Dr. Yanjun Qi / UVA CS 6316 / f15

1

## UVA CS 6316 – Fall 2015 Graduate: Machine Learning

## Lecture 6: Linear Regression Model with Regularizations

Dr. Yanjun Qi

University of Virginia

Department of Computer Science







8

# **Review: Normal equation for LR**



- input space and the matrix **X** is of full column rank. If  $\mathcal{P}^{x}$  this condition holds, then it is easy to verify that  $X^T X$  is necessarily invertible.  $\mathcal{P}^{x}$   $\mathcal{P}^{$
- The assumption that *X*<sup>*T*</sup>*X* is invertible implies that it is positive definite (→ SSE convex), thus the critical point we have found is a minimum.
- What if X has less than full column rank? → regularization (later).



# (1) Ridge Regression / L2

• The parameter  $\lambda > 0$  penalizes  $\beta_j$  proportional to its size  $\beta_i^2$ 

• Solution is 
$$\hat{\beta}_{\lambda} = (X^T X + \lambda I)^{-1} X^T y$$

- where I is the identity matrix.
- Note  $\lambda$  = 0 gives the least squares estimator;

• if 
$$\hat{\lambda} \to \infty$$
, then  $\hat{\beta} \to 0$ 

| 9/30/15           | 11                                |
|-------------------|-----------------------------------|
|                   |                                   |
|                   |                                   |
|                   | Dr. Yanjun Qi / UVA CS 6316 / f15 |
|                   | Today                             |
| DLinear Regressio | on Model with Regularizations     |
|                   | _                                 |
|                   |                                   |
| Elastic net       |                                   |
|                   |                                   |
|                   |                                   |
|                   |                                   |
|                   |                                   |
|                   |                                   |
|                   |                                   |





**FIGURE 3.11.** Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions  $|\beta_1| + |\beta_2| \leq t$  and  $\beta_1^2 + \beta_2^2 \leq t^2$ , respectively, while the red ellipses are the contours of the least squares error function.

Dr. Yanjun Qi / UVA CS 6316 / f15



- Linear Regression Model with Regularizations
  - Ridge Regression
  - Lasso Regression
  - Elastic net

17



# (3) Hybrid of Ridge and Lasso

### Elastic Net regularization

$$\hat{\beta} = \arg\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda_2 \|\beta\|^2 + \lambda_1 \|\beta\|_1$$

- The  $\ell_1$  part of the penalty generates a sparse model.  $\mathcal{R}_{\text{many}} = 0$
- The quadratic part of the penalty
  - Removes the limitation on the number of selected variables;
  - Encourages grouping effect;
  - Stabilizes the  $\ell_1$  regularization path.

9/30/15

Movie Reviews and Revenues: An Experiment in Text Regression, Proceedings of HLT '10 Human Language Technologies:





| Dr. Yanjun | Qi / | UVA | CS | 6316 | / f15 |
|------------|------|-----|----|------|-------|
|------------|------|-----|----|------|-------|





Dr. Yanjun Qi / UVA CS 6316 / f15



 $L_1$ -regularized loss function  $F(x) = f(x) + \lambda ||x||_1$  is non-smooth. It's not differentiable at 0. Optimization theory says that the optimum of a function is either the point with 0-derivative or one of the irregularities (corners, kinks, etc.). So, it's possible that the optimal point of *F* is 0 even if 0 isn't the stationary point of *f*. In fact, it would be 0 if  $\lambda$  is large enough (stronger regularization effect). Below is a graphical illustration.

#### http://www.quora.com/What-is-the-difference-between-L1-and-L2-regularization





and so are computed only at the points displayed; see Section 3.4.4 for details.

### How to Learn Parameter for Lasso

$$\hat{\beta}^{lasso} = \arg\min(y - X\beta)^T (y - X\beta)$$
  
subject to  $\sum |\beta_j| \le s$ 

•  $\ell_1$ -norm is non differentiable!

- cannot compute the gradient of the absolute value  $\Rightarrow$  **Directional derivatives** (or subgradient)

$$y_{3/5} = y_{3/5} = (y - y_{5})^{T} (y - y_{5}) + y_{5} = y_$$

$$= 2 \sum_{i=1}^{n} \sqrt{i} \beta_{i} \beta_{i} - 2 \sum_{i=1}^{n} (9_{i} - x_{i} \beta_{i} \beta_{i} \beta_{i}) \gamma_{i} \beta_{i} + \lambda \frac{2}{2\beta_{i}} \beta_{i} \beta_{i} \beta_{i} \beta_{i} + \lambda \frac{2}{2\beta_{i}} \beta_{i} \beta$$

1. Initialize B Dr. Yanjun Qi / UVA CS 6316 / f15 Coordinate 2. Repeat until Converged descent based 3. For j= 1,2,..., P do Learning of  $a_j = 2 \sum_{i=1}^{m} \chi_{ij}^2$ Lasso  $C_{j} = 2\sum_{i=1}^{n} \chi_{ij} \left( y_{i} - \chi_{i}^{T} \beta + \chi_{ij} \beta_{j} \right)$ if e; <- A **Coordinate descent**  $B_{j} = (e_{j} + \lambda)/a_{j}$ (WIKI) → one does line search along one else if, e;>A coordinate direction at the current point in  $B_{j} = (e_{j} - \lambda) (a_{j})$ each iteration. One uses different coordinate directions else soft-thresholding cyclically throughout the procedure.  $\beta'_{i} = O$ 33



## Lasso when p>n

- Prediction accuracy and model interpretation are two important aspects of regression models.
- LASSO does shrinkage and variable selection simultaneously for better prediction and model interpretation.

