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Announcements: Rough Plan

- ws B

— Out on Nov. 18th
— Due on Dec. 7th

* Project Presentation
— Due on Dec. 2" midnight
— Presentations @ Dec 3" and Dec 4t

* Project Final Report
— Due on Dec. 11t midnight
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Announcements: Exam

* Open Note / Open Lectures

* No laptop / No Cell phone / No internet
access / No electronic devices

* Covering contents till today

— Practice with sample questions in HW4
— HW4 due on Nov. 20th
— Please review course slides carefully

Today

[ History of Al & Machine Learning
O Review of ML methods covered so far
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What are the goals of Al research?
. .A Papaslaskar
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Advances in mathematical logic, information theory, concept of
neural computation
1943: McCulloch & Pitts Neuron
1948: Shannon: Information Theory
1949: Hebbian Learning
cells that fire together, wire together

1950s &
Early computers Dartmouth conference coins the phrase ° artlﬁC|aI
intelligence” and Lisp is proposed as the Al programming language
1950: Turing Test
1956: Dartmouth Conference
1958: Friedberg: Learn Assembly Code
1959: Samuel: Learning Checkers

11/16/15 6
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1960s

A.l. funding increased (mainly military). Famous quote: “Within a
generation ... the problem of creating 'artificial intelligence' will
substantially be solved.”

Early symbolic reasoning approaches.

Logic Theorist, GPS, Perceptrons
1969: Minsky & Papert “Perceptrons”

1970s
A.l. “winter” — Funding dries up as people realize this is a hard
problem!
Limited computing power and dead-end frameworks lead to
failures.

eg: Machine Translation Failure

11/16/15 7
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1980s

Rule based “expert systems” used in medical / legal professions.
Bio-inspired algorithms (Neural networks, Genetic Algorithms).
Again: A.l. promises the world — lots of commercial investment

Expert Systems (Mycin, Dendral, EMYCIN OO
Knowledge Representation and reasoning: O
Frames, Eurisko, Cyc, NMR, fuzzy logic £

Speech Recognition (HEARSAY, HARPY, HWIM) (DD

. P(B|A)P(A4)

P(A|B) = P(B) :

Machine Learning:
1982: Hopfield Nets, Decision Trees, GA & GP.
1986: Backpropagation, Explanation-Based Learning

s

>

*
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1990s

Some concrete successes begin to emerge. Al diverges into
separate fields: Computer Vision, Automated Reasoning, Planning
systems, Natural Language processing, Machine Learning...

...Machine Learning begins to overlap with statistics / probability

theory.
1992: Koza & Genetic Programming

1995: Vapnik: Support Vector Machines

ONO
Bl

P(B|A) P(A)
P(B)

P(A

B) =

11/16/15 9
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2000s

First commercial-strength applications: Google, Amazon, computer games,
route-finding, credit card fraud detection, spam filters, etc...

‘ Tools adopted as standard by other fields e.g. biology \

{
Isiand

11/16/15
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Introduction

The 10 Tech

es Past Years

2272272

2010s.... ?¢

DeepLearning

With massive
amounts of
computational power,
machines can now
recognize objects and
translate speech in

Temporary Social
Media

Messages that quickly
self-destruct could
enhance the privacy
of online

Prenatal DNA
Sequencing

Reading the DNA of
fetuses will be the
next frontier of the
genomic revolution.
But do you really want
to know about the

Additive
Manufacturing

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on

Baxter: The Blue-
Collar Robot

Rodney Brooks's.
newest creation is
easy to interact with,
but the complex
innovations behind the

real time. Artificial communications and genetic problems or the verge of using the robot show just how
intelligence is finally make people freer to musical aptitude of technology to make hard it is to get along
getting smart. - be spontaneous. - your unborn child? jet parts. - with people. -
MemoryImplants Smart Watches Ultra-Efficient Solar BigData from Cheap Supergrids
Power Phones
A maverick
neuroscientist Collecting and
believes he has Doubling the analyzing information
deciphered the code efficiency of a solar from simple cell _
by which the brain ) cell would completely phones can provide
forms long-term The designers of the change the surprising insights into .
memories. Next: Pebble watch realized economics of how people move A new high-power

testing a prosthetic
implant for people
suffering from long-
term memory loss. >
11/16/15

that a mobile phone is
more useful if you

don't have to take it
out of your pocket.

renewable energy.
Nanotechnology just
might make it

possible. >

about and behave -
and even help us
understand the

spread of diseases. _,

circuit breaker could
finally make highly
efficient DC power
grids practical. -

 Able to

— perceive the world

— understand the world

* This needs
— Basic speech capabilities
— Basic vision capabilities
— Language understanding
— User behavior / emotion understanding
— Able to think ??

11/16/15
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How can we build more intelligent
computer / machine ?

12
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Plenty of Data

‘ * Text: trillions of words of English + other languages \

* Visual: billions of images and videos

* Audio: thousands of hours of speech per day

* User activity: queries, user page clicks, map requests, etc,
* Knowledge graph: billions of labeled relational triplets

Data-driven machine learning
methods have made machines /
computers much more intelligent

11/16/15 , 13
Dr. Jeff Dean’s talk
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Samuel’ s definition of ML (1959)

 Arthur Samuel (1959). Machine Learning: T
Field of study that gives computers the ability
to learn without being explicitly programmed.

11/16/15 14
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Tom Mitchell (1998):
Well-posed Learning Problem

. B

computer program is said to learn from
experience E with respect to some task T and
some performance measure P, if its
performance on T, as measured by P,
improves with experience E.

11/16/15 15
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Defining the Learning Task

‘ Improve on task, T, with respect to \
performance metric, P, based on experience, E.
T: Playing checkers

P: Percentage of games won against an arbitrary opponent
E: Playing practice games against itself

T: Recognizing hand-written words
P: Percentage of words correctly classified
E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors

P: Average distance traveled before a human-judged error

E: A sequence of images and steering commands recorded while
observing a human driver.

T: Determine which students like oranges or apples
P: Percentage of students’ preferences guessed correctly
E: Student attribute data

11/16/15 16
From: M.A. Papalaskar
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Designing a Learning System

*Choose the training experience

* Choose exactly what is to be learned, i.e. the target function.

* Choose a learning algorithm to infer the target function from the
experience.

