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Where we are ? =
Five major sections of this course

‘ [ Regression (supervised) T

[ Classification (supervised)
O Unsupervised models

O Learning theory

O Graphical models
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Today =
Regression (supervised)

‘ O Four ways to train / perform optimization for linear \
regression models

U Normal Equation

U Gradient Descent (GD)
O Stochastic GD

O Newton’s method

U Supervised regression models
ULinear regression (LR)
U LR with non-linear basis functions
ULocally weighted LR
QLR with Regularizations
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Today

‘ 1 Machine Learning Method in a nutshell T
J Regression Models Beyond Linear

— LR with non-linear basis functions
— Locally weighted linear regression

—Regression trees and Multilinear
Interpolation (later)
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Traditional Programming

‘ Data

Program

Machine Learning
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Data

Output
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Output

Program
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Machine Learning in a Nutshell

Task

v

Representation

v

Score Function

v

Search/Optimization

v
Models,
Parameters
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ML grew out of
work in Al

Optimize a
performance criterion
using example data or
past experience,

Aiming to generalize to
unseen data
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(1) Multivariate Linear Regression

Task

v

Representation

v

Score Function

A 4

Searchloi:timization

Models,
Parameters

Regression

Y= Weigh{ed linear sum
of X's
Least-squares
- |
Linear algebra / GD / SGD

}

Regression
coefficients

9/21/15

§7=f(x)=90t01x1+02x2
<X =%X0

‘ 1 Machine Learning Method in a nutshell
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Today

=

[ Regression Models Beyond Linear
— LR with non-linear basis functions
— Locally weighted linear regression
— Regression trees and Multilinear Interpolation

(later)

ULinear Regression Model with Regularizations

U Ridge Regression
U Lasso Regression
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LR with non-linear basis functions

‘ * LR does not mean we can only deal with T
linear relatlonshlps

OTX = 7T 6,+2.,.,6,9,()=0 1000 |

* We are free to design (non-linear) features
(e.g., basis function derived) under LR

where the @,(x) arebasis functions (also
define ¢,(x)=1).
* E.g.: polynomial regression:

[ [7 DC]T% o(x)= [1,x,x2,x3]T
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e.g. (1) polynomial regression
(Ki, M) ey poiats A=l R
x)=[1,%, x2]"

For example,

g [ A 4
) A =0 DX)
ob e . " 4 Qo
g SJe

' | Th&
L S

10
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e.g. (1) polynomial regression

165"

155 3

KEY: if the bases are given, the problem of
learning the parameters is still linear.
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Many Possible Basis functions

* There are many basis functions, e.g.: \

— Polynomial cpj(x):xj—l

_ . . . x_ﬂ
Radial basis functions 8,(x) = exp{—( ZSZJ)Z ]

— Sigmoidal ¢j(x)=0'(x_'ufJ
S

— Splines,

— Fourier, i\ 7 el h ///\\\) >\\ N /7 ///// /
— Wavelets, etc 0 :\ Z| W\ /\}>>\ ></\<\/ .l //// /’ / /
05 fif’/ 0.25 / a\\ \ ( // /// / /
9/21/15 -1_/ _ - 0 /Ki<</> w/\\ ////// o/
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e.g. (2) LR with radial-basis functions

‘- .£.: LR with RBF regression: T

y=6,+2,6,0,(x)=0(x)'6

T
P(x)=| LK, (ur)K,,(on) K, (ur)K,, (o)
_/
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RBF = radial-basis function: a function which depends
only on the radial distance from a centre point

Gaussian RBF = (J_C - 7’)2
207

K;L()_C,l’) =CXp| -

as distance from the centre I increases,
the output of the RBF decreases

1D case 4 2D case

9/21/15 14




e.g. another Linear regressio
1D RBF basis functions
(4 predefined centres and width)
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n wit

=

T

P(x)=| LK, (ur)K,,(on)K, (ar)K,,(or)|
% -1 —
" =(¢'p) @'y

15

e After fit:
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e.g. a LR with 1D RB
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Fs

(3 predefined centres and width)

* 1D RBF (D ()() &z(x)

0 (x) _‘

WL
~

Yot = By galx) + * B3 4%
- (

x*(g@
39 Z@ (Hbn

yest = 2¢,(x) + + 0.5p3(x)
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e.g. 2D Good and Bad RBFs

Blue dots denote
[ J A d 2 D R B F coordinates of -
g O O input vectors \ "
enter
/

Sphere of
significant
influence of
center

Xy

e Two bad 2D RBFs X

O op

9/21/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Two main issues:

‘ * Learn the parameter \theta T

— Almost the same as LR, just =» X to QD()C)

— Linear combination of basis functions (that can be
non-linear)

* How to choose the model order, e.g.
polynomial degree for polynomial regression

9/21/15 18




Dr. Yanjun Qi / UVA CS 6316 / f15

Issue: Overfitting and underfitting

<« G

y=0,+6x y =6, +0x+6,x° y= 2,-:0 0,x’

Generalisation: learn function /
hypothesis from past data in order

to “explain”, “predict”, “model” or
.. “control” new data examples

K-fold Cross
idation 111
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(2) Multivariate Linear Regression with basis Expansion

Task Regression
v E
i Y= WeighLd linear sum
RPN EYIE, :  of (X basis expansion)
v !
Score Function Least-squares
 Z _i 1
Searchloi:timization Linear algebra
Models, Regression

