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Where we are ? =
Five major sections of this course

T

[ Classification (supervised)

=

O Unsupervised models
O Learning theory
O Graphical models

9/30/15 2
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Where we are ? =
Three major sections for classification

‘ * We can divide the Iar%e variety of classification T
approaches into roughly three major types

E> 1. Discriminative

- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

2. Generative:
- build a generative statistical model

- e.g., Bayesian networks
3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

9/30/15
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% X X ‘Y A Dataset
for binary
‘ cIassiﬁcation“
fixXi—lY
Output as Binary
Class Label:
1 or-1

» Data/points/instances/examples/samples/records: [ rows ]
» Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]
* Target/outcome/response/label/dependent variable: special
s30/1scolumn to be predicted [ last column | 4
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Max margin classifiers

‘ * Instead of fitting all points, focus on boundary points \

* Learn a boundary that leads to the largest margin from points on both
sides

XZ ° P y
/
° / Why?
Y/
° o V4 « Intuitive, ‘makes
# sense’
/ .
® o y ° ° « Some theoretical
4 support
4 o o
3 ° * Works well in practice
/
/ o
/
/ o
/
/
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When linearly Separable Case

* The decision boundary should be as far away from
the data of both classes as possible

-
\

1. Correctly classifies all points
2. Maximizes the margin (or equivalently minimizes w'w)

W is a p-dim
vector; b is a
scalar

9/30/15 6
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Today

‘ (J Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

v’ Practical Guide

9/30/15 7
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Today

‘ J Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
‘\/ Optimization to learn model parameters (w, b)

v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

v’ Practical Guide
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Optimization Step
I.e. learning optimal parameter for SVM

g ¥\ 2
‘ P"ed'\c‘ cla® - \ W B w'w \
_xA -
\N‘x’fb’* 0
Txro= A
W S
A dick &¥2°
\N‘)ﬁ“'b pre
N

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)
y,

Min (w'w)/2
subject to the following constraints:

A

For all xin class + 1

wix+b >=1 'Bit\ A total of n
_ constrajnts if
For all xin class - 1

samples

wTx+b <= -1

9/30/15

Dr. Yanjun Qi / UVA CS 6316 / f15

Optimization Step
I.e. learning optimal parameter for SVM

g ¥\ 2
‘ oredict &g \ L “
—xA -
\N‘(s/\-\'b’—\’ 0
Wer” s A
= dict &2
\NT)(“'b pre
N

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)
y,

w,b =
subject to V'x; € Dirain

10

Min (w'w)/2
subject to the following constraints:

For all xin class + 1

wix+b >=1

For all xin class - 1

wTx+b <= -1

9/30/15
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Optimization Review:
Ingredients

* Objective function T
e Variables
* Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

9/30/15 11
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Optimization with Quadratic
programming (QP)

‘ Quadratic programming solves optimization problems of the following form: \
u"Ru
2

min,, +d u+c

subject to n inequality constraints:

a . u+a.u+..<b .
1t T Gl 1 Quadratic term

a,u +a, u,+..<b When a problem can be
specified as a QP problem we
can use solvers that are better
than gradient descent or

el + Uy +=b, simulated annealing

n

and k equivalency constraints:

a

Ay T4, oUy + o= b,
9/30/15 12
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SVM as a QP prOblem R as | matrix, d as zero

vector, ¢ as 0 value

A 2
dict VeSS W M=—— T l
pre wow . URu
min,, 2 +d u+c
’(s/\-\'b;—\’)\ -
v =0 bjecttoni lit traints:
\NT)(_\_\O, . <5 A Supbject 1o n Inequality constraints:
. 2
Nwm?« wadc a,u, + a,u, + ...<b,
Min (wWTw)/2 a u +a,u,+..<b,
subject to the following inequality and k equivalency constraints:
constraints: Ay Uy + Ay ol + = b,
Forall xinclass + 1
wix+b >=1 A total of n Ay gty + Aoty + .= b,y
, constraints if
For all xin class - 1 we have n
wTx+b <= -1 input samples

9/30/15 13
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Today

‘ J Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter

v Optimization to learn model parameters (w, b)
W) v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

v’ Practical Guide
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Non linearly separable case

* So far we assumed that a linear plane can perfectly
separate the points

* But this is not usally the case
How can we convert this to a

- noise, outliers QP problem?
Hard to solve (two - Minimize training errors?

e o minimization problems) min wTw

o © min #errors

o
® - Penalize training errors:

° o . o min ww+C*(#errors)

o Hard to encode in a QP
problem

9/30/15 15
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Non linearly separable case

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane
The new optimization problem is:

Coww &
min +Z Ce.
w 1
i=1

2

subject to the following inequality
constraints:

For all x;in class + 1

+1 plane
/

For all x;in class - 1
wTix+b <= -1+&,

Wait. Are we missing
something?