* Alearning algorithm will also determine a performance measure

Environment/
Experience

Knowledge

17

11/16/15
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Machine Learning in a Nutshell

Task

v

Representation
ML grew out of

v work in Al
Score Function

 / Optimize a
Search/Optimization performance criterion
using example data or
v past experience,
Models, ’
Parameters

Aiming to generalize to
unseen data

11/16/15 18
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What we have covered for each

Task

Representation

Score Function

Search/
Optimization

Models,
Parameters

11/16/15 19
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A Typical Machine Learning Pipeline

Optimization

e.g. Data Cleaning  Task-relevant

Pre- Feature Feature
processing Extract Select

Low-level

sensing
Inference,

Prediction,

Recognition

Label
Collection

Evaluation

11/16/15 20
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An Operational Model of Machine
Consists of input- Learni Ng

output pairs

e —————

11/16/15 21
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Today

‘ O History of Machine Learning & Al T

[ Review of ML methods covered so far

11/16/15 22
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Where are we ? =
major sections of this course

‘ (] Regression (supervised) _‘

[ Classification (supervised)
L Unsupervised models

U Learning theory

U Graphical models

11/16/15 23
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http://scikit-learn.org/stable/tutorial/machine learning map/

Scikit-learn algorithm cheat-sheet

scikit-learn
algorithm cheat-sheet

classification -
app

nnnnnn

Clustering

dimensionality
reduction
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http://scikit-learn.org/stable/

scikit-learn

Machine Learning in Python

Classification Regression Clustering
Identifying to which set of categories a new Predicting a continuous value for a new Automatic grouping of similar objects into sets.
observation belong to. example. Applicati Customer segmentation,
Applications: Spam detection, Image Applications: Drug response, Stock prices. Grouping experiment outcomes )
recognition. Algorithms: SVR, ridge regression, Lasso, ... Algorithms: k-Means, spectral clustering,
Algorithms: SVM, nearest neighbors, random — Examples mean-shift, ... — Examples
forest, ... — Examples

Dimensionality reduction Model selection Preprocessing
Reducing the number of random variables to Comparing, validating and choosing parameters Feature ion and normalization
consider. and models. Application: Transforming input data such as
Applicati Vi ion, | d Goal: Improved accuracy via parameter tuning text for use with machine learning algorithms.
efficiency Modules: grid search, cross validation, metrics. M prepr 9, feature on.
Algorithms: PCA, feature selection, non- — Examples — Examples
negative matrix factorization. — Examples

Dr. Yanjun Qi / UVA CS 6316 / f15

Random Forest

o

Random Forest

Nearest Neighbors

Linear SVM RBF SVM Decision Tree

Naive Bi|es

Naive Bayes

Nalve Bayes

Nearest Neighbors Linear SVM Decision Tree

Decision Tree Random Forest

v

vy different assumptions on data

v different scalability profiles at training time

v different latencies at prediction time

v/ different model sizes (embedability in mobile devices)

11/16/15 . - 26
Olivier Grisel’s talk
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What we have covered ()

1 Supervised Regression models T
— Linear regression (LR)
— LR with non-linear basis functions
— Locally weighted LR
— LR with Regularizations

11/16/15 27
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e.g. SUPERVISED LEARNING
* Find function to map input space X to
output space Y

—————————————————————————————————————————————————————————————

* Generalisation: learn function / hypothesis

n  «u

from past data in order to “explain”, “predict”,:
“model” or “control” new data examples

\ 1
N e e e e e e L Y Y ¢
11/16/15 28
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X, X, X, Y

A Dataset

. o

Sq
Sg

Output Y as
Se continuous values

» Data/points/instances/examples/samples/records: [ rows ]

» Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

» Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]

11/16/15 29
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(1) Multivariate Linear Regression

Task Regression
Repre;'entation Y= Weigh{ed linear sum
of X's
v !
Score Function | Least-squares
v _i 1
Searcthrtimization Linear algebra ;
Models, Regression
Parameters | coefficients

y=f(x)=6,+ Hlxl + 02x2
11/16/15 ‘ 0
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Method I: normal equations

* Write the cost function in matrix form: T
J(@%j}l(x?e—y»z [y o] [y,
=%(x9_y)T(x9—y) X<| 7 % - 5= Y2
=%(eTxTxe—eTxTy-yTxmyTy) — x - );n

To minimize J(0), take derivative and set to

zero:
= | X'X0=X"y

The normal equations

]
o =(x"xJ x5

11/16/15
31
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Method II: LR with batch Steepest
descent / Gradient descent

|7 6.=6_-avJ@,) For the t-th epoﬂ

T
d d N

Vi=l—]...—J]| =— —x"0)x

o) {861] aek]} ,-21'(y’ X, 0)x,

t+1 _ 't . v Totyyvi
0" =6 +a§(yi x "0 )x:

—This is as a batch gradient descent algorithm

11/16/15
V]
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Method Ill: LR with Stochastic GD =»

‘ * From the batch steepest descent rule: \

6" =0'+a) (y,-X,6")x/

* For a single training point, we have:
m— 0 =0 +a(y. —X, 0%,

— a "stochastic", "coordinate" descent algorithm
— This can be used as an on-line algorithm

11/16/15
33
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Method IV: Newton’s method for
optimization

‘ * The most basic second-order optimization T

algorithm i1 =0 — H}lgk
* Updating parameter with
t+1
> ot gt - L~ vS©)

_=0%- (FB) [(§36-37]

- [
N‘.’,‘:'.:'a.? & (XTX ) ,Xy Newton’s method
. for Linear Regression

11/:
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(2) Multivariate Linear Regression with basis Expansion

Task Regression

v :
i PYs= Weigh{ed linear sum
Representation i of (X basjs expansion)

v

Score Function Least-squares
v _i 1
Searcthrtimization Linear algebra
Models, Regression

Parameters | coefficients

F=0,+Y 0,0,(x)=p(x)0

11/16/15 35
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(2) LR with polynomial basis functions

°‘ LR does not mean we can only deal with linear T
relationships

y=0,+, 0,0,(0)=p(x)0

e E.g.: polynomial regression:
@(x):= [l,x,xz,x3]
0 =(¢"¢) ¢'5

11/16/15
36
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(3) Locally Weighted / Kernel Regression

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Task Regression
Repre;'entation Y = local weighted linear
sum of X’s
v !
Score Function | Least-squares
} — |
Searcthrtimization Linear algebra
Models, Local Regression
Parameters 5 coefficients
: (conditioned on

each test point)

a(gg,iﬂl(lxo)EK (x”x )y, —alxy) - B(x, )x]

i=

11/16/15 f(-xo) O{(XO) + ﬂ(xo )XO v

Dr. Yanjun Qi / B8A CS 6316 / f15

(3) Locally weighted regression

 aka locally weighted regression, locally _‘
linear regression LOESS,

(-xl ’ x() ) linear_func(x)->y
>
o could represent
o] only the neighbor
region of x_0

(o]

I
I
I
I
I
1
[
[0 |
I
I
: Use RBF function to
! pick out/emphasize
: the neighbor region
I of x 0=
I

Xo K, (x;,x,)

igure 2: Inlocally weighted regression, points are weighted by proximity to the current x in question using
ernel 4 regression is then computed using the weighted points.

