Dr. Yanjun Qi / UVA CS 6316 / f15

UVA CS 6316 - Fall 2015 Graduate: Machine Learning

Lecture 5: Non-Linear Regression Models

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

9/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Where we are ? → Five major sections of this course

☐ Regression (supervised)
☐ Classification (supervised)
Unsupervised models
Learning theory
☐ Graphical models

Dr. Yanjun Qi / UVA CS 6316 / f15

Today →

Regression (supervised)

 □ Four ways to train / perform optimization for linear regression models □ Normal Equation □ Gradient Descent (GD) □ Stochastic GD □ Newton's method 	
□ Supervised regression models □ Linear regression (LR) □ LR with non-linear basis functions □ Locally weighted LR □ LR with Regularizations	

9/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Today

- Machine Learning Method in a nutshell
- ☐ Regression Models Beyond Linear
 - -LR with non-linear basis functions
 - -Locally weighted linear regression
 - Regression trees and MultilinearInterpolation (later)

Dr. Yanjun Qi / UVA CS 6316 / f15

Traditional Programming

Machine Learning

9/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Machine Learning in a Nutshell

ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

(1) Multivariate Linear Regression

$$\hat{y} = f(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2$$

$$= 0^7 \vec{x} = \vec{x}^7 \vec{0}$$

9/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Today

- ☐ Machine Learning Method in a nutshell
- ☐ Regression Models Beyond Linear
 - LR with non-linear basis functions
 - Locally weighted linear regression
 - Regression trees and Multilinear Interpolation (later)
- ☐ Linear Regression Model with Regularizations
 - ☐ Ridge Regression
 - ☐ Lasso Regression

LR with non-linear basis functions

• LR does not mean we can only deal with linear relationships

 $y = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \theta_0^T \varphi(x)$

 We are free to design (non-linear) features (e.g., basis function derived) under LR

where the $\varphi_j(x)$ are fixed basis functions (also define $\varphi_0(x)=1$).

• E.g.: polynomial regression:

9/21/15

9

Dr. Yanjun Qi / UVA CS 6316 / f15

e.g. (1) polynomial regression

For example,

$$\boldsymbol{\theta}^* = \left(\boldsymbol{\varphi}^T \boldsymbol{\varphi}\right)^{-1} \boldsymbol{\varphi}^T \vec{\mathbf{y}}$$

Dr. Nando de Freitas's tutorial slide

e.g. (1) polynomial regression

$$\phi(\mathbf{x}) = [1, x_1, x_2]$$

$$\phi(\mathbf{x}) = [1, x_1, x_2]$$
 $\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2]$

KEY: if the bases are given, the problem of learning the parameters is still linear.

11

Dr. Yanjun Qi / UVA CS 6316 / f15

Many Possible Basis functions

- There are many basis functions, e.g.:
 - Polynomial

$$\varphi_i(x) = x^{j-1}$$

- Radial basis functions
$$\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$$

- Sigmoidal
$$\phi_j(x) = \sigma \left(\frac{x - \mu_j}{s} \right)$$

- Fourier,
- Wavelets, etc

9/21/15

e.g. (2) LR with radial-basis functions

• E.g.: LR with RBF regression:

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)^T \theta$$

$$\varphi(x) := \left[1, K_{\lambda_1}(x, r_1), K_{\lambda_2}(x, r_2), K_{\lambda_3}(x, r_3), K_{\lambda_4}(x, r_4) \right]^T$$

$$\theta^* = \left(\varphi^T \varphi \right)^{-1} \varphi^T \vec{y}$$

9/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

RBF = radial-basis function: a function which depends only on the radial distance from a centre point

Gaussian RBF
$$\rightarrow$$
 $K_{\lambda}(\underline{x},r) = \exp\left(-\frac{(\underline{x}-r)^2}{2\lambda^2}\right)$

as distance from the centre r increases, the output of the RBF decreases

14

e.g. another Linear regression with 1D RBF basis functions (4 predefined centres and width)

$$\varphi(x) \coloneqq \left[1, K_{\lambda_1}(x, r_1), K_{\lambda_2}(x, r_2), K_{\lambda_3}(x, r_3), K_{\lambda_4}(x, r_4)\right]^T$$

$$= \left(\varphi^T \varphi\right)^{-1} \varphi^T \vec{y}$$
15

Dr. Yanjun Qi / UVA CS 6316 / f15

e.g. a LR with 1D RBFs (3 predefined centres and width)

1D RBF

 $y^{est} = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_2(x)$ $y = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_2(x)$ $+ \beta_3 \phi_2(x) + \beta_3 \phi_2(x)$ $+ \beta_3 \phi_3(x) + \beta_3 \phi_3(x)$

