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Where we are ? =
Five major sections of this course

‘ [ Regression (supervised) T

[ Classification (supervised)
O Unsupervised models

O Learning theory

O Graphical models
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Today =
Regression (supervised)

‘ O Four ways to train / perform optimization for linear \
regression models

U Normal Equation

U Gradient Descent (GD)
O Stochastic GD

O Newton’s method

U Supervised regression models
ULinear regression (LR)
U LR with non-linear basis functions
ULocally weighted LR
QLR with Regularizations
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Today

‘ ULinear Regression Model with Regularizations“

U Ridge Regression
[ Lasso Regression
O Elastic net
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Review: Vector horms

A norm of a vector ||x|| is informally a measure of

|—the “length” of the vector. —‘

n 1/p
]|, = (Z -nl”)
1=1

— Common norms: L,, L, (Euclidean)

n
s = Z w2 =
1=1

- I-inﬁnity

2|0 = max; |x;]
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Review: Vector Norm (L2, when p=2)

N . B

v
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Review: Normal equation for LR
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‘ e Write the cost function in matrix form:

J(@%i(x%—m?
i=1
1 I
L (xo-5) (x6-3)

:é(BTXTXﬁ—HTXTy— ' X0+5"y)

To minimize J(6), take derivative and set to

Zero.
= | X'X6=X"y

The normal equations

U
0" =(X"X) X'y
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N
A

L yn -

Assume

that X7 X is

invertible
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Comments on the normal equation

X vp

‘ * In most situations of practical interest, the number of
data points N is larger than the dimensionality p of the
input space and the matrix X is of full column rank. If/’"F"[’
this condition holds, then it is easy to verify that XX is

necessarily invertible.

NP yamk (X minng)

* The assumption that X".Xis invertible implies that it is
positive definite (= SSE convex), thus the critical point

we have found is a minimum.

 What if X has less than full column rank? =

regularization (later).
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Ridge Regression/ L2

-‘ If not invertible, a solutlon is to add a small eIemenT‘
to diagonal [, 7
Y = ﬁ0+:81x1+ +:Bpxp Basic Model,

B =(X" X+M) X'y
* The ridge estimator is solution from @
fridse argmin(y - XB) (y-XpB)+ @
— -
to minimize, take derivative and set to zero 4%

* Equivalently .. . ,
B =argmin(y - XB)' (v - XB)
subject to Y 7 <s
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Objective Function’s Contour lines
from Ridge Regression

- B

//// B,
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(1) Ridge Regression / L2
F e parameterﬁ,> 0 penalizes ,Bj proportional“

to its size ,B
« Solution is ﬂg X' X+A)"' X"y

« where | is the identity matrix.
« Note 4 = 0 gives the least squares estimator;

« if 1 —oothen S0
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Today

‘ ULinear Regression Model with Regularizations“
U Ridge Regression

(J Lasso Regression
O Elastic net
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(2) Lasso (least absolute shrinkage
and selection operator) / L1

* The lasso is a shrinkage method like ridge,“
but acts in a nonlinear manner on the
outcome .

* The lasso is defined by
p =argmin(y-Xp)' (y-Xp)
subject to E‘/Sj ‘ <s
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Lasso (least absolute shrinkage
and selection operator)

‘- Notice that ridge penalty Z,Bf Is replaced

by 318,

* Due to the nature of the constraint, if tuning
parameter is chosen small enough, then the
lasso will set some coefficients exactly to zero.
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Lasso (least absolute
shrinkage and selection

N P P
|7 _ (1 | 2\ 2 , \
’31(1‘.. — 1.1‘%11111{ 5 Zl (yi — .13() - Zl Tij ‘.‘3_,') + A Zl ’.ijj ‘ }
f 1= J= J=

Suppose in 2 dimension
B= (31 , Bz)

B, |+] B, |=const

B, |+]- B, |=const

-8, [+] B, |=const

. -8, [+] -B, |=const . B,
9/30/15 15
Lasso o Ridge
Estimator Regression
v | N/ //,
S . S
Bl Bl

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and 3% + B2 < t2, respectively,
while the red ellipses are the contours of the least squares error function.
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Today

‘ ULinear Regression Model with Regularizations“

L Ridge Regression
(J Lasso Regression
O Elastic net
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(3) Hybrid of Ridge and Lasso

‘ Elastic Net regularization. T

. -

B = argmﬁin|IY—Xﬂ||2+>\2||ﬂ||261||ﬂ||1
) 6 <0

w0

— Removes the limitation on the number of selected variables;

e The ¢; part of the penalty generates a sparse model.

e The quadratic part of the penalty

— Encourages grouping effect;

— Stabilizes the ¢; regularization path.
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Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

K/

% Linear regression with the elastic net (Zou
and Hastie, 2005)

1> (- (ﬁo+wTﬂ} ‘
1=1

P(8) = 30, (31— a)82 + af;1)
N l—d L——\ J
Use linear regression to directly predict the opening weekend gross

earnings, denoted y, based on features x extracted from the movie
metadata and/or the text of the reviews. 19

é = argmln
0= (/30 aﬁ)
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More: A family of shrinkage
estimators

|7 B=argming ¥ * (y,—x B)’ T

subject to Y|B| <

» for g >=0, contours of constant value of Y ||
are shown for the case of two inputs.