11/16
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LEARNING of Locally weighted
linear regression

target,

l

=

- moc}el

dataser learn — £(x,) = Gi(x)) + Blx)x,
= Separate weighted least squares
at each target point x,
N
. 2
a(g}}ﬂl&);&(xi,xo)[y,- a(xy) - B(x,)x,]
11/16/15 39
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(4) Regularized multivariate linear regression

Task

A 4

Representation

v

Score Function

v

SearchIOIvtimization

Models,
Parameters

11/16/15

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Regression

Y= Weigh{ed linear sum
of X's ;

Least-squares

Linear algebra +
Regularization

1

Regularized Regression §
coefficients :

40
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(4) LR with Regularizations /
Reqgularized multivariate linear regression

A A A A
‘ ¢ Basic model Y=/30+/31x1+---+[))pxp T

A2
* LR estimation: minJ(/a’)=E(Y—Y)
2
n A )4
« LASSO estimation: minJ(f) = E(Y - Y) H AE‘/J’].‘
i=1 Jj=1
n A 2 P
* Ridge regression estimation: min J(ﬁ) = E(Y - Y) + A,E /J)Jz
i=1 j=1
Error on data + Regularization

11/16/15
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What we have covered (ll)

J Supervised Classification models T
— Support Vector Machine
— Bayes Classifier
— Logistic Regression
— K-nearest Neighbor
— Random forest / Decision Tree
— Neural Network (e.g. MLP)
— *Feature selection

11/16/15 42
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Three major sections for classification

‘ » We can divide the Iarﬂe variety of classification T
approaches into roughly three major types

1. Discriminative
- directly estimate a decision rule/boundary
- e.g., logistic regression, support vector machine, decisionTree

[:> 2. Generative:

- build a generative statistical model
- e.g., naive bayes classifier, Bayesian networks

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

11/16/15 43
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X, X, X, C

A Dataset for

Output as Discrete
Class Label
C,C, ...,C,

Data/points/instances/examples/samples/records: [ rows ]

Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns, except the last]
Target/outcome/response/label/dependent variable: special column to be predicted [ last column ]

11/16/15 a4
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(1) Support Vector Machine

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Task classification E
| | kxo=0ow e
Representation Kernel Func K(xi, xj) |
v 1 . .
Score Function i Margin -> Hinge
5 Loss (optional)
v _; f
Searcthrtimization | QP with Dual form
Models :
: Dual Weights ,
Parameters w=Saxy |
,,,,,,, ;},,,,,,2,,,,,,,ﬁ,,,,,,,,,,,,,l,,,,,,,,,,,,
ar%vrinn EHWI. +C. lsi
5 1=
11/16/15 subject to Vx, € Dtrain: y, (xl. "W+ b) =1—e,
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(1) SVM as Max margin classifiers

‘ * Instead of fitting all points, focus on boundary points \

* Learn a boundary that leads to the largest margin from points on both
sides

Xz ° PY y
/
° / Why?
/.
° y « Intuitive, ‘makes
4 sense’
/ g
® o y °® ° » Some theoretical
A support
f/ o o
f ° * Works well in practice
V4
’ (]
/
/ @
/
/

11/16/15 Xl 46
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X X X Y A Dataset
for binary

|7 classiﬁcatip_p_“

_-_—— -

N ———-

Output as Binary
Class Label:
1or-1

» Data/points/instances/examples/samples/records: [ rows ]
* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

» Target/outcome/response/label/dependent variable: special

11161.€0lumn to be predicted [ last column ] 47
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When linearly Separable Case: Optimization Step
i.e. learning optimal parameter for SVM

A 2
sS * -
|7 predict &g \ WM —‘
o wp=+ -
=0
\NT)(—\—‘O s A
—A d‘\c‘ c\as
\Nw)@-b pre
-\v

p
1. Correctly classifies all points
2. Maximizes the margin (or equivalently minimizes w'w)

J

Min (wTw)/2
subject to the following constraints:

: 2
argmin ), ” w;
w,b

subject to Vx, € Dtrain : yl.(xl. W+ b) >1

For all xin class + 1

wTx+b >= 1 A total of n
) constrajnts if
For all xin class - 1 we hafe n

samples SVM as a QP
problem .

wTx+b <= -1

11/16/15
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Final optimization for non linearly
separable case

‘ The new optimization problem is: \

o he
i & +EQ—’§ Ypevpsri
2 i=l1
o o° y ’ subject to the following inequality
-1 plane constraints:

For all x;in class + 1

wix+b >=1-€; total of n
Forall x, in class - 1 straints
Wix+b <= -1+€,

For all i
8,- >0 } Ar!(}t-her n

constraints

+1 ;/)Iane

11/16/15 49
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Dual SVM - interpretation

For o;thatare O,
no influence

11/16/15 50
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Dual SVM for linearly separable

p\(_ﬂ“‘ W”lh
case S 5
2
‘ h—{m\ / V' ’d’ / \
Our dual target function: max_ Y o, —— aa,
t: iy
Trnin .JD
Eocl.yi =0 Dot product for all
; training samples
a,=0 Vi Dot product with

training samples

To evaluate a new sample (x
we need to compute:

T@Sbwb (i, 7 ©
I 51
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Dual formulation for linearly non
separable case

Dual target function: \ To evaluate a new sample x; \

we need to compute:
1
max Z(xi —EZaiajyi _ijiTXj

— T T
zi’a"yi 0 Hyperparameter C WX+ b= EaiYiXi Xi+ b
] should be tuned '
@‘ 0,Vi through k-folds CV
This is very similar to the
optimization problem in the linear
The only difference is separable case, except that there is

that the \alpha are now an upper bound C on ai now
\\ bounded /
Once again, efficient algorithm exist

to find a

11/16/15 52
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The kernel trick