After fit:

$$y^{est} = 2\phi_1(x) + \frac{0.05\phi_2(x)}{0.05\phi_2(x)} + 0.5\phi_3(x)$$

e.g. 2D Good and Bad RBFs

A good 2D RBF
 Blue dots denote coordinates of input vectors

Two bad 2D RBFs

17

Dr. Yanjun Qi / UVA CS 6316 / f15

Two main issues:

- Learn the parameter \theta
 - Almost the same as LR, just \rightarrow X to $\varphi(x)$
 - Linear combination of basis functions (that can be non-linear)
- How to choose the model order, e.g.
 polynomial degree for polynomial regression

Issue: Overfitting and underfitting

Dr. Yanjun Qi / UVA CS 6316 / f15

(2) Multivariate Linear Regression with basis Expansion

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)^T \theta$$

Today

- ☐ Machine Learning Method in a nutshell
- ☐ Regression Models Beyond Linear
 - -LR with non-linear basis functions
 - -Locally weighted linear regression
 - Regression trees and Multilinear Interpolation (later)

9/21/15 21

Dr. Yanjun Qi / UVA CS 6316 / f15

Locally weighted linear regression

The algorithm: Instead of minimizing

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

 $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \mathbf{v}_{i} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2} \quad \text{Work}$

now we fit $oldsymbol{ heta}$ to minimize

- where x 0 is the query point for which we'd like to know its corresponding y
- → Essentially we put higher weights on (those errors from) training examples that are close to the query point x 0 (than those that are further away from the query point)

22

Locally weighted regression

 aka locally weighted regression, locally linear regression, LOESS, ...

Figure 2: In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

Dr. Yanjun Qi / UVA CS 6316 / f15

2.4

Locally weighted linear regression

Figure 3: The estimator variance is minimized when the kernel includes as many training points as can be accommodated by the model. Here the linear LOESS model is shown. Too large a kernel includes points that degrade the fit; too small a kernel neglects points that increase confidence in the fit.

Locally weighted linear regression

 Separate weighted least squares at each target point x₀:

$$\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_i, x_0) [y_i - \alpha(x_0) - \beta(x_0)x_i]^2$$

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$$

9/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

LEARNING of Locally weighted linear regression

→ Separate weighted least squares at each target point x₀

Locally weighted linear regression

e.g. when for only one feature variable

• Separate weighted least squares at each target

point
$$\mathbf{x_0}$$
:
$$\min_{\alpha(x_0), \beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) [y_i - \alpha(x_0) - \beta(x_0) x_i]^2$$
$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0) x_0$$

• $b(x)^T = (1,x)$; B: Nx2 regression matrix with *i*-th row b(x)^T;

Dr. Yanjun Qi / UVA CS 6316 / f1

More → Local Weighted Polynomial Regression

Local polynomial fits of any degree d

$$\min_{\substack{\alpha(x_0),\beta_j(x_0),j=1,\ldots,d\\ \beta(x_0)=\hat{\alpha}(x_0)}} \sum_{i=1}^N K_\lambda(x_0,x_i) \left[y_i - \alpha(x_0) - \sum_{j=1}^d \beta_j(x_0) x_i^j \right]$$
Blue: true
$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \sum_{j=1}^d \hat{\beta}_j(x_0) x_0^j$$
Green: estimated
$$\sum_{\substack{\text{Local Linear in Interior}}} \sum_{\substack{\text{Local Quadratic in Interior}}} \sum_{\substack{\text{Local Quadratic in Interior}}} \sum_{\substack{\text{Local Application of the properties} \\ \beta(x_0) = \hat{\alpha}(x_0) + \sum_{j=1}^d \hat{\beta}_j(x_0) x_0^j}$$

Parametric vs. non-parametric

- Locally weighted linear regression is a non-parametric algorithm.
- The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm
 - because it has a fixed, finite number of parameters (the θ), which are fit to the data;
 - Once we've fit the \theta and stored them away, we no longer need to keep the training data around to make future predictions.
 - In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of knowledge we need to keep, in order to represent the hypothesis grows with linearly the size of the training set.

9/21/15

(CC)

Dr. Yanjun Qi / UVA CS 6316 / f15

29

(3) Locally Weighted / Kernel Linear Regression

Today Recap

- ☐ Machine Learning Method in a nutshell
- ☐ Regression Models Beyond Linear
 - -LR with non-linear basis functions
 - Locally weighted linear regression
 - Regression trees and Multilinear Interpolation (later)

9/21/15

Probabilistic Interpretation of Linear Regression (LATER)

 Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

where ε is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

Many more variations of LR from this perspective, e.g. binomial / poisson (LATER)

• By independence (among samples) assumption.

$$L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- ☐ Prof. Nando de Freitas's tutorial slide