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What's wrong with Bayesian networks

« Bayesian networks are very useful for modeling joint
distributions

« But they have their limitations:
- Cannot account for temporal / sequence models
- DAG'’s (no self or any other loops)

This is not a valid 6\0
Bayesian network!
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Hidden Markov models

* Model a set of observation with a set of hidden states
- Robot movement
Observations: range sensor, visual sensor
Hidden states: location (on a map)
- Speech processing
Observations: sound signals
Hidden states: parts of speech, words
- Biology
Observations: DNA base pairs
Hidden states: Genes

Hidden Markov models

* Model a set of observation with a set of hidden states
- Robot movement
Observations: range sensor, visual sensor
@ Hidden states: location (on a map) §

1. Hidden states generate observations

2. Hidden states transition to other hidden states




Examples: Speech processing
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ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGA
TATTTGCCGACTTAAAAAGCTCAAG
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGTC
TGAAGAACAACTGGGAGTGTCGCTAC
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGG
CACATCTGACAGAAGTGGAATCAAGG
CTAGAAAGACTGGAACAGCTATTTCTACTGATTTTT
CCTCGAGAAGACCTTGACATGATT




Contents

Preface page ix
1 Introduction 1
L1 Seq similarity, homology, and alig 2
12 Overview of the book 2
1.3 Probabilities and probabilistic models 4
1.4 Further reading 10
2 Pairwise alignment 12
2.1 Introduction 12
22 The scoring model 13
23 Alignment algorithms 17
24 Dynamic prog ing with more complex models 28
&5 Heuristic alignment algorithms 32
2.6 Linear space alignments 34
27 Significance of scores 36
28 Deriving score parameters from alignment data 41
29 Further reading 45
3 Markov chains and hidden Markov models 46
3.1 Markov chains 48
32 Hidden Markov models 51
33 Parameter estimation for HMMs 62
34 HMM model structure 68
35 More complex Markov chains 72
3.6 Numerical stability of HMM algorithms 77
37 Further reading 79
4 Pairwise alignment using HMMs 80
4.1 Pair HMMs 81
42 The full probability of x and y, summing over all paths 87
43 Suboptimal alignment 89
44 The posterior probability that x; is aligned to y; 91
45 Pair HMMs versus FSAs for searching 95

v

vi

4.6

5.1
52
53
54
55

Copyrighted Matenal

Contents

Further reading

Profile HMMs for sequence families
Ungapped score matrices
Adding insert and delete states to obtain profile HMMs
Deriving profile HMMs from multiple alignments
Searching with profile HMMs
Profile HMM variants for non-global alignments
More on estimation of probabilities
Optimal model construction
Weighting training sequences
Further reading

Multinl, 1 hod.

What a multiple alignment means

Scoring a multiple alignment

Multidi I dynamic prog ing
Progressive alignment methods

Mudtiple alignment by profile HMM training
Further reading

Building phylogenetic trees
The tree of life
Background on trees
Making a tree from pairwise distances
Parsimony
Assessing the trees: the bootstrap
Simultaneous alignment and phylogeny
Further reading
Appendix: proof of neighbour-joining theorem

Probabilistic approaches to phylogeny
Introduction
Probabilistic models of evolution
Calculating the likelihood for ungapped alignments
Using the likelihood for inference
Tc ds more realistic evolutionary models
Comparison of probabilistic and non-probabilistic methods
Further reading

98

100
102
102
105
108
113
115
122
124
132

134
135
137
141
143
149
159

160
160
161
165
173
179
180
188
190

192




Example: Gambling on dice outcome

« Two dices, both skewed (output model).
» Can either stay with the same dice or switch to the second

dice (transition mode).
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A Hidden Markov model

« Asetof states {s, ... s}

- In each time point we are in exactly one of these states
denoted by q,

« II, the probability that we start at state s,
« Adtransition probability model, P(q; =s; | g4 =s)
» A set of possible outputs X

- At time t we emit a symbol ce X

An emission probability model, p(o, = 6| s;
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The Markov property

« Asetof states {s, ... s}

- In each time point we are in exactly one of these states
denoted by q,

« II, the probability that we start at state s,
« Adtransition probability model, P(q; =s; | g4 = s)

An important aspect of this definitions is the Markov property:
9.4 IS conditionally independent of g, , (and any earlier time
points) given q,

More formally P(qy,; = ;| G,= ) = P(Gye1 = S | 6= ;01 = 5)

What can we ask when using a HMM?

A few examples:

« “What dice is currently being used?”

« “What is the probability of a 6 in the next role?”