How many operations do we need for the dot product?
‘ pA
D(x) D(z) = Esz +Exz +222xxzz +1 O(h

i j=i+l

m m m(m-1)/2 =~ m?
owever, we can obtain dramatic savings by noting that

) O(z)<(x"z+1)" &£ (x.z+1) (x.2)" +2(x.2)+1
Oxz) + Y 2xz7,+1
E2xizi+2xfzf+2Ele.szl.sz O(M

i jeitl

y need m So, if we define the kernel function as follows, there is
operations! no need to carry out basis function \phi (.) explicitly
11/16/15 ()CTZ + 1)2 53

argmaxP(C kl1X)= argmaxP(X C)= argmaXP()@V@A)FéC/)”
(2) Bayes Classifier

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Task f classification

| |
Representation Prob. models p(X|C)
| ; P(X,,i,X,1C)
score Function E EPE Wlth 0'1 IOSS, Wlth :
i Log likelihood(optional) !
Searcthrtimization | Many options
Models, i Prob. Models’

Parameters | Parameter

aussian Fa X —U. 2
) 1C =)= | -0
2ro 20
Naive p(VV, =true|ck)=pl.’k "
11/16/15 PW =n,.,W =n |ck)=ﬁ6”;k6§
ntnyl.n,
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X, X, X, C

A Dataset for

|7 cIassiﬁcation—‘

f:;'X:i—>i'C

_—— -

N ———-

Output as Discrete
Class Label
C,C, ...,C,

INEREEEargmax P(C | X) = argmax P(X,C) = argmax P(X | C)P(C)
C c c

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns, except the last]
Target/outcome/response/label/dependent variable: special column to be predicted [ last column ]

11/16/15 55
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Bayes classifier

‘  Treat each attribute and class label as random
variables.

* Given a sample x with attributes ( x4, x, ..., X, ):
— Goal is to predict class C.

— Specifically, we want to find the value of C; that
maximizes p( C; | X4, X5, ... » Xp ).

« Bayes classification
P(CIX) «x P(X/C)P(C)=P(X,," X, |C)P(C)
Difficulty: learning the joint probability P(X,,-, X, 1C)

11/16/15 56
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Naive Bayes Classifier

‘ Difficulty: learning the joint probability P(X,, X, 1C) T

¢ Naive Bayes classification
— Assumption that all input attributes are conditionally independent!

P(X,,X,, X, 1C) = P(X, 1 X,, - X,,C)P(X,,+, X, 1C)
= P(X,IC)P(X,, "X, 1C)
= P(X,1C)P(X,1C)-+ P(X,1C)

11/16/15 57
Adapt from Prof. Ke Chen NB slides
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Probabilistic Models of Ehe?g‘ g%umgpts

o 3458 N

P(D|C=c) P p-(Wibh, W)

—

Pr(W, = true,W, = false...,W, =true|C=c)

Multivariate Bernoulli Distribution

- P(W =nW,=n,,..W =n_[C=c)
Multinomial Distribution

11/16/15
58
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(2.1) : Multivariate Bernoulli for text

runnynose running  sinus  fever muscle-ache

« Conditional Independence Assumption:
Features (word presence) are independent

of each other given the class variable: - Bex
Pr(W, = true,W, = false,..,W =true|C =c)

=1@=true|€)'P(fV2\; false|C)e---* P(W_=true|C)

<" Multivariate Bernoulli model is appropriate for ——

binary feature variables
11/16/15 59
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(2.2) Multinomial Naive Bayes as

‘ Stochastic Language Models T

Model C1 Model C2
0.2 the

0.2 the the boy likes black dog
0.01 boy 0.0001 boy
0.0001 said 0.03  said 0.2 0.0l  0.0001  0.0001 0.0005
0.0001 likes 0.02  likes 0.2 0.0001 0.02 0.1 0.01
0.0001 black 0.1 black
0.0005 dog 0.01  dog P(s|C2) P(C2) > P(s|C1) P(C1)
0.01 garden 0.0001 garden

11/16/15 60
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Multinomial Naive Bayes =
a class conditional unigram language model

- Y R
/

* Think of X as the word on the it" position in the
document string

 Effectively, the probability of each class is done as a
class-specific unigram language model

11/16/15 . 61
Adapt From Manning  textCat tutorial
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(2.3) Gaussian Naive Bayes Classifier

o ntinuous-valued Input Attributes
— Conditional probability modeled with the normal distribution |

. X .—-u.)
P(XjIC=ci)=\/%a exp -%)
ji ji

u; - mean (avearage) of attribute values X ; of examples for which C=¢,

0 ; . standard deviation of attribute values X ; of examples for which C = ¢,

— Learning Phase: for X = (Xl,--.,Xp), C=c,c,
Output: p x L normal distributionsand P(C =c,) i=1,"-,L

— Test Phase: for X’=(X1’,'”,X;,)

e Calculate conditional probabilities with all the normal distributions

e Apply the MAP rule to make a decision
11/16/15 62
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Naive Gaussian means ?

%ﬁk@
e ‘W

P(X,.X,, X, 1C) = / T

1 1 1
N(X“’l’? 2) - B 1/2 exXp __(X o M)Tz_l(x o "l’)
(2m)P/ ‘|2| /2 { 2 o ) }

(- din vomdom \ectsr
P{ C=c,)=P(X,IC)P(X,|C) P(X, |C)

o) ofkpi)

ji
Each class’

Diagonal Matri)>2 _ Ck = A _ Ck matrixs

117766155 diagonal 63

1
= ex
1:[ \/27'[0'ﬁ
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(2.4) LDA (Linear Discriminant Analysis)
( ¢2 + k,F Each class’ covariance

Linear Discriminant AnaIyS|s Yk =2 VK atix is the same

The Gaussian Distribution are shifted versions of each
other

EEEE 25558
oo B ERE 23 E

Class k Class /

11/16/15 Class k Class / 64
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Optimal Classification - \
‘ ar

