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Where we are ? =
Five major sections of this course

‘ [ Regression (supervised) T

[ Classification (supervised)
O Unsupervised models

O Learning theory

O Graphical models
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Today =
Regression (supervised)

‘ O Four ways to train / perform optimization for linear \
regression models

U Normal Equation

U Gradient Descent (GD)
O Stochastic GD

O Newton’s method

U Supervised regression models
ULinear regression (LR)
U LR with non-linear basis functions
ULocally weighted LR
QLR with Regularizations
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Today

‘ 1 A Practical Application of Regression Model T

 More ways to train / perform optimization for
linear regression models

O Gradient

U Gradient Descent (GD) for LR
O Stochastic GD (SGD)

U Newton’s method
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Linear Regression Models

- Lhx =y a

= e.g. Linear Regression Models

y=f(x)=6,+ Hlxl + 62x2

» Features:
Living area, distance to
campus, # bedroom ...
» Targety:

Rent =» Continuous

9/14/15
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training / learning goal

‘- Using matrix form, we get the
following general representation 0a|l
of the linear function on train set: 0ur g .

Training
set

= X0
1 hdp Pyj
Learning

algorithm

 Our goal is to pick the optimal @
that minimize the following cost
function:

X —» () —» predicted y

1 C N - 2 e 3 ice)
JO) == P GE =) I
i=1
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Method I: normal equations

‘ e Write the cost function in matrix form: T

1
JO)=5 2% 0-)° X - Y
i=1
1 _ ) -— X; —-
=5 (X6-5) (x6-7) X=| 7% Ty
:%(QTXTXQ—BTXT)‘z—yTX9+yT)7) -— x' -- y

To minimize J(6), take its gradient and set to

Zero:
= | X'X6=X"y
The normal equations
U —1
o =(x"x) X"y
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e.g. A Practical Application of
Regression Model

Movie Reviews and Revenues: An Experiment in Text Regression*

Mahesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{maheshj, dipanjan, kgimpel, nasmith}@cs.cmu.edu

Abstract
We consider the problem of predicting a
movie’s opening weekend revenue. Previous Proceedings of
work on this problem has used metadata about »
a movie—e.g., its genre, MPAA rating, and HLT "2010
cast—with very limited work making use of Human

text about the movie. In this paper, we use Language

the text of film critics’ reviews from several

sources to predict opening weekend revenue. Tech nologies:

We describe a new dataset pairing movie re-

views with metadata and revenue data, and

show that review text can substitute for meta-
9/9/14 data, and even improve over it, for prediction.




% Use metadata and critics' reviews to predict
opening weekend revenues of movies

¢ Feature analysis shows what aspects of \
reviews predict box office success

J

9/9/14

1718 Movies, released 2005-2009

» Metadata (genre, rating, running time,
actors, director, etc.): www.metacritic.com
% Critics’ reviews (~7K): Austin Chronicle,
Boston Globe, Entertainment Weekly, LA
Times, NY Times, Variety, Village Voice

% Opening weekend revenues and number of
opening screens: www.the-numbers.com

K/
L X4

o
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Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

A

% Linear regression with the elastic net (Zou
and Hastie, 2005)

0 = argmm

0= (,30 aﬁ)

z'l

P(B) = 51— )82 + alﬂg
1_4 [} )

Use linear regression to directly predict the opening weekend gross
earnings, denoted y, based on features x extracted from the movie
metadata and/or the text of the reviews. 10
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Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

the text

I Lexical n-grams (1,2,3)

Il Part-of-speech n-grams (1,2,3)

Il Dependency relations (nsubj,advmod,...)
U.S. origin, running time, budget (log),

# of opening screens, genre, MPAA

Meta| rating, holiday release (summer,

Christmas, Memorial day,...), star power
(Oscar winners, high-grossing actors)

/
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www.dark.cs.cmu.edu/movies-data

to movies
The feature weights can be

directly interpreted as U.S. blooper

documentary

running time N dollars contributed to the poop
philosophical predicted value y* by each Will Smith
occurrence of the feature.
bogeyman torso

N

this series
straightforward midlife crisis
arthouse

is rated R

/)

anticipation

[ T T T 1
—-10% —-10" 0 10* 10°

feature weight in dollars
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Today

‘ O A Practical Application of Regression Model T

O More ways to train / perform optimization for
linear regression models
O Gradient Descent
O Gradient Descent (GD) for LR
O Stochastic GD (SGD)
O Newton’s method
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Review: Definitions of gradient
(from CMU review handout)

N N

Suppose that f: R™*™ — R is a function that takes as input a matrix A of size m x n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of

