UVA CS 6316 - Fall 2015 Graduate: Machine Learning

Lecture 3:Linear Regression

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

HW1 OUT TOMORROW / DUE IN TWO WEEKS

Where we are ? → Five major sections of this course

☐ Regression (supervised)
☐ Classification (supervised)
☐ Unsupervised models
☐ Learning theory
☐ Graphical models

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Today →

Regression (supervised)	
 □ Four ways to train / perform optimization for linear regression models □ Normal Equation □ Gradient Descent (GD) □ Stochastic GD □ Newton's method 	
□ Supervised regression models □ Linear regression (LR) □ LR with non-linear basis functions □ Locally weighted LR □ LR with Regularizations	

Today

- ☐ Linear regression (aka least squares)
- ☐ Learn to derive the least squares estimate by normal equation
- ☐ Evaluation with Cross-validation

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

A Dataset for regression-

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

For Example,

Machine learning for apartment hunting

Now you've moved to Charlottesville!!
 And you want to find the most reasonably priced apartment satisfying your needs:
 square-ft., # of bedroom, distance to campus ...

Living area (ft²)	# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

For Example,

Machine learning for apartment hunting

Living area (ft²)	# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

Linear SUPERVISED Regression

e.g. Linear Regression Models

$$\hat{y} = f(x) = \theta_0 + \theta_1 x^{-1} + \theta_2 x^{-2}$$

Features:

Living area, distance to campus, # bedroom ...

➤ Target y:
Rent → Continuous

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Remember this: "Linear"? (1D case)

• *y=mx+b?*

A slope of 2 (i.e. m=2) means that every 1-unit change in X yields a 2-unit change in Y.

1D case $(\mathcal{X} = \mathbb{R})$: a line

 $\mathcal{X} = \mathbb{R}^2$: a plane

Dr. Yanjun Qi / UVA CS 6316 / f15

11

A new representation (for single sample)

- Assume that each sample x is a column vector,
 - Here we assume a pseudo "feature" $x^0=1$ (this is the intercept term), and RE-define the feature vector to be:

$$\mathbf{x}^{\mathrm{T}} = [x^{0}, x^{1}, x^{2}, \dots x^{p-1}]$$

– the parameter vector $\boldsymbol{\theta}$ is also a column vector

$$=$$
 $\begin{vmatrix} \theta_0 \\ \theta_1 \\ \vdots \end{vmatrix}$

$$\hat{y} = f(\mathbf{x})$$

$$= \mathbf{x}^T \theta = \theta^T \mathbf{x}$$

$$\hat{y} = f(\mathbf{x}) = \theta_0 + \theta_1 x^{-1} + \theta_2 x^{-2} + \dots + \theta_{p-1} x^{-p-1}$$

$$10: \quad \mathcal{Y} = \mathbf{w} \times + \mathbf{b} = \begin{bmatrix} \mathbf{x} & \mathbf{i} \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{b} \end{bmatrix} = \mathbf{x}^{\mathsf{T}} \theta$$

$$\Rightarrow \begin{cases} \mathbf{y} = \mathbf{y} \\ \mathbf{y} = \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} = \mathbf{y} \end{cases}$$

$$\Rightarrow \begin{cases} \mathbf{y} = \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{cases}$$

Dr. Yanjun Qi / UVA CS 6316 / f15

13

Training / learning problem

 Now represent the whole Training set (with n samples) as matrix form :

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_{1}^{T} & -- \\ -- & \mathbf{x}_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n}^{T} & -- \end{bmatrix} = \begin{bmatrix} x_{1}^{0} & x_{1}^{1} & \dots & x_{1}^{p-1} \\ x_{2}^{0} & x_{2}^{1} & \dots & x_{2}^{p-1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n}^{0} & x_{n}^{1} & \dots & x_{n}^{p-1} \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

REVIEW: Special Uses for Matrix Multiplication

• Matrix-Vector Products (I)

Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, their product is a vector $y = Ax \in \mathbb{R}^m$.

If we write A by rows, then we can express Ax as,

$$y=Ax=\left[egin{array}{ccc} &-&a_1^T&-\ &-&a_2^T&-\ &dots\ &-&a_m^T&- \end{array}
ight]x=\left[egin{array}{c} a_1^Tx\ a_2^Tx\ dots\ a_m^Tx \end{array}
ight].$$

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Training / learning problem

- Represent as matrix form:
 - -Predicted output

$$\hat{Y} = \mathbf{X}\boldsymbol{\theta} = \begin{bmatrix} f(\mathbf{x}_1) \\ f(\mathbf{x}_2) \\ \vdots \\ f(\mathbf{x}_n) \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T \boldsymbol{\theta} \\ \mathbf{x}_2^T \boldsymbol{\theta} \\ \vdots \\ \mathbf{x}_n^T \boldsymbol{\theta} \end{bmatrix}$$

– Labels (given output value)

$$\mathbf{Y} = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{vmatrix}$$

Training / learning goal

 Using matrix form, we get the following general representation of the linear regression function:

$$\hat{Y} = \mathbf{X} \theta$$

• Our goal is to pick the optimal θ that minimize the following cost function: $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2$