X

gmax P(C _k|X)=argmax P(X,C) =argmax P(X |C)P(C )“
k k k

= arg max [— log (2777
5 me = v

1 .
—3[ T — U jl"S_l(.r — ) + log(my _)}

[ 1

= argmax [—5(x — pg ' He — i) + log(m)
5 me . , ‘ gl

—

- Note Linear Discriminant Function for LDA
1 4 , . 1 1.
(e — ) =N — ) = 1Sy — Sy — 52T
11/16/15

65
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Define Linear Discriminant Function |

1 -1
5(x) = —E(X — )" (x — px) + logmy,

=» The Decision Boundary Between class k and |, |
{x:6, (x) =6,x)}, is a linear line/plane

P(C_kIX)  log P(XIC_k) +log P(C_k)
P(C_I1X) P(XIC_I) P(C_I)

o1 B 4.9
= log 7_]\ N 5(11.1.- + )T E T (ke — pae) 9)
1y Z

Tv—1 Boundary points X : when
+ 2" X7 (g — ) Eq;‘;r'zm P(c_k|X) == P(c_I|X), the left
linear equation ==0, a linear

line / plane 66

log

11/16/15
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(2.5) QDA (Quadratic Discriminant
Analysis )

» Estimate the covariance matrix X separately for each class k, \

k=1.2...K.
» Quadratic discriminant function:
' 1 1 Ts—1
0k(x) = =7 log |Zk| = 5 (x — ) "L~ (x — puic) + log -

» Classification rule:
G(x) = arg max Ik (x) .

» Decision boundaries are quadratic equations in x.

» QDA fits the data better than LDA, but has more parameters
to estimate.

11/16/15 67
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(2.6) LDA on Expanded Basis

‘ » Expand input space to include X1 X, X2, and X3. T
» Input is five dimensional: X = (X1.X2.X1X2.X2,X22).

LDA with
quadratic basis

Versus
QDA

Figure 4.6: Two methods for fitting quadratic bound-
aries. The left plot shows the quadratic decision bound-
aries for the data in Figure 4.1 (obtained using LDA in
the five-dimensional space 1, T2, T12,73,73). The right

plot shows the quadratic decision boundaries found by

11/16/15 68

QDA. The differences are small, as is usually the case.
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(2.7) Regularized Discriminant Analysis

‘ » A compromise between LDA and QDA. T

» Shrink the separate covariances of QDA toward a common
covariance as in LDA.

» Regularized covariance matrices:

Ay

S(a)=aS, +(1-a)s .

» The quadratic discriminant function d,(x) is defined using the
shrunken covariance matrices X4 ().

» The parameter o controls the complexity of the model.

11/16/15 69
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(3) Logistic Regression

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Task classification
M L ddl (Y) = li
i | og-odds(Y) = linear
Representation : Ffunction of X’ s
\ 4 ' v ,
i 5 EPE, with conditional :
Score Function ; Log-likelihood
v — |
' v '
Searcthrtimization ! Iterative (Newton) method
E v
Models, : Logistic
Parameters | weights
o+ px
e ﬁ

11/16/15 1 + e 70
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Logistic Regression—when?

| B

Logistic regression models are appropriate for target
variable coded as 0/1. .
@mo\/

We only observe “0” and “1” for tﬁe target variable—b/t

we think of the target variable conceptually as a |lx)
probability that “1” will occur. fwjg’{i(
| the target ﬂo

jredefined.

This means we use@ernoulli distriution 1 mod

variable with its Bernoulli porome’rer

The main interest = predicting the probability that an event
occurs (i.e., the probability that p(y=11x) ).

11/16/15 71
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l Discriminative> Logistic regression models for
binary target variable coded 0/1.

P (C=1|X)
e.g. 1.0 -
‘ Probability of
disease 0.8 |
0.6 - logistic function
ea+ﬂx
04 P(c=1[x)=
1 o+fx
+é
0.2 -
Logit function 0.0 X |

Decision Boundary =» equals to zero

lnlp(c=1|x)]=ln[ P(c=11x)

=+ P X +Pp,X,+...+ D X
Pc=011x) 1—P(c=1|x)] Pxi+ Xyt + By,
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MVLE for Logistic Regression Training

et’s fit the logistic regression model for K=2, i.e., number of classes is 2
Z\For Bernoulli distribution

Training set: (x;, y)), i=1,..,N ' -
p(ylx)yd-p)~

conditional ) I(ﬁ)i{logpr(hy, | X=x)} A
. =2yilog( Pr(Y=1|X=x))+(1-y)log(Pr(Y=0|X=x,))

exp(Bx,)
1+exp(B'x,)

=§(y,.ﬁTx,.—log(1+exp(/3Tx,.n)

N
=Y (y,log )+(1-y,)log
i=1

_
1+exp(B'x,)

x; are (p+1)-dimensional input vector with leading entry 1
\beta is a (p+1)-dimensional vector

11/16/15  We want to maximize the log-likelihood in order to estimate \beta 73

Discriminative vs. Generative

Generative approach

- Model the joint distribution p(X, C) using
p(X | C=¢)and p(C=cy)

Class prior

Discriminative approach
- Model the conditional distribution p(c| X)

directly \
e.g., 1




Discriminative vs. Generative

® Empirically, generative classifiers approach
their asymptotic error faster than
discriminative ones
o Good for small training set
o Handle missing data well (EM)

® Empirically, discriminative classifiers have
lower asymptotic error than generative ones
o Good for larger training set

Dr. Yanjun Qi / UVA CS 6316 / f15

(4) K-Nearest Neighbor

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Task i classification

} |
Representation Local Smoothness
Score ‘I;unction EPE witL L2 loss =

§ conditional mean

v _'j

Searcthrtimization § NA
Models, § Training

Parameters § Samples

11/16/15 76
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Nearest neighbor classifiers

Unknown record

.

-----

11/16/15

To classify unknown sample:

1. Compute distance to
other training records

2. ldentify k nearest
neighbors

3. Use class labels of nearest
neighbors to determine
the class label of unknown
record (e.g., by taking
majority vote)

77
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Decision boundaries in global vs. local models

linear regre

* global
* stable

ssion

* can be inaccurate

11/16/15

15-nearest neighbor

1-nearest neighbor

* local
* accurate
* unstable

What ultimately matters: GENERALIZATION

78
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Nearest neighbor classification

» k-Nearest neighbor classifier is a lazy Iearneﬂ
— Does not build model explicitly.

— Unlike eager learners such as decision tree
induction and rule-based systems.

— Classifying unknown samples is relatively
expensive.