4
9/30/15 . 16
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Final optimization for non linearly
separable case

‘ The new optimization problem is:

T n
I +ng% hejpeypsrh
+1 ;/:Iane 2 i=1

subject to the following inequality
constraints:

Forall x;in class + 1

wixtb >=1-£, total of n
For all xin class - 1 straints
Wix+b <= -1+€,;

For all i
} Arrc}ther n

81’ >0 constraints

9/30/15 17

Dr. Yanjun Qi / UVA CS 6316 / f15

Where we are

Two optimization problems: For the separable and non separable cases

T n
W W
min w W min +EC£i
L] 2 i=l
Forall xin class + 1 Forall x;in class + 1

wTx+b >= 1 wix+b >= 1-81

. Forall x;inclass - 1
For all xin class - 1

wix+b <= -1 +81

wTx+b <=-1
For all i
. v e 20 . v
° / 1 ° ° /
e/ e/
) ) / ,/ / ) ) / ,/ /
/ P / ° / P ’
/ , / / , /
/ ’ / /
° ° / // ) [ ° / // [
’ , % 4 ’ ’
/ / /7 /
/ /I / ° / /I 7 °
’ % ’ ’ ® °
4 VAR ° 4 /7 © )
4 ’ 4 ’
’ , 4 ° ’ , 4 ®
/ , / / , /
/ . 4 ha / . / hd
+ 9/30/15
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Model Selection, find right

® O

/

—

Select the
right (a) Training data and an overfitting classifier  (b) Applying an overfitting classifier on testing
penalty e
arameter A

9/30/15
/30/ (¢) Training data and a better classifier (d) Applying a better classifier on testing data
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Today

‘ J Support Vector Machine (SVM) T

v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case
—) Optimization with dual form
v Nonlinear decision boundary
v’ Practical Guide
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Where we are

Two optimization problems: For the separable and non separable cases

T n
. WW
‘ Min (WTw)/2 min, ==+ ,Ce
Forall xin class + 1 For all x;in class + 1 \

wix+b >=1

. For all x;in class - 1
Forall xin class -1
wWix+b <= -1+€,
wix+b <=-1 . )
For all i

81.20

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

» The main reason for switching to this type of representation
is that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)

9/30/15 21

Dr. Yanjun Qi / UVA CS 6316 / f15

Optimization Review:
Constrained Optimization

e R

min, u? N o %Allowed min 'D > 0
S 7

s.t.u>=b ~ -

) -'\;E)\Global min —J'(],()': Ll
|
|

7
, .
S <Allowed min L< 0
Se O \LE

b Global min {w\\: v

Case 2: I

Case 1:

9/30/15 22
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Optimization Review:
Constrained Optimization with Lagrange

‘  When equal constraints T
=» optimize f(x), subject to g,(x)=0

* Method of Lagrange multipliers: convert to a )(V\)
higher-dimensional problem (w((,"fl/"’

* Minimize &\'3)\,,\ n
@+ Ae6) A

° w.r.t. ' X .. é; i )l ) V\‘( ki-

Introducing a Lagrange multlpller for onstraint
Construct the Lagrangian for the original optimization problem  *

9/30/15

Optimization Review: Lagrangian Dr. Yanjun O/ UVA CS 6316/ 115
(more general standard form)

standard form problem (not necessarily convex)

minimize Cfo(:z:)j
subject to sz(x ) < 07 i=1,...,m
hi(z) =0, i=1,...,p

variable z € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R? -+ R, with dom L =D x R™ x R?,

P
L(z,\v) —{—Z)\ fi(z +2Vihi($)
i=1

e weighted sum of objective and constraint functions
e ), is Lagrange multiplier associated with f;(z) <0

e y; is Lagrange multiplier associated with h;(z) =0

9/30/1 Vi 24
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D {
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Optimization Review:
Lagrangian Duality

* The Primal Problem
min  f (w)

Primal: s.t. f(w)<0, i=1,..k
h(w)=0, i=1,..]

