UVA CS 6316 – Fall 2015 Graduate: Machine Learning

Lecture 22: Review

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

11/16/15

Dr. Yanjun Qi / UVA CS 6316 / f15

1

Announcements: Rough Plan

- HW5
 - Out on Nov. 18th
 - Due on Dec. 7th
- Project Presentation
 - Due on Dec. 2nd midnight
 - Presentations @ Dec 3rd and Dec 4th
- Project Final Report
 - Due on Dec. 11th midnight

3

Announcements: Exam

- Open Note / Open Lectures
- No laptop / No Cell phone / No internet access / No electronic devices
- Covering contents till today
 - Practice with sample questions in HW4
 - HW4 due on Nov. 20th
 - Please review course slides carefully

11/16/15

From: M.A. Papalaskar

1960s

A.I. funding increased (mainly military). Famous quote: "Within a generation ... the problem of creating 'artificial intelligence' will substantially be solved."

Early symbolic reasoning approaches. Logic Theorist, GPS, Perceptrons 1969: Minsky & Papert "Perceptrons"

1970s

A.I. "winter" – Funding dries up as people realize this is a hard problem!

Limited computing power and dead-end frameworks lead to failures.

eg: Machine Translation Failure

11/16/15

From: M.A. Papalaskar

From: M.A. Papalaskar

1990s

Some concrete successes begin to emerge. Al diverges into separate fields: Computer Vision, Automated Reasoning, Planning systems, Natural Language processing, <u>Machine Learning</u>...

...Machine Learning begins to overlap with statistics / probability theory.

1992: Koza & Genetic Programming
 1995: Vapnik: Support Vector Machines

 $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$

⁹ From: M.A. Papalaskar

Dr. Yanjun Qi / UVA CS 6316 / f15

2000s

First commercial-strength applications: Google, Amazon, computer games, route-finding, credit card fraud detection, spam filters, etc...

Tools adopted as standard by other fields e.g. biology

MIT		AKTHROUGH Ologies 201			n Qi / UVA CS 6316 / f1 echnologies Past Y
Rev		ULUUIE3 ZUI	JJ ZU .	105 : :	
ſ	Deep Learning	TemporarySocial Media	Prenatal DNA Sequencing	Additive Manufacturing	Baxter: The Blue- Collar Robot
	With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.	Messages that quickly self-destruct could enhance the privacy of online communications and make people freer to be spontaneous.	Reading the DNA of fetuses will be the next frontier of the genomic revolution. But do you really want to know about the genetic problems or musical aptitude of your unborn child?	Skeptical about 3-D printing? GE, the world's largest manufacturer, is on the verge of using the technology to make jet parts.	Rodney Brooks's newest creation is easy to interact with but the complex innovations behind t robot show just how hard it is to get alon with people.
	Memory Implants	Smart Watches	Ultra-Efficient Solar Power	Big Data from Cheap Phones	Supergrids
	A maverick neuroscientist believes he has deciphered the code by which the brain forms long-term memories. Next: testing a prosthetic implant for people sulfering from long- term memory loss.	The designers of the Pebble watch realized that a mobile phone is more useful if you don't have to take it out of your pocket. →	Doubling the efficiency of a solar cell would completely change the economics of renewable energy. Nanotechnology just might make it possible.	Collecting and analyzing information from simple cell phones can provide surprising insights into how people move about and behave – and even help us understand the spread of diseases.	A new high-power circuit breaker could finally make highly efficient DC power grids practical.

- Text: trillions of words of English + other languages
- Visual: billions of images and videos
- Audio: thousands of hours of speech per day
- User activity: queries, user page clicks, map requests, etc,
- Knowledge graph: billions of labeled relational triplets

Data-driven machine learning methods have made machines / computers much more intelligent

11/16/15

.

Dr. Jeff Dean's talk

15

Tom Mitchell (1998): Well-posed Learning Problem

A computer program is said to learn from experience **E** with respect to some task **T** and some performance measure **P**, if its performance on **T**, as measured by **P**, improves with experience **E**.