#### **Disadvantage:**

-In p>n case, lasso selects at most n variable before it saturates
 -If there is a group of variables among which the pairwise
 correlations are very high, then lasso select one from the group





### Naïve elastic net

- For any non negative fixed  $\lambda_1$  and  $\lambda_{2,\,}$  naive elastic net criterion:

$$L(\lambda_1, \lambda_2, \beta) = |\mathbf{y} - \mathbf{X}\beta|^2 + \lambda_2 |\beta|^2 + \lambda_1 |\beta|_1$$
  
$$|\beta|^2 = \sum_{j=1}^p \beta_j^2, \qquad |\beta|_1 = \sum_{j=1}^p |\beta_j|.$$

The naive elastic net estimator is the minimizer of equation •

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \{ L(\lambda_1, \lambda_2, \boldsymbol{\beta}) \}$$

• Let  $\alpha = \lambda_2/(\lambda_1 + \lambda_2)$ 

 $\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} |\mathbf{y} - \mathbf{X}\boldsymbol{\beta}|^2$ , subject to  $(1 - \alpha) |\boldsymbol{\beta}|_1 + \alpha |\boldsymbol{\beta}|^2 \leq t$  for some t.



# Advantage of Elastic net $\rho \gg h$

 Native Elastic set can be converted to lasso with augmented data ⇒ X <sub>N×P</sub>

- In the augmented formulation,  $\Rightarrow \times *$ 
  - sample size n+p and X<sup>\*</sup> has rank p  $(ht^{p})^{*}$
  - can potentially select all the predictors
- Naïve elastic net can perform automatic variable selection like lasso

### Grouping Effect of Naïve Elastic net

Theorem 1. Given data  $(\mathbf{y}, \mathbf{X})$  and parameters  $(\lambda_1, \lambda_2)$ , the response  $\mathbf{y}$  is centred and the predictors  $\mathbf{X}$  are standardized. Let  $\hat{\boldsymbol{\beta}}(\lambda_1, \lambda_2)$  be the naïve elastic net estimate. Suppose that  $\hat{\beta}_i(\lambda_1, \lambda_2) \hat{\beta}_j(\lambda_1, \lambda_2) > 0$ . Define

$$D_{\lambda_1,\lambda_2}(i,j) = \frac{1}{|\mathbf{y}|_1} |\hat{\beta}_i(\lambda_1,\lambda_2) - \hat{\beta}_j(\lambda_1,\lambda_2)|$$

then

$$D_{\lambda_1,\lambda_2}(i,j) \leq \frac{1}{\lambda_2} \sqrt{\{2(1-\rho)\}}$$

where  $\rho = \mathbf{x}_i^{\mathrm{T}} \mathbf{x}_j$ , the sample correlation.

- D is the difference between the coefficient paths of predictors i and j.
- If x<sub>i</sub> and x<sub>j</sub> are high correlated ρ=1, this theorem provides a quantitative description for the grouping effect of Naive Elastic Net.

# Elastic Net: Re-scaling of Naive Elastic Net

- Deficiency of the Naive Elastic Net: Empirical evidence shows the Naive Elastic Net does not perform satisfactorily. The reason is that there are two shrinkage procedures (Ridge and LASSO) in it. Double shrinkage introduces unnecessary bias.
- Re-scaling of Naive Elastic Net gives better performance, yielding the Elastic Net solution:

 $\hat{oldsymbol{eta}}( extsf{ENet}) = (1+\lambda_2)\cdot\hat{oldsymbol{eta}}( extsf{Naive ENet})$ 

• Reason: Undo shrinkage.

# Elastic Net: Re-scaling of Naive Elastic Net

*Theorem 2.* Given data (y, X) and  $(\lambda_1, \lambda_2)$ , then the elastic net estimates  $\hat{\beta}$  are given by

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \boldsymbol{\beta}^{\mathrm{T}} \left( \frac{\mathbf{X}^{\mathrm{T}} \mathbf{X} + \lambda_{2} \mathbf{I}}{1 + \lambda_{2}} \right) \boldsymbol{\beta} - 2\mathbf{y}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta} + \lambda_{1} \|\boldsymbol{\beta}\|_{1}.$$
(14)

It is easy to see that

$$\hat{\boldsymbol{\beta}}(\text{lasso}) = \arg\min_{\boldsymbol{\beta}} \boldsymbol{\beta}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})\boldsymbol{\beta} - 2\mathbf{y}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} + \lambda_{1} \|\boldsymbol{\beta}\|_{1}.$$
(15)

Hence theorem 2 interprets the elastic net as a stabilized version of the lasso. Note that  $\hat{\Sigma} = \mathbf{X}^T \mathbf{X}$  is a sample version of the correlation matrix  $\Sigma$  and

$$\frac{\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda_{2}\mathbf{I}}{1 + \lambda_{2}} = (1 - \gamma)\hat{\Sigma} + \gamma\mathbf{I}$$

 Rescaling after the elastic net penalization is mathematically equivalent to replacing Σ with its shrunken version in the lasso.

# **Computation of Elastic Net**

- First solve the Naive Elastic Net problem, then rescale it.
- For fixed λ<sub>2</sub>, the Naive Elastic Net problem is equivalent to a LASSO problem, with a huge design matrix if p >> n
- LASSO already has an efficient solver called LARS (Least Angle Regression).



47

# Extra: Shrinkage Bias Term ?

- If the data is not centered, there exists bias term
  - <u>http://stats.stackexchange.com/questions/86991/</u> <u>reason-for-not-shrinking-the-bias-intercept-term-in-</u> regression

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left( y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

• We normally assume we centered x and y. If this is true, no need to have bias term, e.g., for lasso,

$$\hat{eta} ~=~ rg\min_eta \|\mathbf{y} - \mathbf{X}eta\|^2 + \lambda_1 \|eta\|_1$$

