Dr. Yanjun Qi / UVA CS 6316 / f15

1

UVA CS 6316 – Fall 2015 Graduate: Machine Learning

Lecture 8: Supervised Classification with Support Vector Machine

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Dr. Yanjun Qi / UVA CS 6316 / f15

Application 1: Classifying Galaxies

9/30/15

Document 3

Text Categorization

- Pre-given categories and labeled document examples (Categories may form hierarchy)
- Classify new documents
- A standard supervised learning problem

Examples of Text Categorization

- News article classification
- Meta-data annotation
- Automatic Email sorting
- Web page classification

Audio, Types of features Low-level Feature Extraction Associated with signal processing and basic auditory Low-Level perception Features e.g. spectral flux or RMS - Usually not intuitively musical **High-level** Musical abstractions **High-Level** e.g. meter or pitch class Features distributions Cultural Sociocultural information outside the scope of auditory Cultural or musical content Features e.g. playlist co-occurrence or purchase correlations Dr. Yaniun Qi / UVA CS 6316 / 9/30/15 19 Dr. Yanjun Qi / UVA CS 6316 / f15 Where we are $? \rightarrow$ Three major sections for classification · We can divide the large variety of classification approaches into roughly three major types 1. Discriminative - directly estimate a decision rule/boundary - e.g., support vector machine, decision tree 2. Generative: - build a generative statistical model - e.g., Bayesian networks 3. Instance based classifiers - Use observation directly (no models) - e.g. K nearest neighbors

ICML '06 Proceedings of the 23rd international conference on Machine learning

CARUANA@CS.CORNELL.EDU

ALEXN@CS.CORNELL.EDU

A study comparing Classifiers

An Empirical Comparison of Supervised Learning Algorithms

Rich Caruana Alexandru Niculescu-Mizil

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

A number of supervised learning methods have been introduced in the last decade. Unfortunately, the last comprehensive empirical evaluation of supervised learning was the Statlog Project in the early 90's. We present a large-scale empirical comparison between ten supervised learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We also examine the effect that calibrating the models via Platt Scaling and Isotonic Regression has on their performance. An important aspect of our study is This paper presents results of a large-scale empirical comparison of ten supervised learning algorithms using eight performance criteria. We evaluate the performance of SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps on eleven binary classification problems using a variety of performance metrics: accuracy, F-score, Lift, ROC Area, average precision, precision/recall break-even point, squared error, and cross-entropy. For each algorithm we examine common variations, and thoroughly explore the space of parameters. For example, we compare ten decision tree styles, neural nets of many sizes, SVMs with many kernels, etc.

Because some of the performance metrics we examine

21

A study comparing Classifiers → 11 binary classification problems

PROBLEM	#ATTR	TRAIN SIZE	TEST SIZE	%роz		
ADULT	14/104	5000	35222	25%		
BACT	11/170	5000	34262	69%		
COD	15/60	5000	14000	50%		
CALHOUS	9	5000	14640	52%		
COV_TYPE	54	5000	25000	36%		
HS	200	5000	4366	24%		
LETTER.P1	16	5000	14000	3%		
LETTER.P2	16	5000	14000	53%		
MEDIS	63	5000	8199	11%		
MG	124	5000	12807	17%		
SLAC	59	5000	25000	50%		

9/30/15

A study comparing Classifiers → 11 binary classification problems / 8 metrics

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL	CAL	ACC	FSC	\mathbf{LFT}	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898
BAG-DT	_	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*
RF	_	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880
ANN	_	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884
BST-DT	-	.834*	.816	.939	.963	.938	.929*	.598	.605	.828	.851
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837
KNN	_	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808
SVM	-	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810
BST-STMP	_	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726
	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774

Dr. Yanjun Qi / UVA CS 6316 / f15

Today

- Supervised Classification
- □ Support Vector Machine (SVM)
 - ✓ History of SVM
 - ✓ Large Margin Linear Classifier
 - ✓ Define Margin (M) in terms of model parameter
 - ✓ Optimization to learn model parameters (w, b)
 - ✓ Non linearly separable case
 - ✓ Optimization with dual form
 - ✓ Nonlinear decision boundary
 - ✓ Multiclass SVM

	0	/	Э	3	Ч	5	6	7	8	9	
ł	2	1	Э	3	4	J	6	7	q	z	
400)–300–	10 un	it MLP	2.4% er = 1.6%) unit N	6 error	0.9% er	ror				
90s, SVM ieves the						algorith		0.6% e	rror		
9/30/15											27
		X	1 X2	2 X ₃	Y	_		٦ • • •		2i / UVA CS 631 Set	.6 / f
					'		-	for			
			+				cla	assi	fica	ation	
							f	: X	[]	$\rightarrow Y$	
										out as / Class:	
									only	y Glass.	

Today

Max margin classifiers

Instead of fitting all points, focus on boundary points

• Learn a boundary that leads to the largest margin from points on both sides

Today

Dr. Yanjun Qi / UVA CS 6316 / f15

References

- Big thanks to Prof. Ziv Bar-Joseph @ CMU for allowing me to reuse some of his slides
- <u>Elements of Statistical Learning, by Hastie,</u> <u>Tibshirani and Friedman</u>
- Prof. Andrew Moore @ CMU's slides

9/30/15

61