Parameters | coefficients

y=6,+2, 60 (x)=p(x)
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Today

 Machine Learning Method in a nutshell
J Regression Models Beyond Linear

— LR with non-linear basis functions

— Locally weighted linear regression

—Regression trees and Multilinear
Interpolation (later)

Locally weighted linear regression

* | The algorithm:

Instead of minimizing

JO)=33 0/ 0-1)

1 n
now we fit @ to minimize 1(9)=52 w(x]0-y,)
i=1

]
(x,~x,)’
Where do w,'s come from? w, = K(Xi'XO): exp _12—20

* where x_0is the query point for which we'd like to know its corresponding y

- Essentially we put higher weights on (those errors
from) training examples that are close to the query
point x_0O (than those that are further away from the
qguery point )
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Locally weighted regression

 aka locally weighted regression, locally T
linear regression, LOESS, ...

1
' K)L (xi ° xo ) : linear_func(x)->y
I >
: o could represent
o | o] only the neighbor
I .
o N | region of x_0
I
1 o}
I

Use RBF function to
pick out/emphasize

the neighbor region
ofx 0=>» Kl(xl.,xo)

1
|
|
I
I
1
1
o
|
|
1
1
1
!
|
|

X
Figure 2: Inlocally weighted regr 55510!1; points are weighted by proximity to the current x in question using

9/21/15 o . . .
/2 a kernel A regression is then computed using the weighted points.
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Locally weighted linear regression

| B

kernel too wide — includes nonlinear region

,;——-’”’“_’fkernel just right
kernel too narrow — excludes some of linear reg

X
Figure 3: The estimator vanance is mininized when the kemel includes as many training points as can be
accongugll?%ated by the model Here the linear LOESS model is shown. Too large a kernel includes points that
degracie the fit; too small a kernel neglects points that increase confidence in the fit.
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Locally weighted linear regression

‘ « Separate weighted least squares at each T
target point x,:

N
a(g)l,iﬁr(lxo);]{l (xi,xo )[yi - O{(XO) - ﬁ(xo )xi]2

Fx,)=a(x,)+B(x,)x,
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LEARNING of Locally weighted
linear regression

target, \
E) model
training

dataset learn ~f(XO):&(XO)+B(XO)XO

[T

X0

=>» Separate weighted least squares
at each target point x,
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Locally weighted linear e e when for
reg reSS|O N feature variable

‘ Separate weighted least squares at each target
N

point x,: min % o g B -
a(xo)sﬂ(xo)g ﬂ(x()"xz)[yz ('XO) ﬂ(xo)xz]

£ (x0) = E(x,) + Bx)%,

* b(x)T=(1,x),; B: Nx2 regression matrix with ith row b(x)T;

Wysn (X5) = diag(K/l(XOaxi))ai =1,...,N

~ T T 1T = %
LWR f(x,)=b(x,)"(B"W(x,)B) "' B"W(x,)y
@ LR Fx) =)0 = () (X'X) X'

9/21/15
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More =» Local Weighted Polynomial
Regression

‘- LLocal polynomial fits of any degree d 2 “

min iKﬂ(xo,x»{y,-—a(xo)—iﬁj(xo>xf

a(x9),B;(xq),j=1,....d

A A d A .
— J
Blue: true f(xo) - OK(XO) + ijl :Bj (xo )xo
Green: estimated Local Linear in Interior Local Quadratic in Interior
‘ f(il?o) 0 flzg)

2
9/21/15
0
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Parametric vs. non-parametric

‘ * Locally weighted linear regression is @&—) \
algorithm.

* The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

— because it has a fixed, finite number of parameters (the , Which
are fit to the data; v

— Once we've fit the \theta and stored them away, we no longer need
to keep the training data around to make future predictions.

— In contrast, to make predictions using locally weighted linear
regression, we need to keep the entire training set around.

* The term "non-parametric" (roughly) refers to the fact that the
amount of knowledge we need to keep, in order to represent
the hypothesis grows with linearly the size of the training set.

9/21/15 r\v '77 ?
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(3) Locally Weighted / Kernel Linear Regression

...............................................

Task Regression

v

Representation Y= Welgh{ed linear sum
: of X’s

v

Score Function Weighted

Least-squares

A 4

Searchloi:timization Linear algebra
Models, Local Regression
Parameters 5 coefficients

(conditioned on
each test point)

min EK (xl,xo)[yl a(x,) - /J’(xo)x]

a(xg).B(xp)

9/21/15 - f (xo) o (xo) + ﬁ ()CO )XO 0
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Today Recap

‘  Machine Learning Method in a nutshell T
J Regression Models Beyond Linear

— LR with non-linear basis functions
— Locally weighted linear regression

—Regression trees and Multilinear
Interpolation (later)
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Probabilistic Interpretation of
Linear Regression (LATER) 7

‘ * Let us assume that the target variable and the inputs are A _‘
related by the equation:

V= 9Txi + €,
where € is an error term of unmodeled effects or random noise

* Now assume that ¢ follows a Gaussian N(0,0), then we

have: —
Many more variations

(yi _ HTXi)Z j of LR from this

p(yi |xi;6): \/EO'GXP[_ 20_2

perspective, e.g.
binomial / poisson
(LATER)

* By independence (among samples) assumptiori.

_ 2:1:1 (yi - eTxi)z ]

20°

n 1 /!
L(O)= N x;0)=| —— | ex
e ( ) IUIP(y1| i ) [\/ﬂo_j p{
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