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Independence
• Independence allows for easier models, learning and 

inference 
• For example, with 3 binary variables we only need 3 

parameters rather than 7.  
•  The saving is even greater if we have many more 

variables …  
• In many cases it would be useful to assume 

independence, even if its not the case 
• Is there any middle ground?



Bayesian networks
• Bayesian networks are directed graphs with nodes representing 

random variables and edges representing dependency assumptions 
• Lets use a movie example: We would like to determine the joint 

probability for length, liked and slept in a movie

Lo

Li S

Long?

Slept?

Liked?

Bayesian networks: Notations

Le

Li S

P(Lo) = 0.5

P(Li | Lo) = 0.4 

P(Li | ¬Lo) = 0.7

P(S | Lo) = 0.6 

P(S | ¬Lo) = 0.2

Conditional 
probability tables 
(CPTs)

Conditional 
dependency

Random variables

Bayesian networks are directed acyclic graphs. 



Bayesian networks: Notations

Le

Li S

P(Lo) = 0.5

P(Li | Lo) = 0.4 

P(Li | ¬Lo) = 0.7

P(S | Lo) = 0.6 

P(S | ¬Lo) = 0.2

The Bayesian network below represents the following joint 
probability distribution:

€ 

p(Le,Li,S) = P(Le)P(Li | Le)P(S | Le)
More generally Bayesian network represent the following joint 
probability distribution:

  

€ 

p(x1…xn ) = p(xi |Pa(xi))
i
∏

The set of parents of xi 
in the graph

Network construction and structural 
interpretation



Constructing a Bayesian network

• How do we go about constructing a network for a specific 
problem? 

• Step 1: Identify the random variables 
• Step 2: Determine the conditional dependencies 
• Step 3: Populate the CPTs

Can be learned from observation data!

A example problem
• An alarm system 
    B – Did a burglary occur? 
    E – Did an earthquake occur? 
    A – Did the alarm sound off? 
    M – Mary calls 
    J – John calls 

• How do we reconstruct the network for this problem?



Factoring joint distributions
• Using the chain rule we can always factor a joint 

distribution as follows: 
    P(A,B,E,J,M) =  
            P(A | B,E,J,M) P(B,E,J,M) = 
            P(A | B,E,J,M) P(B | E,J,M) P(E,J,M) =  
            P(A | B,E,J,M) P(B | E, J,M) P(E | J,M) P(J,M) 
            P(A | B,E,J,M) P(B | E, J,M) P(E | J,M)P(J | M)P(M) 
• This type of conditional dependencies can also be 

represented graphically.

A Bayesian network

E

J M

A B

Number of parameters: 

A: 2^4 

B: 2^3 

E: 4  

J: 2 

M: 1 

A total of 31 parameters

P(A | B,E,J,M) P(B | E, J,M) P(E | J,M)P(J | M)P(M)



A better approach
• An alarm system 
    B – Did a burglary occur? 
    E – Did an earthquake occur? 
    A – Did the alarm sound off? 
    M – Mary calls 
    J – John calls 

• Lets use our knowledge of the domain!

Reconstructing a network

A

J M

B E   B – Did a burglary occur? 
    E – Did an earthquake occur? 
    A – Did the alarm sound off? 
    M – Mary calls 
    J – John calls 



Reconstructing a network

A

J M

B ENumber of parameters: 

A: 4 

B: 1 

E: 1 

J: 2 

M: 2 

A total of 10 parameters

By relying on domain knowledge 
we saved 21 parameters!

Constructing a Bayesian network: 
Revisited

• Step 1: Identify the random variables 
• Step 2: Determine the conditional dependencies 
    - Select on ordering of the variables 
     - Add them one at a time 
     - For each new variable X added select the minimal subset of nodes 

as parents such that X is independent from all other nodes in the 
current network given its parents. 

• Step 3: Populate the CPTs 
    - From examples using density estimation



Example: Bayesian networks for 
cancer detection 

Example: Gene 
expression network



Conditional independence

A

J M

B E• Two variables x,y are said to be 
conditionally independent given a third 
variable z if p(x,y|z) = p(x|z)p(y|z)  

• In a Bayesian network a variable is 
conditionally independent of all other 
variables given it Markov blanket

Markov blanket: All parent, children's and 
co-parents of children 

Markov blankets: Examples

A

J M

B EMarkov blanket for B: 
E, A

Markov blanket for A: 
B, E, J, M



d-separation
• In some cases it would be useful for us to know under which 
conditions two variables are independent of each other 

     - Helps when trying to do inference 

     - Can help determine causality from structure  

• Two variables x and y are d-separated given a set of variables Z 
(which could be empty) if x and y are conditionally independent 
given Z 

• We denote such conditional independence as I(x,y|Z)

d-separation
•  We will give rules to identify d-connected variables. Variables 

that are not d-connected are d-separated.  