=» Denominator layout

ym g g
ofd ofh  afdy
VAf(A) c R™*" — 0Az1  0Az dAo,
of(A) Bf(A) .. 8f(A)
L 8Aml 6Am2 BAmn _
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Review: Definitions of gradient =
(from http://en.wikipedia.org/wiki/
atrix_calculus#Scalar-by-matrix) —

The derivative of a scalar y function of a matrix X of
independent variables, with respect to the matrix X «,, is
given as

=>» Numerator layout [ ay 8y ca e _()L-
dr11 dx21 0z p1
dy dy ... Gy
0 Y | oz12 oz Oz 5o

0X L L
y y o dy
| dz1q Oz O pg

Notice that the indexing of the gradient with respect to X
is transposed as compared with the indexing of X.

IS = numerator layout

15
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Review: Definitions of gradient
(from CMU handout)

‘ e Size of gradient is always the same as T
the size of

=» Denominator layout

78 |cgn | R™
Vi@ = | P cR" ifx €

9/14/15 16




(from http://en.wikipedia.org/wiki/ -1171 )
Matrix_calculus#Scalar-by-vector) -
2
The derivative of a scalar y by a vector X = s
= Numerator layout £x n

—

w_ [
Ix dxry 0xs dx,, |

—

This gradient is a 1xn row vector whose entries
respectively contain the n partial derivatives

9/14/15 =» numerator layout .
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A little bit more about [ Optimization |

‘ * Objective function F'(x) T

e Variables X
* Constraints

To find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

9/14/15 18




e.g. Gradient Descent
( Steepest Descent )

‘ A first-order optimization

algorithm.

To find a local minimum of a
function using gradient
descent, one takes steps
proportional to the
negative of the gradient of
the function at the current

The gradient points in
the direction of the
greatest rate of
increase of the function
and its magnitude is
the slope of the graph
in that direction

point.

9/14/15

Review: Derivative of a Quadrati¢ Function
2
y=x" -3

; 57 (x+h)2—3—(x2—3)

e h

)(f+2xﬁ+i>§—)(£
%,

3" =1lim
h—0

9/14/15

1

X

2 3 / 1.

v =lm2x +/£
This convex function is h%O
minimized @ the unique point
whose derivative (slope) is zero.
=> If finding zeros of the
derivative of this function, we
can also find minima (or maxima) 1/
of that function. 2
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lllustration of Gradient Descent
(2D case)

e B
r

The gradient points in
the direction of the
greatest rate of
increase of the function
and its magnitude is
the slope of the graph
in that direction

9/14/15 21

Gradient Descent (GD)

* Initialize k=0, choose X,

* While k<k__,

For the k-th epoch

X =X _ — OCVXF(Xk_l)

9/14/15 Dr. Yanjun Qi / UVA CS 6316 / f15 22
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lllustration of Gradient Descent (2D case)

F(x) )

Original point in
weight space

New pointin
weight space
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Comments on Gradient Descent Algorithm

‘ * Works on any objective function F(x) \

— as long as we can evaluate the gradient
— this can be very useful for minimizing complex functions

* Local minima

— Can have multiple local minima

— (note: for LR, its cost function only has a single global minimum, so
this is not a problem)

— If gradient descent goes to the closest local minimum:
* solution: random restarts from multiple places in weight space

9/14/15 24
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Today

‘ O A Practical Application of Regression Model T

O More ways to train / perform optimization for
linear regression models

U Gradient Descent

O Gradient Descent (GD) for LR
O Stochastic GD (SGD)

U Newton’s method

9/14/15 25
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LR with batch GD

e The Cost Function: T

JO)= 336~
i=1

* Consider a gradient descent algorithm:

o 0" =0 —a2 s
0 00, For the (t+1)-th epoch

t

9/14/15
26
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lllustration of Gradient Descent
(2D case)

-

7(0)
A
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Choosing the Right Step-Size /
Learning-Rate is critical

‘ ' ’Tﬂx’) ) w\-\“
=

9/14/15 28
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= (66)-47)(26-Y)%
= (6 -97)(26-Y)~ |
- (o720 - 0'x"9- 73019y Ix
‘_ﬂ"""'-f"‘-"'j;:"
Swe XY =Y 20
(X0.Y> <9,26>

- (g7%" Y o\l [ 1d case
_@zz‘_e)—z&fyw“/)l \/w
= TO) Judnin gmwf B; ,
278l -9
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LR with batch GD