11/16/15

What we have covered for each

Representation	
Score Function	
Search/ Optimization	
Models, Parameters	
11/16/15	19
	Dr. Yanjun Qi / UVA CS 6316 / f15
A	Dr. Yanjun Qi / UVA CS 6316 / f15
	Typical Machine Learning Pipeline X
e.g. Data (Typical Machine Learning PipelineOptimizationCleaning Task-relevantPre- essingFeature ExtractFeature Select
e.g. Data (Typical Machine Learning PipelineOptimizationCleaning Task-relevantPre-FeatureFeatureOptimization $f: X \to Y$
e.g. Data (Typical Machine Learning Pipeline Steaning Task-relevant Pre- essing Feature Struct Feature Select Inference, Pre- essing Inference, Pre- essing Label Collection Fvaluation
e.g. Data (w-level	Typical Machine Learning Pipeline Cleaning Task-relevant Pre- essing Feature Extract Feature Feature Select Inference, Prediction, Recognition

http://scikit-learn.org/stable/

Classification

Regression

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest.... Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. Examples

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ... Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation, metrics. - Examples

scikit-learn

Machine Learning in Python

- · Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, Examples mean-shift, ...

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction. Examples

Dr. Yanjun Qi / UVA CS 6316 / f15

different assumptions on data

✓ different scalability profiles at training time

✓ different latencies at prediction time

 \checkmark different model sizes (embedability in mobile devices)

11/16/15

Olivier Grisel's talk

Method I: normal equations

For the t-th epoch

$$\nabla_{\theta} J = \left[\frac{\partial}{\partial \theta_1} J, \dots, \frac{\partial}{\partial \theta_k} J\right]^T = -\sum_{i=1}^n (y_i - \bar{\mathbf{x}}_i^T \theta) \mathbf{x}_i$$

 $\theta_t = \theta_{t-1} - \alpha \nabla J(\theta_{t-1})$

$$\boldsymbol{\theta}_{j}^{t+1} = \boldsymbol{\theta}_{j}^{t} + \alpha \sum_{i=1}^{n} (\boldsymbol{y}_{i} - \vec{\mathbf{x}}_{i}^{T} \boldsymbol{\theta}^{t}) \boldsymbol{x}_{i}^{j}$$

- This is as a **batch** gradient descent algorithm

Method III: LR with Stochastic GD ->

• From the batch steepest descent rule:

$$\boldsymbol{\theta}_{j}^{t+1} = \boldsymbol{\theta}_{j}^{t} + \alpha \sum_{i=1}^{n} (y_{i} - \bar{\mathbf{x}}_{i}^{T} \boldsymbol{\theta}^{t}) x_{i}^{j}$$

• For a single training point, we have:

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \boldsymbol{\alpha}(\boldsymbol{y}_i - \bar{\boldsymbol{x}}_i^T \boldsymbol{\theta}^t) \bar{\boldsymbol{x}}_i$$

a "stochastic", "coordinate" descent algorithm
This can be used as an on-line algorithm

(2.1) : Multivariate Bernoulli for text

		Yanjun Qi /	/ UVA CS 4501-01-6501-07			
•	2) Multinomia tochastic Lang					
Model C1 0.2 the 0.01 boy	Model C2 0.2 the 0.0001 boy	the	boy	likes	black	dog
0.0001 said 0.0001 likes 0.0001 black	0.03 said 0.02 likes 0.1 black	0.2 0.2	0.01 0.0001	0.0001 0.02	0.0001 0.1	0.0005 0.01
0.0005 dog 0.01 garden	0.01 dog 0.0001 garden	P(s	C2) P(C	(2) > P(s C1) P	(C1)

(2.5) QDA (Quadratic Discriminant Analysis)

- Estimate the covariance matrix Σ_k separately for each class k, k = 1, 2, ..., K.
- Quadratic discriminant function:

$$\delta_k(x) = -\frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + \log \pi_k .$$

Classification rule:

$$\hat{G}(x) = rg\max_k \delta_k(x)$$
 .

- Decision boundaries are quadratic equations in x.
- QDA fits the data better than LDA, but has more parameters to estimate.

11/16/15

Figure 4.6: Two methods for fitting quadratic boundaries. The left plot shows the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA in the five-dimensional space $x_1, x_2, x_{12}, x_1^2, x_2^2$). The right plot shows the quadratic decision boundaries found by QDA. The differences are small, as is usually the case.

11/16/15

69

(2.7) Regularized Discriminant Analysis

- ► A compromise between LDA and QDA.
- Shrink the separate covariances of QDA toward a common covariance as in LDA.
- Regularized covariance matrices:

$$\hat{\Sigma}_k(\alpha) = \alpha \hat{\Sigma}_k + (1-\alpha) \hat{\Sigma}$$
.

- The quadratic discriminant function δ_k(x) is defined using the shrunken covariance matrices Σ_k(α).
- The parameter α controls the complexity of the model.