9/14/15

SSE: Sum of squared error

17

Dr. Yanjun Qi / UVA CS 6316 / f15

Today

- ☐ Linear regression (aka least squares)
- ☐ Learn to derive the least squares estimate by Normal Equation
- ☐ Evaluation with Cross-validation

Method I: normal equations

• Write the cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

$$= \frac{1}{2} (X \theta - \vec{y})^{T} (X \theta - \vec{y})$$

$$= \frac{1}{2} (\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \vec{y} - \vec{y}^{T} X \theta + \vec{y}^{T} \vec{y})$$

$$\mathbf{X} = \begin{bmatrix} -- & \mathbf{x}_{1}^{T} & -- \\ -- & \mathbf{x}_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n}^{T} & -- \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

To minimize $J(\theta)$, take derivative and set to zero:

$$\Rightarrow X^{T}X\theta = X^{T}\vec{y}$$
The normal equations
$$\theta^{*} = (X^{T}X)^{-1}X^{T}\vec{y}$$

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

10

Review: Special Uses for Matrix Multiplication

Dot (or Inner) Product of two Vectors <x, y>

which is the sum of products of elements in similar positions for the two vectors

$$< x, y > = < y, x > a^{T}b = b^{T}a$$

Where
$$\langle \mathbf{x}, \mathbf{y} \rangle = x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ x_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

Review: Matrix Calculus: Types of Matrix Derivatives

	Scalar	Vector	Matrix
Scalar	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} = \left[\frac{\partial y_i}{\partial x}\right]$	$\frac{\mathrm{d}\mathbf{Y}}{\mathrm{d}x} = \left[\frac{\partial y_{ij}}{\partial x}\right]$
Vector	$\left[\frac{\mathrm{d}y}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial y}{\partial x_j}\right]\right]$	$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial y_i}{\partial x_j}\right]$	
Matrix	$\frac{\mathrm{d}y}{\mathrm{d}\mathbf{X}} = \left[\frac{\partial y}{\partial x_{ji}}\right]$		

By Thomas Minka. Old and New Matrix Algebra Useful for Statistics

9/14/15 21

Dr. Yanjun Qi / UVA CS 6316 / f15

Review: Special Uses for Matrix Multiplication

Sum the Squared Elements of a Vector → L2 norm

• Premultiply a column vector **a** by its transpose – If $\mathbf{a} = \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix}$

$$\mathbf{a} = \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix}$$

then premultiplication by a row vector \mathbf{a}^{T}

$$\mathbf{a}^{\mathsf{T}} = \begin{bmatrix} 5 & 2 & 8 \end{bmatrix}$$

will yield the sum of the squared values of elements for **a**, i.e.

$$|a|_2^2 = \mathbf{a}^{\mathsf{T}}\mathbf{a} = \begin{bmatrix} 5 & 2 & 8 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 8 \end{bmatrix} = 5^2 + 2^2 + 8^2 = 93$$

Details for Slide [19];
$$J(\theta) = \sum_{i=1}^{\infty} (X_i \theta - y_i)^2$$

$$= (X\theta - y)^T (X\theta - y)$$

$$NxP PXI NXI$$
Since
$$W^T W = ||W||_2^2 = \sum_{i=1}^{\infty} W_i^2$$

$$X\theta$$

9/14/15 23

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{N} \left(\frac{\chi_{i}^{T}}{1^{\nu}P} \frac{\partial}{P^{\nu}I} \right)^{2^{Dr. Yanjun QI/UVA CS 6316/f15}}$$

$$= \frac{1}{2} \left(X \partial_{-} Y \right)^{T} \left(X \partial_{-} Y \right)$$

$$= \frac{1}{2} \left(\partial_{-} X^{T} - Y^{T} \right) \left(X \partial_{-} Y \right)$$

$$= \frac{1}{2} \left(\partial_{-} X^{T} X \partial_{-} - \partial_{-} X^{T} Y - Y^{T} X \partial_{-} + Y^{T} Y \right)$$

$$= \frac{1}{2} \left(\partial_{-} X^{T} X \partial_{-} - \partial_{-} X^{T} Y - Y^{T} X \partial_{-} + Y^{T} Y \right)$$

$$= \frac{1}{2} \left(\partial_{-} X^{T} X \partial_{-} - \partial_{-} X^{T} Y - Y^{T} X \partial_{-} + Y^{T} Y \right)$$

$$= \frac{1}{2} \left(\partial_{-} X^{T} X \partial_{-} - \partial_{-} X^{T} Y - Y^{T} Y \partial_{-} + Y^{T} Y \partial_{-} X^{T} \partial_{-} + Y^{T} Y \partial_{-}$$

Review: Convex function

- Intuitively, a convex function (1D case) has a single point at which the derivative goes to zero, and this point is a minimum.
- Intuitively, a function f (1D case) is convex on the range [a,b] if a function's second derivative is positive every-where in that range.
- Intuitively, if a function's Hessians is psd (positive semi-definite!), this (multivariate) function is Convex
 - Intuitively, we can think "Positive definite" matrices as analogy to positive numbers in matrix case