‘ * Steepest descent/ GD
— Note that: ! _ .
6" =0"+a) (y,-%,6)x/

i=1

Update Rule Per
Feature Variable-
Wise

89 Handout’s Definition
of Gradient

T
E) n
Vej |: ] :| = —2 (yl _ X,’Te)x,- BaSGd]On CMU
i=1

0" =0"+a) (y,-x"0)x

i=1

—This is as a batch gradient descent algorithm

9/14/15
23
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Today

‘ O A Practical Application of Regression Model T

1 More ways to train / perform optimization for
linear regression models
(1 Gradient Descent
U Gradient Descent (GD) for LR
O Stochastic GD (SGD)
O Newton’s method

9/14/15 34
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LR with Stochastic GD =»

‘ e Batch GD rule: \

0" =0"+a) (y.-x"0")x
i=1
* Therefore, for a single training point (i), we have:

0" =0'+a(y. -x,' 0%,

— This is known as the Least-Mean-Square update rule, or the Widrow-
Hoff learning rule

— This is actually a "stochastic", "coordinate" descent algorithm
— This can be used as a on-line algorithm

0" =0 +a(y,~x0')x,

9/14/15
Yanjun Qi / UVA CS 4501-01-6501-07
Stochasticgradient descent /
Online Learning Algorithm
SGD

9/9/14 36
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Stochastic gradient descent :
More variations

* Single-sample:
@W 9 +(X<“J —«Z )Z
* Mini-batch:

6" - o W%(% T60) %,

9/9/14 37
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Stochasticgradient descent

SGD can also be used for offline learning, by repeatedly cycling through
the data; each such pass over the whole dataset is called an epoch. This
is useful if we have massive datasets that will not fit in main memory.
In this offline case, it is often better to compute the gradient of a mini-
batch of B data cases. If B = 1, this is standard SGD, and if B = N,
this is standard steepest descent. Typically B ~ 100 is used.

can-get—a fairly good estimate of the gradient
few examples. Carefully evaluating precise gradients using larg
datasets is n a waste of time, since the algorithm will have

of ‘computer time to have@ noisy €stimate 3nd to move rapidly through
parameter space.

SGD is Gften less prone to getting stuck in shallow local minima) because it
adds a certain amount of “noise”. Consequently it is quite popular in the
machine learning community for fitting models such as neural networks
and . deep belief networks with non-convex objectives.

38
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Summary so far: three ways to learn LR

‘ * Normal equations 9* = ()(T)()_l)(TJ7 T

— Pros: a single-shot algorithm! Easiest to implement.

— Cons: need to compute pseudo-inverse (X'X)'!, expensive, numerical
issues (e.g., matrix is singular ..), although there are ways to get around this

n
* GD or Steepest descent 0 =06"+ OCZ(yI. — XI,TQt)Xi
i=1
— Pros: easy to implement, conceptually clean, guaranteed convergence
— Cons: batch, often slow converging

_T _
* Stochastic LMS update rule HHI = 0’ + OJ(yl —X; QZ)XZ-

— Pros: on-line, low per-step cost, fast convergence and perhaps less prone to
local optimum

— Cons: convergence to optimum not always guaranteed

9/14/15
29
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Direct (normal equation) vs.
lterative (GD) methods

‘ e Direct methods: we can achieve the solution in aT
single step by solving the normal equation

— Using Gaussian elimination or QR decomposition, we
converge in a finite number of steps

— It can be infeasible when data are streaming in in real
time, or of very large amount

* |terative methods: stochastic or steepest gradient
— Converging in a limiting sense
— But more attractive in large practical problems
— Caution is needed for deciding the learning rate a

9/14/15 40




Evaluation : JO)= 30, 5)- 3,
for Regression Models =

Sum of squared error
(SSE) on training set

* Testing MSE (mean-squared-error) to report:

n+m

1 )
MSEtest = E Z (XiTQ - -yi)2
I=n+1

* Training MSE to report:

1< .
MSEtrain = ;Z(X,-TQ _yi)2
i=1

Convergence rate

* Theorem: the steepest descent equation algorithm converge
to the minimum of the cost characterized by normal
equation:

p(>) = (XTX)~"1xTy
If the learning rate parameter satisfy =

0<a <2/ Amax| X1 X]

* A formal analysis of GD-LR need more math; in practice, one
can use a small a, or gradually decrease a. g g

No




Convergence Curves,
for an example

Log-log plot of training MSE versus epochs

% 10 . Batch updat
T A c upasaie 1 * For the batch method,
2 —Online update | the training MSE is
f= ____Minimum MSE by || initially large due to
S 10° normal equation || uninformed
ot ]
c ] initialization
(¢}
S
T, * Inthe online update, N
o 104 i updates for every
= epoch reduces MSE to
‘g' a much smaller value.
c
®
= 10° 0 2 4
10 10 10
9/14/15 Epogh‘gnjun Qi / UVA CS 6316 / f15
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Performance vs. Training Size
for an example

. B

Variation of Test mean square error with percentage of data used for training

2000 e The results from B and O
update are almost identical.