• The following three rules can be used to determine if x and y are 
d-connected given Z: 

1. If Z is empty then x and y are d-connected if there exists a path between 
them does not contain a collider. 

2. x and y are d-connected given Z if there exists a path between them that 
does not  contain a collider and does not contain any member of Z 

3. If Z contains a collider or one of its descendents then if a path between x 
and y contains this node they are d-connected  

X Y

A collider node:



Inference in BN’s

Bayesian network: Inference
• Once the network is constructed, we can use algorithms 

for inferring the values of unobserved variables. 
• For example, in our previous network the only observed 

variables are the phone call and the radio announcement. 
However, what we are really interested in is whether 
there was a burglary or not. 

• How can we determine that?



Inference
• Lets start with a simpler question 
   - How can we compute a joint distribution from the 

network? 
   - For example, P(B,¬E,A,J, ¬M)? 
• Answer: 
   - That’s easy, lets use the network

Computing: P(B,¬E,A,J, ¬M)

A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) =.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) =.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) =.8 
P(M|¬A) = .15

P(B,¬E,A,J, ¬M) =  

P(B)P(¬E)P(A | B, ¬E) P(J 
| A)P(¬M | A) 

= 0.05*0.9*.85*.7*.2 

= 0.005355



Computing: P(B,¬E,A,J, ¬M)

A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15

P(B,¬E,A,J, ¬M) =  

P(B)P(¬E)P(A | B, ¬E) P(J 
| A)P(¬M | A) 

= 0.05*0.9*.85*.7*.2 

= 0.005355
We can easily compute a  
complete joint distribution. 
What about partial 
distributions?  Conditional 
distributions?

Inference
• We are interested in queries of the form: 
    P(B | J,¬M) 
• This can also be written as a joint: 

• How do we compute the new joint? 
    

),,(),,(
),,(),|(

MJBPMJBP
MJBPMJBP

¬¬+¬

¬
=¬

A

J M

B E



Inference in Bayesian networks
• We will discuss three methods: 
1. Enumeration  
2. Variable elimination 
3. Stochastic inference

Computing partial joints

),,(),,(
),,(),|(

MJBPMJBP
MJBPMJBP

¬¬+¬

¬
=¬

Sum all instances with these settings (the sum 
is over the possible assignments to the other 
two variables, E and A)



Computing: P(B,J, ¬M)

A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15

P(B,J, ¬M) =  

P(B,J, ¬M,A,E)+  

P(B,J, ¬M, ¬ A,E) + P(B,J, 
¬M,A, ¬ E) + P(B,J, ¬M, ¬ 
A, ¬ E) = 

0.0007+0.00001+0.005+0.
0003 = 0.00601 

Computing partial joints

),,(),,(
),,(),|(

MJBPMJBP
MJBPMJBP

¬¬+¬

¬
=¬

Sum all instances with these settings (the sum is over the 
possible assignments to the other two variables, E and A)

• This method can be improved by re-using calculations 
(similar to dynamic programming) 

• Still, the number of possible assignments is exponential in 
the unobserved variables? 

• That is, unfortunately, the best we can do. General querying 
of Bayesian networks is NP-complete



Inference in Bayesian networks if NP 
complete (sketch)

• Reduction from 3SAT 
• Recall: 3SAT, find satisfying assignments to the following 

problem: (a ∨ b ∨ c) ∧ (d ∨ ¬ b ∨ ¬ c) …

P(xi=1) = 0.5

P(xi=1) = (x1 ∨ x2 ∨ x3) 

P(Y=1) = (x1 ∧ x2 ∧ x3 ∧ x4) 

What is P(Y=1)?