» “What is the probability of 6 in any of the next 3 roles?”
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Inference in HMMs

« Computing P(Q) and P(q,=s))
- If we cannot look at observations
« Computing P(Q | O) and P(q, = s,|0)

- When we have observation and care about the last state
only

« Computing argmax,P(Q | O)
- When we care about the entire path

What dice is currently being used?

* We played t rounds so far
« We want to determine P(q, = A)

» Lets assume for now that we cannot observe any outputs
(we are blind folded)

« How can we compute this?
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» Simple answer:
Lets determine P(Q) where Q is any path that ends in A
Q=qy, ... 9y, A
P(Q) =P(q,, ..- 9., A) = P(A]qyq, ... Gq) P(Qq, ...
P(Ala.q) P(ay, ... aq) = ... = P(A] ~—P1(0, | 94) P(q,)

0.2 °

Markov property!

Initial probability

» Simple answer:

1. Lets determine P(Q) where Q is any path that ends in A
Q=qq, ... Q. A

P(Q)=P(a4, ... A, A) =P(A]qq, ... 9q) P(Qq, ... ) = P(A
| diq) P(Ays --- Qeq) = ... = P(A] qyy) ... P(a, | a4) P(ay)

2. P(q,=A) =ZP(Q)
where the sum is over all sets of t
states that end in A




« Simple answer:
1. Lets determine P(Q) where Q is any path that ends in A
Q=qq, ... Q. A
P(Q)=P(qa,, ... 9., A)=P(A|qq, ... 9.4) P(Qq, ... Oq) = P(A
| di.q) P(Qys - Qpq) = .- = P(A] qyq) --. P9 ] 9¢) P(ay)

2. P(q,=A) = ZP(Q) Q: How many sets Q
where the sum is over all sets of t are there?

sates that end in A
A: Alot! (2t1)

Not a feasible solution

P(q, = A), the smart way

Lets define p,(i) as the probability of being in state / at time t:
p(i) = p(q; =s))

We can determine p,(i) by induction

1.py(i) = 11

2. pi)="?




P(q, = A), the smart way

« Lets define p,(i) = probability state i at time t = p(q, = s))
« We can determine p(i) by induction

1. py(i) = I,

2. p(i) = X p(a; = s | Ar.q = $)Pe4()

P(q, = A), the smart way

« Lets define p,(i) = probability state i at time t = p(q, = s))
« We can determine p(i) by induction
1. py(i) = I,
2. p(i) = X p(a; = s | Ap.q = $)Pe4()

Time/ |t1 |2 |t3
This type of computation is called state

dynamic programming s1 3

Complexity: O(n?*t) $2 7

Number of states in our HMM




Inference in HMMs

« Computing P(Q) and P(q, = s,) \/

« Computing P(Q | O) and P(q, = s,|0)

« Computing argmax,P(Q)

But what if we observe outputs?

» So far, we assumed that we could not observe the outputs
 In reality, we almost always can.
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But what if we observe outputs?

» So far, we assumed that we could not observe the outputs

 In reality, we almost alwavs can.
Does observing the sequence

5,6,4,5,6,6

Change our belief about the state?
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P(q, = A) when outputs are observed

« We want to compute P(q,=A| O, ... O))

» For ease of writing we will use the following notations
(commonly used in the literature)

« ;=P =sa.=8)

. bi<otM
Transition

probability

Emission
probability




P(q, = A) when outputs are observed

« We want to compute P(q,=A| O, ... O))

» Lets start with a simpler question. Given a sequence of
states Q, whatis P(Q | O, ... O,) =P(Q | O)?

- It is pretty simple to move from P(Q) to P(q, = A)

- In some cases P(Q) is the more important question
- Speech processing
-NLP

P(Q | O)

» We can use Bayes rule:

_ROIQRQ)
RO)

AQO)

Easy, P(O | Q) =P(o, | q4) P(o, | qy) ... P(o; | ay)




P(Q | O)

» We can use Bayes rule:

Qo) - OIQPQ

A

Easy, P(Q) = P(qy) P(az | a4) ... P(q; | G¢.4)

P(Q]O)
_PO|QPQ
Q)= 5

/

Hard!




P(O)

What is the probability of seeing a set of observations:
- An important question in it own rights, for example
classification using two HMMs

Define o4(i) = P(04, 0, ..., O, A Q;= S))
o(i) is the probability that we:

1. Observe 0,4, 0, ..., O,

2. End up at state |

How do we compute o, (i)?