Review: Some important rules for taking derivatives

- Scalar multiplication: $\partial_x[af(x)] = a[\partial_x f(x)]$
- Polynomials: $\partial_x[x^k] = kx^{k-1}$
- Function addition: $\partial_x [f(x) + g(x)] = [\partial_x f(x)] + [\partial_x g(x)]$
- Function multiplication: $\partial_x [f(x)g(x)] = f(x)[\partial_x g(x)] + [\partial_x f(x)]g(x)$
- Function division: $\partial_x \left[\frac{f(x)}{g(x)} \right] = \frac{[\partial_x f(x)]g(x) f(x)[\partial_x g(x)]}{[g(x)]^2}$
- Function composition: $\partial_x [f(g(x))] = [\partial_x g(x)][\partial_x f](g(x))$
- Exponentiation: $\partial_x[e^x] = e^x$ and $\partial_x[a^x] = \log(a)e^x$
- Logarithms: $\partial_x[\log x] = \frac{1}{x}$

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Review: Some important rules for taking gradient

- $\bullet \quad \left[\begin{array}{ccc} \frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} & = & \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} & = & \mathbf{a} \end{array} \right]$
- $\nabla_x x^T A x = 2Ax$ (if A symmetric)
- $\nabla_x^2 x^T A x = 2A$ (if A symmetric)

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } \theta, \text{ if } H,$$

$$\exists J(\theta) \text{ quadratic first of } H,$$

$$\exists J(\theta) \text{ quadratic first of } H,$$

$$\exists J(\theta)$$

Comments on the normal equation

- In most situations of practical interest, the number of data points N is larger than the dimensionality p of the input space and the matrix \mathbf{X} is of full column rank. If this condition holds, then it is easy to verify that X^TX is necessarily invertible.
- The assumption that X^TX is invertible implies that it is positive definite, thus the critical point we have found is a minimum.
- What if X has less than full column rank? → regularization (later).

Today

- ☐ Linear regression (aka least squares)
- ☐ Learn to derive the least squares estimate by optimization
- ☐ Evaluation with Train/Test OR k-folds Cross-validation

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

TYPICAL MACHINE LEARNING SYSTEM

Evaluation Choice-I:

Train and Test

Dr. Yanjun Qi / 34A CS 6316 / f15

Evaluation Choice-I:

e.g. for supervised classification

- ✓ Training (Learning): Learn a model using the training data
- ✓ Testing: Test the model using unseen test data to assess the model accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}},$$

Evaluation Choice-I:

e.g. for linear regression models

$$\mathbf{X}_{test} = \begin{bmatrix} -- & \mathbf{x}_{n+1}^T & -- \\ -- & \mathbf{x}_{n+2}^T & -- \\ \vdots & \vdots & \vdots \\ -- & \mathbf{x}_{n+m}^T & -- \end{bmatrix} \quad \vec{y}_{test} = \begin{bmatrix} y_{n+1} \\ y_{n+2} \\ \vdots \\ y_{n+m} \end{bmatrix}$$

Dr. Yanjun Qi / UVA CS 6316 / f15

35

Evaluation Choice-I:

- e.g. for linear regression models
- Training Error:

$$J_{train}(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

• Minimize $J_{train}(\theta) \rightarrow Normal Equation to get$

$$\theta^* = \operatorname{argmin} J_{train}(\theta) = \left(X_{train}^T X_{train}\right)^{-1} X_{train}^T \vec{y}_{train}$$

Evaluation Choice-I:

e.g. for Regression Models

• Testing MSE Error to report:

$$J_{test} = \frac{1}{m} \sum_{i=n+1}^{n+m} (\mathbf{x}_i^T \theta^* - y_i)^2$$

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Evaluation Choice-II:

Cross Validation

- Problem: don't have enough data to set aside a test set
- Solution: Each data point is used both as train and test
- Common types:
 - -K-fold cross-validation (e.g. K=5, K=10)
 - -2-fold cross-validation
- -Leave-one-out cross-validation (LOOCV, i.e., k=n_reference)

K-fold Cross Validation

- Basic idea:
 - -Split the whole data to N pieces;
 - -N-1 pieces for fit model; 1 for test;
 - -Cycle through all N cases;
 - -K=10 "folds" a common rule of thumb.
- The advantage:
 - all pieces are used for both training and validation;
 - each observation is used for validation exactly once.

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

e.g. 10 fold Cross Validation

- Divide data into 10 equal pieces
- 9 pieces as training set, the rest 1 as test set
- Collect the scores from the diagonal
- We normally use the mean of the scores

e.g. 5 fold Cross Validation

Today Recap

☐ Linear regression	(aka least squares	;)
	(and read by adice	'/

- ☐ Learn to derive the least squares estimate by normal equation
- Evaluation with Train/Test OR k-folds Cross-validation

9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- ☐ http://www.cs.cmu.edu/~zkolter/course/ 15-884/linalg-review.pdf (please read)
- http://www.cs.cmu.edu/~aarti/Class/10701/recitation/LinearAlgebra Matlab Review.ppt
- ☐ Prof. Alexander Gray's slides