Y

Inference in Bayesian networks
• We will discuss three methods: 
1. Enumeration  
2. Variable elimination 
3. Stochastic inference



Variable elimination

Reuse computations 
rather than recompute 
probabilities

A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15

P(B,J, ¬M) =  

P(B,J, ¬M,A,E)+  

P(B,J, ¬M, ¬ A,E) + 
P(B,J,¬M,A, ¬ E) + P(B,J, ¬M, 
¬ A, ¬ E) = 

0.0007+0.00001+0.005+0.0003 
= 0.00601 

Computing: P(B,J, ¬M)

A

J M

B EP(B,J, ¬M) =  

P(B,J, ¬M,A,E)+  

P(B,J, ¬M, ¬ A,E) + P(B,J, 
¬M,A, ¬ E) + P(B,J, ¬M, ¬ 
A, ¬ E) = 

€ 

P(B)P(e)
e
∑

a
∑ P(a |B,e)P(M | a)P(J | a)

Store as a function of a and use 
whenever necessary (no need to 
recompute each time)



Variable elimination

A

J M

B E
€ 

P(B,J,M) = P(B)P(e)
e
∑

a
∑ P(a |B,e)P(M | a)P(J | a)

Set:

€ 

fM (A) =
P(M | A)
P(M |¬A
" 

# 
$ 

% 

& 
' 

€ 

fJ (A) =
P(J | A)
P(J |¬A
" 

# 
$ 

% 

& 
' 

€ 

= P(B) P(e)
a
∑

e
∑ P(a |B,e)P(M | a)P(J | a)

Variable elimination

A

J M

B E
€ 

P(B,J,M) = P(B)P(e)
e
∑

a
∑ P(a |B,e)P(M | a)P(J | a)

Set:

€ 

fM (A) =
P(M | A)
P(M |¬A
" 

# 
$ 

% 

& 
' 

€ 

fJ (A) =
P(J | A)
P(J |¬A
" 

# 
$ 

% 

& 
' 

€ 

= P(B) P(e)
a
∑

e
∑ P(a |B,e)P(M | a)P(J | a)

€ 

P(B,J,M) = P(B) P(e)
a
∑

e
∑ P(a |B,e) fM (a) fJ (a)



Variable elimination

A

J M

B E
Lets continue with these functions:€ 

= P(B) P(e)
a
∑

e
∑ P(a |B,e) fM (a) fJ (a)

€ 

fA ,J ,M (B,e) = fA (a,B,e) fJ (a) fM (a)
a
∑

We can now define the following function:

€ 

fA (a,B,e) = P(a |B,e)

And so we can write:

€ 

P(B,J,M) = P(B) P(e) fA ,J ,M (B,e)
e
∑

Variable elimination

A

J M

B E

Lets continue with another function:

And finally we can write:

€ 

fE ,A ,J ,M (B) = P(e)
e
∑ fA ,J ,M (B,e)

€ 

P(B,J,M) = P(B) P(e) fA ,J ,M (B,e)
e
∑

€ 

P(B,J,M) = P(B) fE ,A ,J ,M (B)



Example

J

P(B)=.05 P(E)=.1

P(A|B,E) =.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) =.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J| ¬ A) = .05

P(M|A) =.8 
P(M| ¬ A) = .15

M

A

B E€ 

P(B,J,M) = P(B) fE ,A ,J ,M (B)

€ 

= 0.05 P(e) fA ,J ,M (B,e) = 0.05(0.1
e
∑ fA ,J ,M (B,e) + 0.9 fA ,J ,M (B,¬e))

€ 

0.05(0.1(0.95 fJ (a) fM (a) + 0.05 fJ (¬a) fM (¬a)) +

0.9(.85 fJ (a) fM (a) + .15 fJ (¬a) fM (¬a)))

Calling the same 
function multiple 
times

Final computation (normalization)

),,(),,(
),,(),|(

MJBPMJBP
MJBPMJBP

¬¬+¬

¬
=¬



Algorithm
• e - evidence (the variables that are known) 
• vars - the conditional probabilities derived from the 

network in reverse order (bottom up) 
• For each var in vars 
    - factors <- make_factor (var,e) 
    - if var is a hidden variable then create a new factor by 

summing out var 
• Compute the product of all factors 
• Normalize

Computational complexity
• We are reusing computations so we are reducing the 

running time. 
• However, there are still cases in which this algorithm we 

lead to exponential running time. 
• Consider the case of fx(y1 … yn). When factoring x out we 

would need to account for all possible values of the y’s.

Variable elimination can lead 
to significant costs saving but 
its efficiency depends on the 
network structure



Inference in Bayesian networks
• We will discuss three methods: 
1. Enumeration  
2. Variable elimination 
3. Stochastic inference

Stochastic inference
• We can easily sample the joint 

distribution to obtain possible 
instances  

1. Sample the free variable 
2. For every other variable: 
    - If all parents have been sampled, 
      sample based on conditional 

distribution 

We end up with a new set of 
assignments for B,E,A,J and M 
which are a random sample from 
the joint

A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15



Stochastic inference
• We can easily sample the joint 

distribution to obtain possible 
instances  

1. Sample the free variable 
2. For every other variable: 
    - If all parents have been sampled, 
      sample based on conditional 

distribution A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15

Its always possible to carry 
out this sampling 
procedure, why?

