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Where we are ? =
Five major sections of this course

‘ [ Regression (supervised) T

[ Classification (supervised)

O Unsupervised models

O Learning theory

O Graphical models

9/14/15
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Today =
Regression (supervised)

‘ O Four ways to train / perform optimization for linear \

regression models

U Normal Equation

U Gradient Descent (GD)
Q Stochastic GD

O Newton’s method

U Supervised regression models
ULinear regression (LR)
U LR with non-linear basis functions
ULocally weighted LR
QLR with Regularizations
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Today
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‘ U Linear regression (aka least squares) _‘

O Learn to derive the least squares estimate by
normal equation

] Evaluation with Cross-validation
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A Dataset

continuous
valued
variable

» Data/points/instances/examples/samples/records: [ rows |

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

* Target/outcome/response/label/dependent variable: special

column to be predicted [ last column ]

9/14/15




9/14/15

Dr. Yanjun Qi / UVA CS 6316 / f15

For Example,

Machine learning for apartment hunting

Now you've moved to Charlottesville !!

And you want to find the most reasonably
priced apartment satisfying your needs:
square-ft., # of bedroom, distance to campus ...

Living area (ft?) # bedroom Rent ($)

150 1
270 1.5
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For Example,

Machine learning for apartment hunting

=

{
et

Living area (ft2) | # bedroom | Rent ($) Xl X2 Y
S, |
S2
S3
Sq
Sc

150 1 ? S

270 1.5 ?
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Linear SUPERVISED Regression

T xe -

e.g. Linear Regression Models

A 1 2
y=f(x)=0+60x +0x

Features:

Living area, distance to campus, # bedroom ...
» Targety:

Rent =» Continuous

9/14/15 9
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Remember this:“Linear” ? (1D case)

° y=mX+b p A slope of 2 (i.e. m=2) means that every 1-unit \

change in X yields a 2-unit change in Y.

b Q/
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rent

y Living area

rent

.»-""\'2
Location

Living area X1

X = R? a plane
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1D case (X' = R): a line

11
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A new representation (for single sample)

‘ e Assume that each sample x is a column
vector,

— Here we assume a pseudo "feature" x°=1

(this is the intercept term ), and RE-define
the feature vector to be:

xT=[x0x!, x?, ... x1]

— the parameter vector @ is also a column
vector

0 1
9/14/15
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y=f(x)=60,+6x "+6.x 2+...+9p_1x P

; A O T I s
SZ ( x,; Yq

g'h \ )(,\ an
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Training / learning problem

‘- Now represent the whole Training set (wi’?h‘
n samples) as matrix form :

T 0 1 p-1
-— X, —-- X, X, ... X A
T 0 1 p-1
Xo| =7 X% || X o X vy=| 2
T 0 1 -1
-- X, -- x, Xx, ... x' | ]
1L Ay p el

X, X, Y
S
s
S3
Sq
S5
S,
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REVIEW: Special Uses for
Matrix Multiplication

‘ e Matrix-Vector Products (l) T

Given a matrix A € R™*" and a vector z € R”, their product is a vector y = Az € R™.

If we write A by rows, then we can express Az as,

T T
— al — alz
2 2
y:A:L‘: . T —
T T
i — a,, — 1 i a,,T 1

9/14/15 15
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Training / learning problem

* Represent as matrix form: T
— Predicted output
| f(x,) 11 X0 |
= X —| o) || X
_ o BN

— Labels (given output value) v_| ¥

9/14/15 yn
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Training / learning goal

‘0 Using matrix form, we get the r‘
a '
i

following general representation r go
of the linear regression function: “
Y = X6 —

Learning
algorithm

e QOur goal is to pick the optimal 0
that minimize the following cost

function: n
JO)= D (X))

9/14/15 SSE: Sum of squared error 17

X — () —»predicted y
(living area of (predicted price)
se.) of house)
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Today

‘ U Linear regression (aka least squares) _‘

O Learn to derive the least squares estimate by
Normal Equation

] Evaluation with Cross-validation

9/14/15 18
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Method I: normal equations

‘ e Write the cost function in matrix form: T

1
JO)=5 2% 0-)° X - Y
i=1
1 _ ) -— X; —-
=5 (X6-5) (x6-7) X=| 7% Ty
:%@ﬂxﬂxy—elyﬁﬁjfxa+yﬁﬁ -— x' -- y

To minimize J(6), take derivative and set to

Zero:
= | X'X6=X"y

The normal equations

U -1
0'=(x"x) X'y

9/14/15
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Review: Special Uses for
Matrix Multiplication

‘ * Dot (or Inner) Product of two Vectors <x, y>T

which is the sum of products of elements in
similar positions for the two vectors

<X, y>=<y,x> a'b=b"a

(731
n
€I9
Where <x, y> = ,,-Ty eR = [ Ty Ty - Ty ] : = Z LY.
: i=1
.UII
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Review: Matrix Calculus:
Types of Matrix Derivatives

Matrix T

Scalar Vector
: dy dy _ [2ui| | dY _ (2
Scalat I s [3.7‘ dr = |

gP O OHHGHGHON \
ector |19 — [2v || dy _ [2u
Vector ! — []: dx — |Bz,
v 1

Matrix | % = [iL]

By Thomas Minka. Old and New Matrix Algebra Useful for Statistics

9/14/15 21
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Review: Special Uses for
Matrix Multiplication

-‘ Sum the Squared Elements of a Vector = L2 noﬂ

* Premultiply a column vector a by its transpose — If

5
a=|2
8
then premultiplication by a row vector a’
a’ =[ 5 2 8 ]

will yield the sum of the squared values of elements
fora,i.e.
a3 =a"a-| 5 2 8|

5
% =52+224+82=093

9/14/15 22
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Review: Derivative of a Quadratic’Function
2
y=x" -3

q
5
4
3
2
1
2V -1 0 1 /2 3 ’_1'
| y =lim
\i/ h—0 h
6
5
4
3
2
1

(x+h) =3—(x"-3)

)(f+2xﬁ+})9\—)/£
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of that function.