W b

FIGURE 3.12. Contours of constant value of Ej |B;|? for given values of q.
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Regularized multivariate linear regression

Task i Regression

v

Searchloi:timization g Linear algebra
Models, v .
Parameters : Regression

coefficients
(constrained)

...............................................

Repre;entation Y= WeighLd linear sum
of X's
v i
Score Function § Least-squares +
; Regularization
v _s
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Summary:
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Regularized multivariate linear regression

|7.Mode|:

Y=F+bix++p Y
¢ R estimation: mlnSSEZE Y—Yj

i=l

n A2
 LASSO estimation: min SSE = Z(Y -Y )

n A 2
* Ridge regression estimation: min SSE = E(Y - Y)

Error on data

9/30/15
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EXTRA (NOT REQUIRED)

Today

Linear Regression Model with Regularizations
U Ridge Regression
(J Lasso Regression

U Extra: how to perform training
O Elastic net
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L1 regularization B L2 regularization

\

/|

\ To \ T2

H(l H(D
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\

due to the nature of L_1 norm, the

viable solutions are limited to the

corners, which are on one axis only - in

the above case x1. Value of x2 = 0. This

means that the solution has eliminated

the role of x2 leading to sparsity 2

L-regularized loss function F'(z) = f(x) + Al|z||; is non-smooth. It's

nQi/UVACS 6316 /15

not differentiable at 0. Optimization theory says that the optimum of a
function is either the point with o-derivative or one of the irregularities
(corners, kinks, etc.). So, it's possible that the optimal point of Fis 0 even if
0 isn't the stationary point of f. In fact, it would be o if ), is large enough
(stronger regularization effect). Below is a graphical illustration.

(12 + x|

http://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization

14

Two L,

-regularized {8nctions with different 7.

121\,

10

(x-1)2 + 0.5]x|
(x-1)2 + 2|x|

minimum




Regularization
path of
a Ridge
Regression
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Estimator
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s =t/ Y} |3;|. A vertical line is draun at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.

Shrinkage Factor s
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How to Learn Parameter for Lasso
p = argmin(y - XB)" (y - X B)
subject to E‘[a’j‘ss

e /1-norm is non differentiable!
— cannot compute the gradient of the absolute value

= Directional derivatives (or subgradient)
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i ’In;’}’l'a./pl'i'e B

Coordinate 4 e n\/@ﬂjeCO
descent based ©~ P77 ? 4

. Lol
‘Learnmgof e - o
Lasso == o

m Bl T z
=2 2 /)CU(H{*’X’ o foB\J

1=

b

,‘ﬂ eJ'<—?n

/Coordinate descent ; /a G
(WIKI)=>» one does line Bj = C <8 *’A) J
search along one

coordinate d|rec.t'|or.1 s :"P/ e
at the current point in

each iteration. One B,} ;(G_) -—A) / osj'

uses different
coordinate directions
cyclically throughout e{s‘e
2

soft-thresholding

the procedure.
K “ / ﬁJ' = 33

LARS: Least Angle Regression
state-of-art LASSO solver algorithm)

2 X2
« R

2 / >-




Lasso when p>n

‘ e Prediction accuracy and model interpretation are two important \

aspects of regression models.

e LASSO does shrinkage and variable selection simultaneously for
better prediction and model interpretation.

Disadvantage:
-In p>n case, lasso selects at most n variable before it saturates

-If there is a group of variables among which the pairwise
correlations are very high, then lasso select one from the group
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Today

‘ Linear Regression Model with Regularizations“

U Ridge Regression
[ Lasso Regression

O Extra: how to perform training

U Elastic net
O Extra: how to perform training
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(3) Elastic Net:
Hybrid of Ridge and Lasso

‘ Elastic Net regularization. T

A

B = argmgn ly — X8I + A2||8* + A1]IB]l1

e The ¢; part of the penalty generates a sparse model.

e The quadratic part of the penalty
— Removes the limitation on the number of selected variables;
— Encourages grouping effect;

— Stabilizes the ¢; regularization path.
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Naive elastic net