Discriminative vs. Generative

- Empirically, generative classifiers approach their asymptotic error faster than discriminative ones
 - Good for small training set
 - Handle missing data well (EM)
- Empirically, discriminative classifiers have lower asymptotic error than generative ones
 - Good for larger training set

11/16/15

Anatomy of a decision tree

=> yes play tennis

11/16/15

 $\mathbf{f}_i, i \in [1, T]$, the derivative for updating its parameter set $\mathcal{O}_i^{\mathbb{I}_1}$ is using the delta rule:

$$rac{\partial l}{\partial oldsymbol{ heta}_i} = \left| rac{\partial \mathbf{f}_T}{\partial \mathbf{f}_i}
ight| imes rac{\partial \mathbf{f}_i}{\partial oldsymbol{ heta}_i},$$

and the first factor on the right can be recursively calculated:

$$\frac{\partial \mathbf{f}_T}{\partial \mathbf{f}_i} = \frac{\partial \mathbf{f}_T}{\partial \mathbf{f}_{i+1}} \times \frac{\partial \mathbf{f}_{i+1}}{\partial \mathbf{f}_i}.$$

Note that **f** and θ are usually vectors so $\frac{\partial \mathbf{f}_T}{\partial \mathbf{f}_{i+1}}$ and $\frac{\partial \mathbf{f}_i}{\partial \boldsymbol{\theta}_i}$ are Jacobian matrices, and "×" is matrix multiplication.

(7) Feature Selection

 Thousands to millions of low level features: select the most relevant one to build better, faster, and easier to understand learning machines.

Dr. Yanjun Qi / UVA CS 6316 / f15

(7) Feature Selection (not covered) Task Dimension Reduction

11/16/15

Feature Selection

Dr. Yanjun Qi / UVA CS 6316 / f15

What we have covered (III)

Unsupervised models

- Dimension Reduction (PCA)
- Hierarchical clustering
- K-means clustering
- GMM/EM clustering

Eigen-decomp

Principal

components

Search/Optimization

Models,

Parameters

11/16/15

What is clustering?

 Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups

Clustering Algorithms

Clotering Clotering Clustering Clustering No clearly defined loss greedy bottom-up (or top-down) Dendrogram (tree)

117

What we have covered (IV)

Learning theory / Model selection

- K-folds cross validation
- Expected prediction error
- Bias and variance tradeoff

11/16/15

Dr. Yanjun Qi / UVA CS 6316 / f15 (1) Evaluation Choice: e.g. 10 fold Cross Validation Divide data into • P10 train train train train train train 10 equal pieces 2 train train train train train trair train 9 pieces as 3 train train train training set, the train train train train train train rest 1 as test set 5 train • Collect the train train train scores from the train train train train train train train train train diagonal train train 11/16/15

120

Which kind of cross-validation ?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 times more expensive instead of R times.
3-fold	Wastier than 10-fold. Expensivier than test set	Slightly better than test- set
R-fold	Identical to Leave-one-out	

Figure 3: The estimator variance is minimized when the kernel includes as many training points as can be accommodated by the model. Here the linear LOESS model is shown. Too large a kernel includes points that degrade the fit; too small a kernel neglects points that increase confidence in the fit.

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus $s = t / \sum_{1}^{p} |\hat{J}_{j}|$. A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.

11/16/15

need to make assumptions that are able to generalize

· Components of generalization error

- Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
- Variance: how much models estimated from different training sets differ from each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
- 11/16/15 Low training error and high test error

132 Slide credit: L. Lazebnik

What we have covered for each component

Task	Regression, classification, clustering, dimen-reduction
Representation	Linear func, nonlinear function (e.g. polynomial expansion), local linear, logistic function (e.g. p(c x)), tree, multi-layer, prob-density family (e.g. Bernoulli, multinomial, Gaussian, mixture of Gaussians), local func smoothness, kernel matrix
Score Function	MSE, Hinge (margin), log-likelihood, EPE (e.g. L2 loss for KNN, 0-1 loss for Bayes classifier), cross-entropy, cluster points distance to centers, variance,
Search/ Optimization	Normal equation, gradient descent, stochastic GD, Newton, Linear programming, Quadratic programming (quadratic objective with linear constraints), greedy, EM, asyn-SGD, eigenDecomp
Models, Parameters	Regularization (e.g. L1, L2)

11/16/15

Dr. Yangun Qi / UVA CS 633E / fts
Asstie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
Prof. M.A. Papalaskar's slides
Prof. Andrew Ng's slides