So the plots coincide.

——Batch update
——Normal equation
—Online update

1500
e The test MSE from the

normal equation is more

i than that of B and O during
small training. This is
probably due to overfitting.

1000

500~

Mean square error on test set

e In B and O, since only 2000
(for example) iterations are
allowed at most. This

10 20 30 40 50 60 70 80 90 100
roughly acts as a
Percentage of data used for training gnly

o

mechanism that avoids

overfitting.
9/14/15
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Today

‘ O A Practical Application of Regression Model T

O More ways to train / perform optimization for
linear regression models
O Gradient Descent
O Gradient Descent (GD) for LR
O Stochastic GD (SGD)
1 Newton’s method

9/14/15 45
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Review: Convex function

‘ * Intuitively, a convex function (1D case) has a single \

point at which the derivative goes to zero, and this
point is a minimum.

* Intuitively, a function f (1D case) is convex on the
range [a,b] if a function’s second derivative is positive
every-where in that range.

* Intuitively, if a function's Hessians is psd (positive
semi-definite!), this (multivariate) function is Convex

— Intuitively, we can think “Positive definite” matrices as
analogy to positive numbers in matrix case

9/14/15 46




Newton’s method for optimization

* The most basic second-order optimization
algorithm

* Updating parameter with
Ori1 =0 —Hy gk

Review: Hessian Matrix / h==2 case

Singlevariate - multivariate F(xy)

of
e 1stderivative to gradient, 8=Vf=( 3; ]

&
H ax*  0xdy
« 2" derivative to Hessian | 2 2y

D
=
D
=
D
<
S
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Review: Hessian Matrix
[ ]

Suppose that f : R® — R is a function that takes a vector in R™ and returns a real number.
Then the Hessian matrix with respect to z, written V2f(z) or simply as H is the n x n
matrix of partial derivatives,

B e B
il

01102y 0x10zy,
82f§a:! 82f§x) 32f(x§
sz(.’I?) € Rnxn — 019011 6x% 0zy0zy,
z . . N .
#fx) 0 8 f(x)
L 02,021  Ozn0z9 0z2
9/9/14 49
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Newton’s method for optimization

‘ * Making a quadratic/second-order Taylor T

series approximation

E:ad(e) = f(0k) + g1 (6 — %) + %(9 — 6;) Hy(6 — 6y)

Finding the minimum
solution of the above
right quadratic
approximation
(quadratic function
minimization is easy !)

9/9/14




D)= 180+ 47 (0-6) +
L (6-9 ) Hy (6-6k)
NS —

> ( 07 H. D -20 Hic D 0:14,‘@ {f)

Jd (0
3( :O+3k+2HKO_ZHk§k =0
ae \r
T S0 ¥ handoik
It Fle (0 -0 =0 where. H/a(R

o/o/sa > 0= Bk — H;’ g,# jkfgf

Newton’s Method / second=order
Taylor series approximation

9=>9

k+1
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Newton’s Method / second-order
Taylor series approximation

| B
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Newton’s Method / second-order
Taylor series approximation

| B
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Newton’s Method / second-order
Taylor series approximation

| B
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Newton’s Method

m each step: ECA) T

Hk+1 = ek _%
k

9/<+1 = Qk — H_l(gk)vf(ek)

* Requires 15t and 2"d derivatives
* Quadratic convergence

* =» However, finding the inverse of the Hessian
matrix is often expensive

9/9/14 56
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Comparison

‘ e Newton’s method vs. Gradient descent T

A comparison of gradient descent
(green) and Newton's method
(red) for minimizing a function
(with small step sizes).

Newton’s method uses curvature
information to get a more direct Xo
route ...

57
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TJto)z — (7-26)" (y-X0)

W

Uy 3(0)= 'R 0- XY
= VeT®) = XX

> §F-g% - 1 V]E)
tx'%)”
- g (8] [F2§ 7]

m (*’_ @*’]* (2'3) 'Y
(x72) 5

Newton’s method
for Linear Regression
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Today Recap

‘ O A Practical Application of Regression Model T

O More ways to train / perform optimization for
linear regression models
O Gradient Descent
O Gradient Descent (GD) for LR
O Stochastic GD (SGD)
O Newton’s method
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