Using sampling for inference
• Lets revisit our problem: Compute P(B | J,¬M) 
• Looking at the samples we can count: 
   - N: total number of samples 

   - Nc : total number of samples in which the condition holds (J,¬M) 

    - NB: total number of samples where the joint is true (B,J,¬M) 
• For a large enough N 
    - Nc / N ≈ P(J,¬M) 
    - NB / N ≈ P(B,J,¬M) 
• And so, we can set 

P(B | J,¬M) = P(B,J,¬M) / P(J,¬M) ≈ NB / Nc



Using sampling for inference
• Lets revisit our problem: Compute P(B | J,¬M) 
• Looking at the samples we can cound: 
   - N: total number of samples 

   - Nc : total number of samples in which the condition holds (J,¬M) 

    - NB: total number of samples where the joint is true (B,J,¬M) 
• For a large enough N 
    - Nc / N ≈ P(J,¬M) 
    - NB / N ≈ P(B,J,¬M) 
• And so, we can set 

P(B | J,¬M) = P(B,J,¬M) / P(J,¬M) ≈ NB / Nc

Problem: What if the condition rarely 
happens? 

We would need lots and lots of samples, 
and most would be wasted

Weighted sampling
• Compute P(B | J,¬M) 
• We can manually set the value of J to 

1 and M to 0 
• This way, all samples will contain the 

correct values for the conditional 
variables 

• Problems? A

J M

B E



Weighted sampling
• Compute P(B | J,¬M) 
• Given an assignment to parents, we 

assign a value of 1 to J and 0 to M. 
• We record the probability of this 

assignment (w = p1*p2) and we weight 
the new joint sample by w

A

J M

B E

Weighted sampling algorithm for 
computing P(B | J,¬M)

• Set NB,Nc = 0 
• Sample the joint setting the values for J and M, 

compute the weight, w, of this sample  
• Nc = Nc+w 

• If B = 1, NB = NB+w 

• After many iterations, set 
 P(B | J,¬M) = NB / Nc



Other inference methods
• Convert network to a polytree 
    - In a polytree no two nodes have more 

than one path between them 
    - We can convert arbitrary networks to 

a polytree by clustering (grouping) 
nodes. For such a graph there is a 
algorithm which is linear in the number 
of nodes 

   - However, converting into a polytree 
can result in an exponential increase in 
the size of the CPTs

A

J M

B E

A

J M

B E

 
 

Bayesian networks: Inference



d-separation
•  We will give rules to identify d-connected variables. Variables 

that are not d-connected are d-separated.  

• The following three rules can be used to determine if x and y are 
d-connected given Z: 

1. If Z is empty then x and y are d-connected if there exists a path between 
them does not contain a collider. 

2. x and y are d-connected given Z if there exists a path between them that 
does not  contain a collider and does not contain any member of Z 

3. If Z contains a collider or one of its descendents then if a path between x 
and y contains this node they are d-connected  

3.  (revised) If all colliders on an undirected path between x and y are in Z 
or have a descendent in Z, then they are d-connected  

X Y

A collider node:

Variables
• An alarm system 
    B – Did a burglary occur? 
    E – Did an earthquake occur? 
    A – Did the alarm sound off? 
    M – Mary calls 
    J – John calls 

• Lets use our knowledge of the domain!



Inference
• We are interested in queries of the form: 
    P(B | J,¬M) 
• This can also be written as a joint: 

• How do we compute the new joint? 
    

),,(),,(
),,(),|(

MJBPMJBP
MJBPMJBP

¬¬+¬

¬
=¬

A

J M

B E

Inference in Bayesian networks
• We will discuss three methods: 
1. Enumeration  
2. Variable elimination 
3. Stochastic inference



Computing: P(B,J, ¬M)

A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15

P(B,J, ¬M) =  

P(B,J, ¬M,A,E)+  

P(B,J, ¬M, ¬ A,E) + P(B,J, 
¬M,A, ¬ E) + P(B,J, ¬M, ¬ 
A, ¬ E) = 

0.0007+0.00001+0.005+0.
0003 = 0.00601 

Computing partial joints

),,(),,(
),,(),|(

MJBPMJBP
MJBPMJBP

¬¬+¬

¬
=¬

Sum all instances with these settings (the sum is over the 
possible assignments to the other two variables, E and A)

• This method can be improved by re-using calculations 
(similar to dynamic programming) 

• Still, the number of possible assignments is exponential in 
the unobserved variables? 

