=I
4o v _ 20 D(u =
Se 2 b= p,)

11/11/15 45
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Learning a Gaussian Mixture

(with known covariance)

‘ lé merh =) C&'\M‘J ’Ez‘wam
M-Step - 1 En:E[zl.j]xl.
3 Elz,] i=1
i=1

plu=u,)< %EE[Z,,J
i=1

Covariance: Zj(j: 1 to K) will also be
derived in the M-step under a full setting

11/11/15 46
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Expectation-Maximization
for training GMM

e Start:

‘ — "Guess" the centroid m, and covariance S, of each_‘
of the K clusters

° LOO p each cluster, revising both the mean (centroid position) and covariance (shape)

© ':‘..' D)

i o
(@) (c) (e)
gy F

11/11/15 (f) (9) (h) (i)

a7

Dr. Yanjun Qi / UVA CS 6316 / f15

Recap: K-means iterative learning

argmin ) > m, (X, — 5j
{¢.m,;}i=ti=1

Memberships {ml., j} and centers {C j} are correlated.

- 1 j=argmin(x, - C.)’
E-Step Given centers {Cj}, m, .= k /

ij
L_,_) 0 otherwise

—

m. .X.
1,771

M=

—

M-Step Given memberships {ml.’j }, L=

VS,

11/11/15 i=1 48
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© Eric Xing @ CMU, 2006-2008

Compare: K-means

* The EM algorithm for mixtures of Gaussians i?‘
like a "soft version" of the K-means algorithm.

* In the K-means “E-step” we d¢ har
assignment:

* In the -means "Mi=Step” we update the means

as the weig@ of the data, but now the
weights are O or 1:

5% S W32

e
x e o "o'foo g v 05N .
. ‘e . ‘e *a ‘e
o 5
:Oo‘o X ’.c’:’o

) o
" B o B
0 +“ » v >

o
LRS

LR
K

(@) (®) (© (d (e) 6]
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Gaussian Mixture Example: Start

11/11/15
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After First Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape)

11/11/15 and proportion in the mixture

Dr. Yanjun Qi / UVA CS 6316 / f15

After 2nd Iteration

For each point, revising its proportions belonging to each of the K clusters

9 e®
[ i —

S >
09 o

~

.
.
™
—

For each cluster, revising its mean (centroid position), covariance (shape)

11/11/15 and proportion in the mixture
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After 3rd Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape)

11/11/15 and proportion in the mixture
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After 4th Iteration

For each point, revising it belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape)

11/11/15 and proportion in the mixture
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After 5th Iteration

For each point, revising its proportions belonging to each of the K clusters

S @ e
2=0.322 . >. \“
- »=0.285 \
oo ® \
‘\\»_, 7//"’

o e o

For each cluster, revising its mean (centroid position), covariance (shape)

11/11/15 and proportion in the mixture
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After 6th Iteration

For each point, revising its proportions belonging to each of the K clusters

©=0.315
‘. l ’ p0287\
. . @

For each cluster, revising its mean (centroid position), covariance (shape)

11/11/15 and proportion in the mixture
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After 20th Iteration

For each point, revising its proportions belonging to each of the K clusters

e o
0o’y %™

—® ~ \_') °

‘

=0

For each cluster, revising its mean (centroid position), covariance (shape)
and proportion in the mixture

11/11/15
(3) GMM Clustering Dr. Yanjun Qi / UVA CS 6316 / f15
Task Clustering
| !
Representation | Mixture of Gaussian
) )
Score Function | Likelihood
_; 1
Searchloi:timization EM algorithm
Models, Each point’s soft
Parameters 5 membership &
: mean / covariance
per cluster
1 X —H; H
Zlogp(x x;) = 2108 ZP(,U 1) WGXP _Tzz

Hy (27r0' )

11/11/15 58




M-step (more in L23 EM lecture)

| B

n (t) 4, (t+1) I GGEORYS
2 i Blz, 100 =) G - )
Z E[Zij](t)

i=1

Z(t+1) —
J

From Dr. Eric Xing 59

Problems (1)

* Both k-means and mixture models need to compute T
centers of clusters and explicit distance measurement

_ Givenistance measurement, th@ clusters

can be hard to compute
E.g.,

xz—xz xp—xp‘)

) 9esey

-], =max (-

X y
®

- x=y].. =[x~z
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Problem (II)

- ety
| Both k-means and mixture models look foricompact

clustering structures

— In some cases, connected clustering structures are more desirable

11/11/15

Graph based
clustering

Spectral
clustering

61

11/11/15
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¢.g. Image Segmentation through
minCut

62
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Roadmap: clustering

‘ = Definition of "groupness” T

= Definition of "similarity/distance"
= Representation for objects
®) = How many clusters?
= Clustering Algorithms
= Partitional algorithms
= Hierarchical algorithms
= Formal foundation and convergence
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How can we tell the right number of clusters?

In general, this is a unsolved problem. However there exist many approximate methods.
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K n
argmin ), ) m; . (

{Cj,ml.’j} j=li=1

When k = 1, the objective function i
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Whehe objective function is
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1 2 3 4

5 6 7 8 910
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Wher@the objective function is(133.6
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We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, is highly suggestive of two clusters in the data. This
technique for determining the number of clusters is known as “knee finding” or
“elbow finding”.
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What Is A Good Clustering?

‘ * Internal criterion: A good clustering will produce higmj _‘
(quality clusters in which: —

(1 «
— the intra-class (that is, intra-cluster) similarity is high Wethiin
— the inter-class similarity is low betweeh

— The measured quality of a clustering depends on both the data
representation and the similarity measure used

* External criteria for clustering quality
— Quality measured by its ability to discover some or all of the

hidden patterns or latent classes in gold standard data
— Assesses a clustering with respect to
_— Xamnpnla.:

of classes in clusters (or mutual information between classes
and clusters)

11/11/15
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External Evaluation of Cluster Quality,
e.g. using purity
* Simple measuregurity; the ratio between the dominant class inT
the cluster and thesize of cluster

— Assume data samples with C gold standard classes/groups, while the
clustering algorithms produce K clusters, w,, w,, ..., w, with n,

members. 1
Purity(w;) = - mjax(nij) je C’\
‘ 2( lussos

Cluster III

— Example

Cluster I Cluster II

Cluster I: Purity = 1/6 (max(5, 1, 0)) =5/6 8
Cluster IlI: Purity = 1/6 (max(1, 4, 1)) m
Cluster IlI: Purity = 1/5 (max(2, 0, 3)) =3/5

11/11/15
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Extra practice: K-means

= Auton’s Graphics [ LJ|
‘1. Ask user how many clusters . o

they’ d like. (e.g. k=5)

2. Randomly guess k cluster 08 T
Center locations

0.6 T
0.4 T

0.2 T
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Extra practice:

L. Ask user how many clusters

they’ d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it’ s closest to.
(Thus each Center “owns” a
set of datapoints)
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K-means
—

Auton’s Graphics ||

0.8

0.6

0.4

0,2

Extra practice: K-means

1. Ask user how many clusters
they’ d like. (e.g. k=5)

2. Randomly guess k cluster
Center locations

3. Each datapoint finds out
which Center it’ s closest to.

4. Each Center finds the
centroid of the points it
owns
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K-means: extra practice
—

= Auton’s Graphics =]

x1

1. Ask user how many clusters
they’ d like. (e.g. k=5)

2. Randomly guess k cluster o8 T
Center locations

3. Each datapoint finds out
which Center it’ s closest to.

4. Each Center finds the
centroid of the points it o4 T
owns 1
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