Computing o)

o4(i) = P(oy A q;=i) = P(04 | g;= s)I],
We must be at a state in time t

chain rule
/

Markw




Example: Computing o4(B)

* We observed 2,3,6

o(A)=P2 A q,=A)=P(2]|q,=A)I, =2*7= .14, o4(B) = .1*.3 = .03
0x(A) = Zip gba(3)a a0y ( })=.2".8%.14+.2%.2*.03 = 0.0236, 0,,(B) = 0.0052
03(B) = X gbg(6)a; g 0,p( j)=.3".2%.0236+.3*.8*.0052 = 0.00264
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Where we are

+  We want to compute P(Q | O)
* For this, we only need to compute P(O)

» We know how to compute oy(i)

From now its easy
O(.t(i) = P(O1, 02 cey Ot A qt= Si)

SO
P(O) = P(o4, 0, ..., 0,) = ZP(04, 05..., 0, A 0, = S;) = Z; 04(i)
note that a, (i)

p(a=s;| 04, 0,..., 0;) = Ea 0

J

P(A|B)=P(AAB)/P(B)




Complexity

» How long does it take to compute P(Q | O)?
« P(Q): O(n)

« P(O]Q): O(n)

« P(O): O(n?t)

Inference in HMMs
- Computing P(Q) and P(q; = s)) \/

. Computing P(Q | O) and P(g,=5;|0) ~/

« Computing argmax,P(Q)




Most probable path

* We are almost done ...
* One final question remains

How do we find the most probable path, that is Q* such
that

P(Q* | O) = argmaxyP(Q|O)?

« This is an important path
- The words in speech processing
- The set of genes in the genome
- efc.

Example

« What is the most probable set of states leading to the
sequence:

1,2,2,5,6,5,1,2,3 ?

3
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Most probable path

POIQAQ
PO

=argmax, P(O| Q) AQ)

argmax 5 P(Q| O) = arg max

We will use the following definition:

0,(f) = max p(q...q, A G =8 r0..0)

-Gy

In other words we are interested in the most likely
path from 1 to t that:

1. Ends in S
2. Produces outputs O, ... O,

Computing o)
8,(=p(g=5r0) d,(i) = max p(q...q, A G =§10..0)
=p(g =5)pO g =5)
=7;6(0)

Q: Given §,(i), how can we compute 6,,4(i)?
A: To get from o,(i) to d,,4(i) we need to
1. Add an emission for time t+1 (O,,4)

2. Transition to state s,
Op()) =max Gi...q A Gy = § £ G.0u)
=maxd,(/) UG, = $ G = 5) PO |G = 8)
= njlaxét(j)az b(0O,)

Jiti




The Viterbi algorithm

0,,,(1) = 21”".13( pq...q G, =570..0,)
=m§1X5t(/)P(qt+1 =5|q = Sj)P(Om |G =)
- maxd,(/)a, (0,

i

* Once again we use dynamic programming for
solving d(i)

« Once we have §,(i), we can solve for our P(Q*|O)
By:
P(Q* | O) = argmax,P(Q|O) =

path defined by argmax; d(j),

Inference in HMMs
- Computing P(Q) and P(q; = s)) \/
. Computing P(Q | O) and P(g,=5;|0) ~/

« Computing argmax,P(Q) \/




Learning in HMMs

A Hidden Markov model

A set of states {s, ... s}

- In each time point we are in exactly one of these states
denoted by q,

I1;, the probability that we start at state s,
A transition probability model, P(q, = s;| q.4 = s))
A set of possible outputs X

- At time t we emit a symbol ce X

An emission probability model, p(o, = 6| s;
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Inference in HMMs
- Computing P(Q) and P(q; = s)) \/
. Computing P(Q | O) and P(q, = 5;|0)

« Computing argmax,P(Q) \/

Learning HMMs

* Until now we assumed that the emission and transition
probabilities are known

* This is usually not the case
- How is “Al” pronounced by different individuals?
- What is the probability of hearing “class” after “Al"?

While we will discuss learning the transition and
emission models, we will not discuss selecting the
states.

This is usually a function of domain knowledge.




Example

« Assume the model below
» We also observe the following sequence:
1,2,2,5,6,5,1,2,3,3,5,3,3,2 .....

e How can we determine the initial, transition and emission
probabilities?