The generalized Lagrangian:

L(w,,B)= f,(w)+ Y00, f(w)+ X B (w)

the a's (a20) and b's are called the Lagarangian multipliers

Lemma:

f,(w) if w satisfies primal constraints
max Lw,o,B)=
o,B,0,20
) o/w

A re-written Primal:

9/30/15 minw maxa,ﬁ,aizo L (W> a, ﬁ)
© Eric Xing @ CMU, 2006-2008
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Optimization Review: Dual Func

‘ Recall that Lagrange multipliers can be applied to turn the following problem:

min, x2 S {/’ Allowed min
X g S /V

~ - y

st.xz=b | bx<0 i
e Global min
V Case 1: I E\,

/ AN

To | :
2 tobx) M
L xa X +(1(b-X) @ max, x2 -(I(X-bD S R *_Allowed min
st.a=0 \\1 S~o

Global min
Case 2: |

28




Optimization Review:
Lagrangian Duality, cont.

‘ e Recall the Primal Problem: T

min,, max,, 5, .o £ (W,d, B)

e The Dual Problem:

max, 5, o min £ (w,a, )

* Theorem (weak duality):

d = max, 5, -0 min, £ (w,c, f) < min max, paz0 £ (W, B=p

* Theorem (strong duality):
Iff there exist a saddle point of £ (w,, [3)

, we have d* — Dr. Yanjun Qi / UVA CS 6316 / f15
9/30/15 P
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Optimization Review: Lagrange dual function

Lagrange dual function: g : R x R? — R,

|7 g\ v) = inf L(:J:,)\,l/) LX) ,V) ‘
= mf fo(z) + Aifi(z) + v;hi(z
(e Sy + 3wt

>d Lo

g is concave, can be —oo for some A, v

lower bound property: if A > 0, then g(\,v) < p*
e o~ . Inf(.): greatest
proof: if Z is feasible and A = 0, then lower bound
U f0($)>L(£IJ)\I/)>@ (z, A\, v) @/\

o sminimizing over all feasible Z gives p* > g(A,v)
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An alternative representation of the
SVM QP

[ y

i T
« We will start with the linearly separable case Min (w'w)/2
* Instead of encoding the correct classification rule s.t.
and constraint we will use Lagrange multiplies to T >
encode it as part of the our minimization problem (Wix+b)y; >= 1é X lo
48 60%9,14&"’5
Recall that Lagrange multipliers can be \LL ~)<_£0

applied to turn the following problem: O( ( ((U e _(_\L) y\><
v D

{y.(w-x +b)-1
L_I)(yl(wxl+) )

9/30/15
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min , max @ Z(x (Wx+b)y -1]

2(’ =0 => W ZO(X\,/%/ =0

ol -, > ZoYi=10

o

9/30/15 32
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The Dual Problem

‘ max, .o min,, , < (w,b, ) T

* We minimize L with respect to w and b first:

train

V L(w,b,x) :W—Zaiyixi =0, (%)
i=1

train

V.L(wba) =Y ay =0, (%)

i=1

train

Note that () implies: W=Zaiyixi > L{V LD()(***)

* Plus (***) back to L , and using (**), we have:

1
L(w,b,0)% Y 00 — 3 D ooy, (XI.TXD
i=1

ij=1

9/30/15
23
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Summary: Dual for SVM

‘ Solving for w that gives maximum margin: T

1. Combine objective function and constraints into new
objective function, using Lagrange multipliers \alpha;

1) 1P &
LprimaI:EHw” _Zai(yi(w'xi+b)_1)
i=1

2. To minimize this Lagrangian, we take derivatives of w and b
and set them to O:

9/30/15 34
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Summary: Dual for SVM

3. Substituting and rearranging gives the dual of the Lagrangian:
N
1
Ly :Zai _Ezaiajyiiji ‘X,
i=1 ij
which we try to maximize (not minimize).

4. Once we have the \alpha, we can substitute into previous
equations to get w and b.

5. This defines w and b as linear combinations of the training
data.

9/30/15 35
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Optimization Review: Dual Problem

Primal Problem, e.g.,
x =argmin f(x) \

X

* Solving dual problem if the dual

form is easier than primal form subject to h(x) = ¢

* Need to change primal
minimization to dual
maximization (OR =2 Need to
change primal maximization to
dual minimization)

Dual Problem,
e.g.,
A =argmax g(A)
A

* Only valid when the original g(A)= h}f(f(x) + A(h(x)—c))
optimization problem is convex/
concave (strong duality)

9/30/15 36
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Summary: Dual SVM for linearly
separable case

=

Substituting w into our target
function and using the

additional constraint we_get:

Min (w'w)/2

subject to the following inequality

Dual formulation constraints:

1 r Forall xinclass + 1
max EO{.——EOC.O{. VX, X.
R A A X% wTx+b >=1 Atotal of n
) constraints if
Ea_y_ -0 For all xinclass - 1 we have n
1 wTx+b <= -1 input samples
o =0 Vi

Easier than original QP, more efficient algorithms exist to find a;

9/30/15 37
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Optimization Review:

@emen,tary slac@

assume strong duality holds, z* is primal optimal, (A\*,v*) is dual optimal
inf (.): greatest Iower bound

. ¥ S
0y 3 Jf“" 4(#) < o) @%

# ¥
A { b ) |
L(O 0 D( 0 .7/0 <

T
hence, the two inequalities hold with equality B> 0<,L< (\,\) 7(1,‘%”]3

e z* minimizes L(z, \*, *) @D(‘i,?o
o X fi(z*)=0fori=1,...,m (known as complementary sIack@ss):

0> 0
)\: > 0= fz(x*) =0, fz(ﬂf*) <0= )\: =0
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Optimization Review:
Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: fi(z) <0,i=1,...,m, hi(z)=0,i=1,...,p

2. dual constraints: A = 0

3. complementary slackness: \;fi(z) =0,i=1,...,m

4. gradient of Lagrangian with respect to x vanishes:

m p
Vio()+ > AiVfiz) + Y viVhi(z) =0
=1 =1

from page 5-17: if strong duality holds and z, A, v are optimal, then they
must satisfy the KKT conditions

Dr. Yanjun Qi / UVA CS 6316 / f15

KKT => Support vectors

‘ * Note the KKT condition --- only a few a,'s can T
be nonzero!! a,(y,(w-x,+b)-1)=0, i=1,.,n

Call the training data points
whose a/'s are nonzero the
support vectors (SV)

9/30/15
an
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Dual SVM - interpretation

=1

For o;that are O,
no influence

9/30/15 a1
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Dual SVM for linearly ieparable
case Mz

‘ h"?"‘:h /) % 9= T
Our dual target function: max_ E T

1
Q, _EEaianiiji X;

—

3 . l= 1)
i,
E(){iyi =0 Dot product for all

; training samples

o,=0 Vi Dot product with
training samples

To evaluate a new sample@
we need to compute: w%@b
— ]
(o5t
W) v =sign| Yay,(x/x, ) +b
9/30/15 ieSv
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Dual formulation for linearly non
separable case

Dual target function: \ To evaluate a new sample x; \

we need to compute:

1 r
max Zai —EZaiajyi Y X/ X,
i ij
Yoy =0 wa.+b=Ea.y.x.Tx.+b
p 2 Hyperparameter C J —~ T
) should be tuned '
@' 0,Vi through k-folds CV
This is very similar to the
optimization problem in the linear
The only difference is separable case, except that there is
that the \alpha are now an upper bound C on ai now
\ bounded /
Once again, efficient algorithm exist
to find a
9/30/15 23
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Fast SVM Implementations

* SMO: Sequential Minimal Optimization T
e SVM-Light

e LibSVM

* BSVM

9/30/15 44




SMO: Sequential Minimal Optimization

* Keyidea
— Divide the large QP problem of SVM into a series of
smallest possible QP problems, which can be solved
analytically and thus avoids using a time-consuming
numerical QP in the loop (a kind of SQP method).

— Space complexity: O(n).
— Since QP is greatly simplified, most time-consuming part of

SMO is the evaluation of decision function, therefore it is
very fast for linear SVM and sparse data.

SMO

e At each step, SMO chooses 2 Lagrange multipliers to
jointly optimize, find the optimal values for these
multipliers and updates the SVM to reflect the new
optimal values.

* Three components

— An analytic method to solve for the two Lagrange
multipliers

— A heuristic for choosing which multipliers to optimize

— A method for computing b at each step, so that the KTT
conditions are fulfilled for both the two examples
(corresponding to the two multipliers )
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Choosing Which Multipliers to Optimize

‘ * First multiplier T

— Iterate over the entire training set, and find an example
that violates the KTT condition.

* Second multiplier
— Maximize the size of step taken during joint optimization.
— |E;-E, |, where E; is the error on the i-th example.

9/30/15 47
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Today

‘ J Support Vector Machine (SVM) T

v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case
v Optimization with dual form
‘\/ Nonlinear decision boundary
v’ Practical Guide
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Classifying in 1-d

=

Can an SVM correctly What about this?
classify this data?