• That is, unfortunately, the best we can do. General querying 
of Bayesian networks is NP-complete



Inference in Bayesian networks if NP 
complete (sketch)

• Reduction from 3SAT 
• Recall: 3SAT, find satisfying assignments to the following 

problem: (a ∨ b ∨ c) ∧ (d ∨ ¬ b ∨ ¬ c) …

P(xi=1) = 0.5

P(xi=1) = (x1 ∨ x2 ∨ x3) 

P(Y=1) = (x1 ∧ x2 ∧ x3 ∧ x4) 

What is P(Y=1)?

Y

Inference in Bayesian networks
• We will discuss three methods: 
1. Enumeration  
2. Variable elimination 
3. Stochastic inference



Variable elimination

Reuse computations 
rather than recompute 
probabilities

A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15

P(B,J, ¬M) =  

P(B,J, ¬M,A,E)+  

P(B,J, ¬M, ¬ A,E) + 
P(B,J,¬M,A, ¬ E) + P(B,J, ¬M, 
¬ A, ¬ E) = 

0.0007+0.00001+0.005+0.0003 
= 0.00601 

Computing: P(B,J, ¬M)

A

J M

B EP(B,J, ¬M) =  

P(B,J, ¬M,A,E)+  

P(B,J, ¬M, ¬ A,E) + P(B,J, 
¬M,A, ¬ E) + P(B,J, ¬M, ¬ 
A, ¬ E) = 

€ 

P(B)P(e)
e
∑

a
∑ P(a |B,e)P(M | a)P(J | a)

Store as a function of a and use 
whenever necessary (no need to 
recompute each time)



Variable elimination

A

J M

B E
€ 

P(B,J,M) = P(B)P(e)
e
∑

a
∑ P(a |B,e)P(M | a)P(J | a)

Set:

€ 

fM (A) =
P(M | A)
P(M |¬A
" 

# 
$ 

% 

& 
' 

€ 

fJ (A) =
P(J | A)
P(J |¬A
" 

# 
$ 

% 

& 
' 

€ 

= P(B) P(e)
a
∑

e
∑ P(a |B,e)P(M | a)P(J | a)

Variable elimination

A

J M

B E
€ 

P(B,J,M) = P(B)P(e)
e
∑

a
∑ P(a |B,e)P(M | a)P(J | a)

Set:

€ 

fM (A) =
P(M | A)
P(M |¬A
" 

# 
$ 

% 

& 
' 

€ 

fJ (A) =
P(J | A)
P(J |¬A
" 

# 
$ 

% 

& 
' 

€ 

= P(B) P(e)
a
∑

e
∑ P(a |B,e)P(M | a)P(J | a)

€ 

P(B,J,M) = P(B) P(e)
a
∑

e
∑ P(a |B,e) fM (a) fJ (a)



Variable elimination

A

J M

B E
Lets continue with these functions:€ 

= P(B) P(e)
a
∑

e
∑ P(a |B,e) fM (a) fJ (a)

€ 

fA ,J ,M (B,e) = fA (a,B,e) fJ (a) fM (a)
a
∑

We can now define the following function:

€ 

fA (a,B,e) = P(a |B,e)

And so we can write:

€ 

P(B,J,M) = P(B) P(e) fA ,J ,M (B,e)
e
∑

Variable elimination

A

J M

B E

Lets continue with another function:

And finally we can write:

€ 

fE ,A ,J ,M (B) = P(e)
e
∑ fA ,J ,M (B,e)

€ 

P(B,J,M) = P(B) P(e) fA ,J ,M (B,e)
e
∑

€ 

P(B,J,M) = P(B) fE ,A ,J ,M (B)



Example

J

P(B)=.05 P(E)=.1

P(A|B,E) =.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) =.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J| ¬ A) = .05

P(M|A) =.8 
P(M| ¬ A) = .15

M

A

B E€ 

P(B,J,M) = P(B) fE ,A ,J ,M (B)

€ 

= 0.05 P(e) fA ,J ,M (B,e) = 0.05(0.1
e
∑ fA ,J ,M (B,e) + 0.9 fA ,J ,M (B,¬e))

€ 

0.05(0.1(0.95 fJ (a) fM (a) + 0.05 fJ (¬a) fM (¬a)) +

0.9(.85 fJ (a) fM (a) + .15 fJ (¬a) fM (¬a)))