Initial probabilities

Q: assume we can observe the following sets of states:

ARAABBAA
AABBBBB
BAABBAB
how cari we learn the initial probabilities? K is the number of
A: Maximum likelihood estimation sequences avialable for
Find the initial probabilities ws a training

) T
n* =argmax_ Hn(%)l_z[ rq,lq,.)=
k 1=

n* =argmax_ Hn(q])
k

T, = #A/ (#HA+#B) g ’O




Transition probabilities

Q: assume we can observe the set of states:
AAABBAAAABBBBBAAAABBBB
how can we learn the transition probabilities?
A: Maximum likelihood estimation

Find a transition matrix a such that remember that we defined
a;;=P(q=S)|q.1=S;)

a¥ = argmax 1 n(%)l_[p(qt |Qt—1) =
=2

a* =argmax, | | p(q,1q,.,)
t=2

a, 5 = #AB/ (HAB+#AA) g Iﬁ

Emission probabilities

Q: assume we can observe the set of states:
AAABBAAAABBBBBAA
and the set of dice values
123 56321134565 23
how can we learn the emission probabilities?
A: Maximum likelihood estimation

b,(5)= #A5 / (HAT+#A2 + ... +#A6)




Learning HMMs

* In most case we do not know what states generated each
of the outputs (fully unsupervised)

* ... but had we known, it would be very easy to determine
an emission and transition model!

* On the other hand, if we had such a model we could
determine the set of states using the inference methods
we discussed

Expectation Maximization (EM)

» Appropriate for problems with ‘missing values’ for the
variables.

* For example, in HMMs we usually do not observe the
states




Expectation Maximization (EM): Quick
reminder

« Two steps
« E step: Fillin the expected values for the missing variables

* M step: Regular maximum likelihood estimation (MLE) using the
values computed in the E step and the values of the other variables

* Guaranteed to converge (though only to a local minima).

expected values for
AiSSing) variabte

Forward-Backward

* We already defined a forward looking variable
o,(i)=P(0,...0,ng, =5,)

» We also need to define a backward looking variable

Bt(l) =P(Ot+19'”90T ‘St =l)




Forward-Backward

* We already defined a forward looking variable
o,(i)=P(0,...0,ng, =s,)

» We also need to define a backward looking variable

Bz(l) = P(Ot+1"”90T | q, = Si) =
N a,,6,(0,)B.. ()

J

Forward-Backward

* We already defined a forward looking variable
o,(i)=P(0,...0,ng, =5,)

» We also need to define a backward looking variable

B,(0)=PO,,,0;1q,=s5,)

* Using these two definitions we can show

/(AIB):P(A,B)/P(B)
P(q, =5,10,,-+,0;) =< DB, (@) difS(l.)

N, (BG)

J




State and transition probabilities

* Probability of a state
o, @B, @
D o ()B,()

J

P(q, =5;10,,:+,0r) = S, (@)

« We can also derive a transition probability
P(Qz =554, =5 | 019”'90T) = St(lsj)

P(Qt = Si’QHl = Sj IOI’.”’On) =

at(i)P(qu = Sj qu = Si)P(0t+1 |Qt+1 = Sj)BH](j) def ..
= : : =S,0,7)
Do, (/)B,()

E step

« Compute Sy(i) and S(i,j) for all t, i, and j (1<t<n, 1<izK,
2<j<k)

P(q, =s,10,,--,0;)=S,(i)

P(Qt =354, =95, |0y,++,07) = Sz(iaj)




M step (1)

Compute transition probabilities:

n(i, j)

a. B==-——">""
Zﬁ(i,k)

(i, )= S, /)

where

M step (2)

Compute emission probabilities (here we assume a
multinomial distribution):

define:
B.(j)= Y S,(k)

tlo,=j

then

B(J)




Complete EM algorithm for learning the
parameters of HMMs (Baum-\Welch)

« Inputs: 1 .Observations O, ... O;

2. Number of states, model
Guess initial transition and emission parameters
Compute E step: Syi) and S(i,j)
Compute M step
Convergence?
Output complete model

No

o bk~

We did not discuss initial probability estimation. These can
be deduced from multiple sets of observation (for example,
several recorded customers for speech processing)

Building HMMs—Topology

Begin /Z > //». »| End
Matching states Nektion states

Insertion states

No of matching states = average sequence length in the family
PFAM Database - of Protein families

(http://pfam.wustl.edu)




Building — from an existing alignment

ACA |--- ATG
TCA ACT ATC

ACA C-- AGC !

AGA |--- ATC m
ACC |G - - ATC [ISSitely INE
> (Ca.-24 Transition probabilities
Output Probabilities TH2

A 8 A A . 3
C u"» Cemms|'2 |Cn2 i
G GR2 G

TR2 T

-H0>
5

0] 1.0 é 1.0 é—.s
(€] ¥ GE2
T s T

A HMM model for a DNA motif alignments, The transitions are
shown with arrows whose thickness indicate their probability. In
each state, the histogram shows the probabilities of the four
bases.

What you should know

Why HMMs? Which applications are suitable?
Inference in HMMs

- No observations

- Probability of next state w. observations

- Maximum scoring path (Viterbi)
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