» k-Nearest neighbor classifier is a local model,
vs. global model of linear classifiers.

11/16/15 79
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(5) Decision Tree / Random Forest

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Classification
Task

v i Partition feature space
; into set of rectangles,
Representation local smoothness

v

Score Function . Greedy to find partitions |

v

Search/Optimization . Split Purity measure / e.g. |
i 1G [ cross-entropy / Gini/

v
Models,

' space partition

11/16/15 80
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Anatomy of a decision tree

/ Each node is a test on
one feature/attribute

-

sunn
Y overcast rain Possible attribute values
‘ of the node

high normal true false

‘ ‘ Leaves are the
Yes Yes | ecisions

11/16/15 81
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Decision trees

‘ * Decision trees represent a disjunction of \
conjunctions of constraints on the attribute

values of instances.

(Outlook ==overcast)

& OR
* ((Outlook==rain) and (Windy==false))
S OR

((Outlook==sunny) and (Humidity=normal))

* => yes play tennis

11/16/15 82




Information gain

‘ e IG(X_i,Y)=H(Y)-H(Y|X_i)

Reduction in uncertainty by knowing a feature X_i

Information gain:

Dr. Yanjun Qi / UVA CS 6316 / f15

=

= (information before split) — (information after split)
= entropy(parent) — [average entropy(children)]

Fixed

11/16/15

the lower, the
better (children
nodes are purer)

For IG, the
higher, the
better

83
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Random Forest Classifier

-

M features

N examples

i
I

11/16/15

Location
Simiarty

@

E@ H
i
i’

gse

L
8

{

!

i
i
i
I

I

\

=

Take he
majority
vote

84
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(6) Neural Network

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

: Classification
Task | | Regression
v ;
: topology
\ 4 | .
Score Function i conditional Log-likelihood ,:
Cross-Entropy / MSE
v — 1
Searcthrtimization | SGD / Backprop
Models, i NN network
Parameters | Weights
11/16/15 85
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Logistic regression

‘ Logistic regression could be illustrated as a module \

On input x, it outputs y:

where | Xg |
—Z Output
l+e
X2 .
S |—y=P(Y=1]|X,0)
|D ra.W.a X3 Summing Activation
ogistic ) function function
regression )
unit as: +1
11/16/15 86

Bias




Multi-Layer Perceptron (MLP)

String a lot of logistic units together. Example: 3 layer network:

y
G
+1
Layer 1 Layer 2
11/16/15iNput hidden output 87
Ty3 Output units Dr. Yanjun Qi / UVA CS 6316 / f15

When for multi-class classification
(last output layer: softmax layer)

When multi-class output, last layer is \

softmax output layer = a
multinomial logistic regression unit

11/16/15
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Backpropagation

® Back-propagation training algorithm

Network activation
Forward Step

ornnnnn E}nrorp}fopagafl.on
Backward Step

11/16/15 89

to train this layered network. The stackedilayers:in:cur

network can be written in a more general form of multi-level func-
tions:

Ix = fr(fr—1(...(f1(%))...)),

where [x denotes the loss on a single example x

for sigmoid unit o,
its derivative is,
0o’ (h) = o(h) * (1 - o(h))

For instance =» for regression

input

Output o,

E(y, §)

11/16/15 91 92 63 64 90




fi,1 € [1, T1], the derivative for updating its paraimeter” set @7is
using the delta rule:

ol ofr  of;

90, _ of,  90;’
and the first factor on the right can be recursively calculated:

8fT . afT % 8fz‘—|—1
of,  0fi1 of;, -

Note that f and 6 are usually vectors

SO aaffT and 85 are Jacobian matri-
1
ces, and “X” is matrix multlphcatlon

eq.
@ "“fzf‘f‘a(ﬁm)) - 9(%- 43)
,_'_)f S owlr'u-k ovysy

Dr. Ql’s CIKM 2012 paper/talk .

11/16/15

for 7 = 1 to MaxlIter do O Yarn O/ VA CS 6316/ 15
if converge then
break
end if
X,y <— random sampled data point and label
calculate loss I(x; y)

cumulative < 1

for: =T toldo Error propagation
ol of; Backward Step

5 01 \cumulatlve\ 91 %

\cumulative\ \cumulatlve\* Ofit1

of;
end for
1@ﬁd fOl‘ Dr. Ql’s CIKM 2012 paper/talk .
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Deep Learning Way:
Learning features / Representation from data

Inference:
‘ Low-evel Pre- Feature Feature e \
| |
|

Feature Engineering

v Most critical for accuracy

v" Account for most of the computation for testing
v Most time-consuming in development cycle

v Often hand-craft and task dependent in practice

e

Feature Learning

v’ Easily adaptable to new similar tasks
v’ Layerwise representation

v’ Layer-by-layer unsupervised training
11/16/15 v’ Layer-by-layer supervised training
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DESIGN ISSUES for Deep NN

‘ e Data representation T

e Network Topology

e Network Parameters

® Training
e Scaling up with graphics processors
e Scaling up with Asynchronous SGD

e Validation

11/16/15 94
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(7) Feature Selection

Thousands to millions of low level features: \

select the most relevant one to build better,
faster, and easier to understand learning

machines.

n
11/16/15 4 95
From Dr. Isabelle Guyon
Dr. Yanjun Qi / UVA CS 6316 / f15
(7) Feature Selection (not covered )
Task Dimension Reduction
| |
Representation | n/a
Score Function | Many possible
; options
v _i
Searcthrtimization : Greedy (mostly)
Models, Reduced
Parameters subset of
features

11/16/15
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Feature Selection

‘ — Filtering approach: \
ranks features or feature subsets independently of the

predictor (classifier).

* ..using univariate methods: consider one variable at a time
* ...using multivariate methods: consider more than one variables at a time

— Wrapper approach:
uses a classifier to assess (many) features or feature subsets.