Calling the same 
function multiple 
times

Final computation (normalization)

),,(),,(
),,(),|(

MJBPMJBP
MJBPMJBP

¬¬+¬

¬
=¬



Algorithm
• e - evidence (the variables that are known) 
• vars - the conditional probabilities derived from the 

network in reverse order (bottom up) 
• For each var in vars 
    - factors <- make_factor (var,e) 
    - if var is a hidden variable then create a new factor by 

summing out var 
• Compute the product of all factors 
• Normalize

Computational complexity
• We are reusing computations so we are reducing the 

running time. 
• However, there are still cases in which this algorithm we 

lead to exponential running time. 
• Consider the case of fx(y1 … yn). When factoring x out we 

would need to account for all possible values of the y’s.

Variable elimination can lead 
to significant costs saving but 
its efficiency depends on the 
network structure



Inference in Bayesian networks
• We will discuss three methods: 
1. Enumeration  
2. Variable elimination 
3. Stochastic inference

Stochastic inference
• We can easily sample the joint 

distribution to obtain possible 
instances  

1. Sample the free variable 
2. For every other variable: 
    - If all parents have been sampled, 
      sample based on conditional 

distribution 

We end up with a new set of 
assignments for B,E,A,J and M 
which are a random sample from 
the joint

A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15



Stochastic inference
• We can easily sample the joint 

distribution to obtain possible 
instances  

1. Sample the free variable 
2. For every other variable: 
    - If all parents have been sampled, 
      sample based on conditional 

distribution A

J M

B E
P(B)=.05 P(E)=.1

P(A|B,E) )=.95 
P(A|B,¬E) = .85 
P(A| ¬ B,E) )=.5 
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7 
P(J|¬A) = .05

P(M|A) )=.8 
P(M|¬A) = .15

Its always possible to carry 
out this sampling 
procedure, why?

Using sampling for inference
• Lets revisit our problem: Compute P(B | J,¬M) 
• Looking at the samples we can count: 
   - N: total number of samples 

   - Nc : total number of samples in which the condition holds (J,¬M) 

    - NB: total number of samples where the joint is true (B,J,¬M) 
• For a large enough N 
    - Nc / N ≈ P(J,¬M) 
    - NB / N ≈ P(B,J,¬M) 
• And so, we can set 

P(B | J,¬M) = P(B,J,¬M) / P(J,¬M) ≈ NB / Nc



Using sampling for inference
• Lets revisit our problem: Compute P(B | J,¬M) 
• Looking at the samples we can cound: 
   - N: total number of samples 

   - Nc : total number of samples in which the condition holds (J,¬M) 

    - NB: total number of samples where the joint is true (B,J,¬M) 
• For a large enough N 
    - Nc / N ≈ P(J,¬M) 
    - NB / N ≈ P(B,J,¬M) 
• And so, we can set 

P(B | J,¬M) = P(B,J,¬M) / P(J,¬M) ≈ NB / Nc

Problem: What if the condition rarely 
happens? 

We would need lots and lots of samples, 
and most would be wasted

Weighted sampling
• Compute P(B | J,¬M) 
• We can manually set the value of J to 

1 and M to 0 
• This way, all samples will contain the 

correct values for the conditional 
variables 

• Problems? A

J M

B E



Weighted sampling
• Compute P(B | J,¬M) 
• Given an assignment to parents, we 

assign a value of 1 to J and 0 to M. 
• We record the probability of this 

assignment (w = p1*p2) and we weight 
the new joint sample by w

A

J M

B E

Weighted sampling algorithm for 
computing P(B | J,¬M)

• Set NB,Nc = 0 
• Sample the joint setting the values for J and M, 

compute the weight, w, of this sample  
• Nc = Nc+w 

• If B = 1, NB = NB+w 

• After many iterations, set 
 P(B | J,¬M) = NB / Nc



Other inference methods
• Convert network to a polytree 
    - In a polytree no two nodes have more 

than one path between them 
    - We can convert arbitrary networks to 

a polytree by clustering (grouping) 
nodes. For such a graph there is a 
algorithm which is linear in the number 
of nodes 

   - However, converting into a polytree 
can result in an exponential increase in 
the size of the CPTs

A

J M

B E

A

J M

B E

Important points
• Bayes rule 
• Joint distribution, independence, conditional 

independence 
• Attributes of Bayesian networks 
• Constructing a Bayesian network 
• Inference in Bayesian networks
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