Y .
y =lim
h—0 Yq‘
-3 - 1.2 3 / .
I y =lim2x +/ﬁ
2 This convex function is h—0
3 minimized @ the unique point
whose derivative (slope) is zero. Y4
4 = If finding zeros of the y — 2x
-5 derivative of this function, we
g can also find minima (or maxima) 1/ 2
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Review: Convex function

‘ * Intuitively, a convex function (1D case) has a single \

point at which the derivative goes to zero, and this
point is a minimum.

* Intuitively, a function f (1D case) is convex on the
range [a,b] if a function’s second derivative is positive
every-where in that range.

* Intuitively, if a function's Hessians is psd (positive
semi-definite!), this (multivariate) function is Convex

— Intuitively, we can think “Positive definite” matrices as

9/14/15

analogy to positive numbers in matrix case

26




Review: Some important rules’for taking
derivatives

[ 1

e Scalar multiplication: 0,[af(z)] = a[0,f(x)]

e Polynomials: 9, [z*] = kz*~!

e Function addition: 8,[f(z) + g(z)] = [0.f(2)] + [0z9(x)]

e Function multiplication: 9;[f(z)g(z)] = f(z)[0z9(x)] + [0 f(x)]g(x)

f(w)] _ [0:f(@)]g(x)— f(2) [0 9(x)]
g(x) [9(=)?

e Function division: 0 [

e Function composition: 0,[f(g(x))] = [0.9(x)][0=f](g(x))
e Exponentiation: 9,[e*] =e* and 0,[a®] = log(a)e®
e Logarithms: d,[logz] = 1

9/14/15 27
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Review: Some important rules for

taking gradient
ToxTaoalx
ox N ox a

__________________________________

o V,x1 Az = 2Ax (if A symmetric)
o Vizl Az = 2A (if A symmetric)

9/14/15 28
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Comments on the normal equation

‘ * In most situations of practical interest, the number of
data points N is larger than the dimensionality p of the
input space and the matrix X is of full column rank. If
this condition holds, then it is easy to verify that X”.X'is
necessarily invertible.

* The assumption that XX 'is invertible implies that it is
positive definite, thus the critical point we have found
is a minimum.

 What if X has less than full column rank? =
regularization (later).

9/14/15
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Today

‘ U Linear regression (aka least squares) _‘

O Learn to derive the least squares estimate by
optimization

[ Evaluation with Train/Test OR k-folds Cross-
validation

9/14/15 31
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TYPICAL MACHINE LEARNING SYSTEM

B X B

Low-level Pre- Feature Feature f . X — Y

sensing processing Extract Select

Inference,
Prediction,
Recognition

Label

Collection

Evaluation

9/14/15 32
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Evaluation Choice-I:
Train and Test

target/class
|
g Training dataset
B model | consists of input-
training q
dataset i learn f output pairs
B
test ? B :’ ______________ :
? B I :
? apply 4 M eccecececemes :
! model A Measure Loss on pair
) > (fx), v,)
9/14/15 33
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Evaluation Choice-I:
e.g. for supervised classification

v/ Training (Learning): Learn a model using the _‘
training data

v’ Testing: Test the model using unseen test
data to assess the model accuracy

[Learning
algorithm

Step | Traiming Step 2: Testing

Number of correct classifications
Accuracy = ,
9/14/15 Total number of test cases
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Evaluation Choice-I:

e.g. for linear regression models

[ ]
X, =| 7% P
prm — x s
dataset -= X, B
N, |- =] Vo
o
s | Jrem |

35
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Evaluation Choice-I:
e.g. for linear regression models

‘ * Training Error: T

1 n
Jtrain (0) = EE(XZTH - .Yi)2
=1

* Minimize J,,(6) = Normal Equation to get

6" = argmin Jirain(0) = (Xt];ainXtrain )_1 X,

train y train

9/14/15 36
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Evaluation Choice-I:
e.g. for Regression Models

‘ * Testing MSE Error to report: T

n+m

1 *
]test :E Z (XiTH _-yi)2

i=n+1

9/14/15 37
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Evaluation Choice-11I:
Cross Validation

e Problem: don’t have enough data to set aside a
test set
e Solution: Each data point is used both as train
and test
e Common types:
-K-fold cross-validation (e.g. K=5, K=10)
-2-fold cross-validation
-Leave-one-out cross-validation (LOOCV, i.e.,
k=n_reference)

9/14/15
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K-fold Cross Validation

e Basicidea:
-Split the whole data to N pieces;
-N-1 pieces for fit model; 1 for test;
-Cycle through all N cases;
-K=10 “folds” a common rule of thumb.

e The advantage:

- all pieces are used for both training and validation;
- each observation is used for validation exactly once.

9/14/15 39
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e.g. 10 fold Cross Validation

 Divide data into meww
10 equal pieces | M-

* 9 piecesas
training set, the
rest 1 as test set

e Collect the
scores from the
diagonal

* We normally

use the mean of |,

the scores

2

9/14/1
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e.g. 5 fold Cross Validation

The result is an average
over all iterations

9/14/15
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e.g. Leave-one-out / LOOCV
(n-fold cross validation)

-

‘ | “

9/14/15
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Today Recap

‘ U Linear regression (aka least squares) _‘

O Learn to derive the least squares estimate by
normal equation

[ Evaluation with Train/Test OR k-folds Cross-
validation

9/14/15 43
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