‘ * For any non negative fixed A, and A, naive elastic net criterion: \

L .8 =1y = X812 + X187 + Mi181h,
—

(L
2 P ) dw e D"P bl
81 = 3 5. Bli=Y I51-
j:

j=1
e The naive elastic net estimator is the minimizer of equation

B=argmin{L(A1, \2,3)}.
B

o Let a=X\/(\+)\)

3=argmin |y — X3, subject to (1 —{o)) | 3] +a|ﬁ3|2 t for some t.
gmn ] 1




Geometry of elastic net

‘ 2-dimensional illustration oo = 0.5 \

P2

- Rige
--- La3ss0
— EastcNet

Connecting LASSO and Elastic net

‘ e Lemma: Given (AA,), define an artificial data set (y*,X")
2 va Y V]V’
(e yororigah (i)

Mmpd v (M4P)x1

Let v=\1/J/(14+\2) and B* = /(1 + \2)B. Then the naive elastic net criterion can be written

das x
L(w.ﬂ)=L(7.ﬁ*)=@*—X*ﬁ*\2+7 ‘ﬂ*hj =) (;
e Let,

,C:i* =argmin L{(y. B} \,”
B —
e Then — J
1

Q/Mﬁt (,@fm@/@aggo y) e P nxI
aaju*"“ Clis (N )X




Advantage of Elastic net P> h

‘ e Native Elastic set can be converted to lasso w

with augmented data =S >< nxp

X
e In the augmented formulation, = ><
e sample size n+p and X" has rank p OHP)”F
e =» can potentially select all the predictors

e Naive elastic net can perform automatic
variable selection like lasso

Grouping Effect of Naive Elastic net

Theorem 1. Given data (y.X) and parameters (A, \2). the response y is centred and the
predictorsAX are standardized. Let (A1, \2) be the naive elastic net estimate. Suppose that
r‘ji(/\] . /\2) r‘)’j(/\] . /\2) > O Deﬁlle
R B 5
DA,.AZ(L./)=W|35(>\1-/\2)—93]-(/\1-/\2)|1

Yhi
then

o]

DAI.A2(1~.I)<\—J{3(1 -}
2

where p=x]x;, the sample correlation.

e D is the difference between the coefficient paths of
predictorsiand j.

* If x;and x; are high correlated p=1, this theorem provides a
guantitative description for the grouping effect of Naive
Elastic Net.




Elastic Net:
Re-scaling of Naive Elastic Net

e Deficiency of the Naive Elastic Net: Empirical
evidence shows the Naive Elastic Net does not
perform satisfactorily. The reason is that there are
two shrinkage procedures (Ridge and LASSO) in it.
Double shrinkage introduces unnecessary bias.

e Re-scaling of Naive Elastic Net gives better
performance, yielding the Elastic Net solution:

B(ENet) = (14 A2) - B(Naive ENet)

e Reason: Undo shrinkage.

Elastic Net:
Re-scaling of Naive Elastic Net

Theorem 2. Given data (y.X) and (A1, \p). then the elastic net estimates 3 are given by

A XTX /\‘VI
B=argmin 8T 22T 220) 30y TXB4 A, 18], (14)
6] 1+ A\
[t is easy to see that
B(lasso) = argmin BTXTX)3- 2_\'TX[3 +A118l;- (15)
3

Hence theorem 2 interprets the elastic net as a stabilized version of the lasso. Note that £ =XTX
is a sample version of the correlation matrix ¥ and
XTX 401 .
————=(-7X+H1
N (I=mMX+1
e Rescaling after the elastic net penalization is mathematically
equivalent to replacing 2 with its shrunken version in the lasso.




Computation of Elastic Net

‘ e First solve the Naive Elastic Net problem, theﬂ
rescale it.

 For fixed A,, the Naive Elastic Net problem is
equivalent to a LASSO problem, with a huge
design matrix if p >>n

e LASSO already has an efficient solver called
LARS (Least Angle Regression).
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Today Recap

‘ Linear Regression Model with Regularizations“
U Ridge Regression

[ Lasso Regression

O Extra: how to perform training

U Elastic net
O Extra: how to perform training
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Extra: Shrinkage Bias Term ?

* |f the data is not centered, there exists bias term

— http://stats.stackexchange.com/questions/86991/
reason-for-not-shrinking-the-bias-intercept-term-in-
regression

\ ]'I

. L 3 - Zp
‘;lt — ll}ﬁlllln{ 5 Yi — ,‘))” — Lij 1]) T /\ lf] }
71=1

i=1 j=1

* We normally assume we centered x and y. If this
is true, no need to have bias term, e.g., for lasso,

B = argminy —XB| + i8]l
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