— Embedding approach:

uses a classifier to build a (single) model with a subset of

features that are internally selected.
11/16/15 97/54
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What we have covered (lll)

‘ 4 Unsupervised models T

— Dimension Reduction (PCA)
— Hierarchical clustering

— K-means clustering
— GMM/EM clustering

11/16/15 98
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An unlabeled
Dataset X —‘

a data matrix of n observations on

p variables x;,x,,...x,

Unsupervised learning = learning from raw (unlabeled,
unannotated, etc) data, as opposed to supervised data
where a label of examples is given

Data/points/instances/examples/samples/records: [ rows ]
Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [ columns]

11/16/15

99

Dr. Yanjun Qi / UVA CS 6316 / f15

(0) Principal Component Analysis

Task

A 4

Representation

v

Score Function

v

SearchIOIvtimization

Models,
Parameters

11/16/15

Dimension Reduction

1

Gaussian assumption

Direction of maximum
variance

Eigen-decomp

1

Principal
components

100
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Algebraic Interpretation — 1D

* Given n points in a p dimensional space, for large p, how does \
one project on to a 1 dimensional space?

* Choose a line that fits the data so the points are spread out
well along the line

11/16/15 101
From Dr. S. Narasimhan
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Algebraic Interpretation — 1D

‘ * Minimizing sum of squares of distances to the line is the same \

as maximizing the sum of squares of the projections on that
line, thanks to Pythagoras.

maX( VTXT XV), subject to VTV - 1

assuming data
is centered

O U=X"V X: p*1 vector

v: p*1 vector

11/16/15 102
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PCA Eigenvectors =2 Principal Components

— |

2nd Pllfincipal |
Component, u,

o 1st Principal
| Component, u,

4.0 4.5 5.0 5.5 6.0

11/16/15 103
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PCA & Gaussian Distributions.

e PCA is similar to learning a Gaussian T
distribution for the data.

e Dimension reduction occurs by ignoring the
directions in which the covariance is small.

11/16/15 104
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PCA Limitations

‘ e The direction of maximum variance is not
always good for classification

not ideal for discrimination e ¢ e

11/16/15 [ ier
First PC From Prof. Derek Hoiem
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What we have covered (lll)

‘ 4 Unsupervised models T

— Dimension Reduction (PCA)
— Hierarchical clustering

— K-means clustering
— GMM/EM clustering

11/16/15 106
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What is clustering?

‘- Find groups (clusters) of data points such that data points in a \
group will be similar (or related) to one another and different from

(or unrelated to) the data points in other groups

Inter-cluster

Intra-cluster distances are

distances are maximized
minimized

11/16/15 107
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Issues for clustering

* What is a natural grouping among these objects? _‘
— Definition of "groupness"
« What makes objects “related”?
— Definition of "similarity/distance"
* Representation for objects
— Vector space? Normalization?
* How many clusters?
— Fixed a priori?
— Completely data driven?
« Avoid “trivial” clusters - too large or small
e Clustering Algorithms
— Partitional algorithms
— Hierarchical algorithms
* Formal foundation and convergence

11/16/15 108
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Clustering Algorithms

* Partitional algorithms

— Usually start with a random %

(partial) partitioning
— Refine it iteratively
* K means clustering

* Mixture-Model based clustering

* Hierarchical algorithms I_FE‘;
— Bottom-up, agglomerative * &

— Top-down, divisive

11/16/15 109
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(1) Hierarchical Clustering
Task Clustering
| 1
Representation n/a
v
i No c+early
Score Function | defined loss
v _i
R i greedy bottom-up (or
SearchIOIvtlmlzatlon . top-down)
Models, Dendrogram
Parameters (tree)
11/16/15
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Example: single link

‘ 12345 12) 3 4 5 1,23) 4 5 \

170
1,2)[0
N D (1.2) (1,23)[0
303 0 4
306 3 0 70
41010 9 70 o 51540
518 5 4 0
509 8 540
d(1,2,3),(4,5) = min{ d(],2,3),4 :d(1,2,3),5 y=5 .
11/16/15 111
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(2) K-means Clustering

Task Clustering
| |
Representation E n/a

v

Score Function Sum-of-square

distance to centroid

v
S K-means' (special
Searcthrtlmlzatlon case of EM) algorithm
Models, Cluster
Parameters | membership &

centroid

11/16/15 112
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K-means Clustering: Step 2
- Determine the membership of each data points

< < \
<o ’0’
k, o o
¢
o
M | k, / ®
2 202
¢ ‘ o ¢
o f ¢
1 2 . 2
o 0’ / ® o ¢
O I T 1 T

113

Y log p(x=x;)= Y log| > p(u=pt;)
i i H;

11/16/15

(3) GMM Clustering

Task

v

Representation

v
Score Function

v

Searchloi:timization

Models,
Parameters

Dr. Yanjun Qi / UVA CS 6316 / f15

Clustering

1

Mixture of Gaussians

}

Likelihood
EM algorithm

Each point’s soft
membership &
mean / covariance
per cluster

(27[0_2 )d/2

114
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Expectation-Maximization

for training GMM
e Start:

‘ — "Guess" the centroid m, and covariance S, of each_‘

of the K clusters

I’ LOO p each cluster, revising both the mean (centroid position) and covariance (shape)

O . L=1 Ky L=4 @
- ‘e S
(@) (c) (d) (e)
L=6 L=8 . ® L=10 L=12
L4 S L3 3
Ee T e |
S »
(f) (9) (h) (i)

11/16/15 o o . . . .
For each point, revising its proportions belonging to each of the K clusters

© Eric Xing @ CMU, 2006-2008

Compare: K-means

* The EM algorithm for mixtures of Gaussians i?‘
like a "soft version" of the K-means algorithm.

* In the K-means “E-step” we d¢ har
assignment:

» In the®K-means "M-3tep” we update the means

as the Weig@ of the data, but now the
weights are Oor 1:

. . . .
PR PR X *
h . g e i . o .

. ., ., ..

(@) (®) © (d) (e) ]
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What we have covered (IV)

‘ 1 Learning theory / Model selection T

— K-folds cross validation
— Expected prediction error

— Bias and variance tradeoff

11/16/15 117
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(1) Evaluation Choice:
e.g. 10 fold Cross Validation

model P1 P2 P3 P4 P5 P6 P7 P8

 Divide datainto [
10 equal pieces |.
* 9 pieces as :
training set, the |-
rest 1 as test set |:
* Collect the :
scores from the |-
diagonal °

11/16/15




CV-based Model Selection
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We're trying to decide which algorithm to use.

‘  We train each model and make a table...

=

i |fi | TRAINERR 10-FOLD-CV-ERR Choice
1 |f, T
2 |fy o
3 |fs I v
4 |f, I
5 |fs T
6 |f, O
11/16/15 119
Which kind of cross-validation ?
Downside Upside
Test-set |Variance: unreliable Cheap
estimate of future
performance
Leave- Expensive. Doesn’t waste data
one-out |Has some weird behavior
10-fold |Wastes 10% of the data. |Only wastes 10%. Only
10 times more expensive |10 times more expensive
than test set instead of R times.
3-fold Wastier than 10-fold. Slightly better than test-
Expensivier than test set |set
R-fold Identical to Leave-one-out
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(2) e.g. Training Error from
KNN, Lesson Learned

‘- When k = 1,

* No misclassifications (on
training): Overtraining

« Minimizing
training error is
not always
good (e.g., 1-
NN)

11/16/15

1-nearest neighbor averaging \

Yanjun Qi / UVA CS 4501-01-6501-07

Statistical Decision Theory

‘ « Random input vector: X T

« Random output variable:Y

Joint distribution

: Pr(X,Y)
Loss function L(Y, (X))

Expected prediction error (EPE):

EPE(f) = E(L(Y.f (X)) = [ L(y.f (x))Pr(dx.dy)

) Consider
eg=[(y- ) Pr(dedy)

11/16/15 ﬁ i i i i ii i i i i i
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Expected prediction error (EPE)

—
distribution
EPE(f) = E(L(Y, f(X))) = f L(y, f (x))Pr(dx,dy)

e For L2 10SS: cg .- (liy- fo) IPr(ax.ay)
under L2 loss,or EPE (Theoretically) is :

Conditional
l mean
€.g. KNN NN methods are the‘ direct implementation rapproximation )l

« For 0-1 loss: L(k, £) = 1-d,

f(xX)=C, if
Pr(C, |X:x):me}xPr(g|X:x)
ge

11/16/15 Bayes ClaSSiﬁer

123
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(3) Bias-Variance Trade-off

‘ E(MSE) = noise? + bias? + variance T
/ \ \ Error due to

Unavoidable Error due to variance of training
error incorrect samples
assumptions

11/16/15 124
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Bias-Variance Tradeoff / Model Selection

-

=

=

o High Bias Low Bias

H Low Variance High Variahce

~ -—————— -

g

R

+

S

'qz) Test Sam

a¥ / \

) . an overﬁtr\e}ion
underfit region Training Sample
Low High

Model Complexity

11/16/15 125
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IectlonC em\

Bias-Variance Tradeoff/ Model S

-

S -+ \V‘E :>—¥0)§K€m¥
gk”& /

e

- -@MS

High\Bias Low| Bias
Low Varianc High\Varia

Prediction Error

(Qm@“}
{@ NX' ey N

11/16/15

Training Sample

Low
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Model “bias” & Model
“vaﬂance”

Middle RED:
— TRUE function

 Error due to bias:

— How far off in general
from the middle red

« Error due to variance:

— How wildly the blue
points spread

11/16/15

Low Bias

High Bias

High Variance

Low Variance
é i E 87.

Which function f to choose? ===
Many possible choices, e.g. LR with

|7 polynomial basis functions

=

y=06,+0,x

y =6, +0x+6,x°

V= Zizo 0,x’

“contro

11/16/

”  u

Generalisation: learn function /
hypothesis from past data in order

to “explain”, “predict”,
I” new data examples

model” or

Choose f that
generalizes well !

128
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Which kernel width to choose ?
e.g. locally weighted LR

| B

Choose kernel width

kernel too wide — includes nonlinear region

fkernel just right
kernel too narrow — excludes some of linear reg

X
Figwre 3: The estimator variance is mintmized when the kernel mcludes as many training points as can be

accorrln'x/llo%asted by the model. Here the linear LOESS model s shown. Too large a kemel includes points that
degracile ghe fit, too small a kernel neglects points that increase confidence in the fit.

r\x Yanjun i/ UVA Lch‘f;ollb 7TLS

Which Choose 4 that
regularization
parameter to

choose ?

SVi
Iweight
Pggds
Ibph

Coefficients

Ridge
Regression

age

T T T 7NN | T
0 2 4 6 8

when varying4, A—x A=0

hOW 9] Va]/'les. ¢ A increases

11/16/15




Choose A that
generalizes well !

=

|2

€

2

o

=

Qo

8

T T T T T T
0.0 0.2 0.4 0.6 08 1.0
ﬂ, % oo Shrinkage Factor s A{ — 0
FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ 377 |3;]. A vertical line is draun at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
11/16/15 and so are computed only at the points displayed; see Section 3.4.4 for details.

need to make assumptions that
are able to generalize

‘ » Components of generalization error Tj
— Bias: how much the average model over all training sets differ fro
the true model?
 Error due to inaccurate assumptions/simplifications made by the
model
— Variance: how much models estimated from different training sets
differ from each other
» Underfitting: model is too “simple” to represent all the
relevant class characteristics
— High bias and low variance
— High training error and high test error
» Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
— Low bias and high variance
111675 LOW training error and high test error 1




High variance

Typical learning curve for high variance:

pverfee

error

t

Y
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&&
Could also use
CrossV Error

16

n1)

1
.

Test error

Desired perfgrmance

Training error

m (training set size)

e Test error still decreasing as m increases. Suggests larger training set will help.

e Large gap between training and test error.

veiis e | ow training error and high test error

33

High bias

Typical learning curve for high bias:

o i X

o)
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oA
Could also use
CrossV Error

Test error

error

\
4
e

Training error

/

Desired performance

m (training set size)

e Even training error is unacceptably high.

¢ Small gap between training and test error.

11/16/15 High training error and high test error

134




What we have covered for each

Task

Representation

Score Function

Search/
Optimization

Models,
Parameters

component

Regression, classification, clustering, dimen-reduction

Linear func, nonlinear function (e.g. polynomial expansion), local
linear, logistic function (e.g. p(c|x)), tree, multi-layer, prob-density
family (e.g. Bernoulli, multinomial, Gaussian, mixture of
Gaussians), local func smoothness, kernel matrix

MSE, Hinge (margin), log-likelihood, EPE (e.g. L2 loss for KNN, 0-1
loss for Bayes classifier), cross-entropy, cluster points distance to
centers, variance,

Normal equation, gradient descent, stochastic GD, Newton, Linear
programming, Quadratic programming (quadratic objective with
linear constraints), greedy, EM, asyn-SGD, eigenDecomp

Regularization (e.g. L1, L2)
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O Prof. M.A. Papalaskar’s slides
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