9/30/15 49
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Classifying in 1-d

—

Can an SVM correctly And now? (extend with polynomial basis )
classify this data?

/
X? ’

9/30/15 50
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RECAP: Polynomial regression

For example, ¢(z) = [1, z, 2?]

Y
10} tL’)cf ¢("3 ©

=Q,+X0,tX'g

9/30/15 51
Dr. Nando de Freitas’s tutorial slide
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

X=(X,X,) O(x) =(X,2,X,%, 2 XXy
r . :
e . ° ®
L I ° °
o |® (D: X — ([)(X) ® °
o ° ' ° o
® ® ¢ © °
® ® ® Y o o 2
) e ° X)
° o ® ° ° °
o fu” ™ o ®
X1 2 °

%ﬁ%lsﬁide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

X=(X,X,) 0(x) =(X,%,X,%, 2xX,

t — 2X1X;
If data is mapped into sufficiently high dimension, then
‘e samples will in general be linearly separable;
# N data points are in general separable in a space of N-1
° | dimensions or more!!!

%ﬁfglsﬁide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
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A little bit theory:
Vapnik-Chervonenkis (VC) dimension

r If data is mapped into sufficiently high dimension, then samples
will in general be linearly separable;
N data points are in general separable in a space of N-1
dimensions or more!!!
* VC dimension of the set of oriented lines in R?is 3

— It can be shown that the VC dimension of the family of
oriented separating hyperplanes in RN is at least N+1

S

O [ ]

® O ©) ®
0// O// o 0
9/30/15 e O @) o >
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Transformation of Inputs

» Possible problems s this too much computational woyk?
- High computation burden due to high-dimensionality
- Many more parameters
* SVM solves these two issues simultaneously
—“Kernel tricks” for efficient computation
—Dual formulation only assigns parameters to samples, not
features

A

v

/3015 Input space Feature space .

Dr. Yanjun Qi / UVA CS 6316 / f15

Quadratic kernels
‘- While working in higher dimensions is max,, 20@ -EGiajyiyj

beneficial, it also increases our running time

because of the dot product computation Eaiyi =0

* However, there is a neat trick we canuse vz

» consider all quadratic terms for x4, X, ... X, mis the
@\ number of

weights on ! features in

quadratic ' «——— m+1 linear terms each vector

terms will o X =S @ ( X)

become @

clear in the 5 , - T

next slide ; m quadratic terms [K(x, 7) = D(x) q)(z)}

Vimxz
: ¥ m(m-1)/2 pairwise terms
’\/Exmflxm

9/30/15 56
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Dot product for quadratic kernels

many operations do we need for the dot product?
‘ O m}‘i L D(m z)
e A )
; | 0(m)

\/Ex”l ﬁzrﬂ
D(x) ()
Xf 2 = szizi + Exfzf + E E2xisz,-zj +1
: : i i i j=itl
2 2

@ “ m m m(m-1)2  =~m?
\/E'XIXZ \/Ezlzz T

; ; K(x.2) = 0(x) ()
\/Exm—l 'xm \/Ezm—] Zm
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The kernel trick

‘ How many operations do we need for the dot product?
L
D(x) D(z) = E2xizi + Exzz2 + E EZx,.szizj +1 O (h

i j=i+l

m m m(m-1)/2 =~ m?

owever, we can obtain dramatic savings by noting that
(x)" D7) (x"z+1)? (x.2)* +2(x.2)+1

O xiz) + ¥ 2xz+1
m . | omly need m So, if we define the kernel function as follows, there is

SeaeZHdI S o
S no need to carry out basis function \phi(.) explicitly

T it
9/30/15 (xTz + 1)2 58
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Where we are

Our dual tal’get funCtion: TO eva'uate a hew Sample Xk \

m we need to compute:
(X: Y‘\)WT(I)(X2+b = Eozl.y1 (x;) P(XRY b
<) } s

| / k(Xe,XE)

mr operations where r are
the number of support
vectors (whose \alpha;>0)

mn? operations at each

iteration
So, if we define the kernel function as follows, there
is no need to carry out phi(.) representation explicitly
. . . . 5
use of kernel function to avoid carrying out K(x,2)=(x"z+1) -

\pha(.) explicitly is known as the kernel trick
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Summary:
Modification Due to Kernel Function
* Change all inner products to kernel functions T

* For training, .
T
L. max oO——)0o0yyX X,
Original “Z’ : 22]‘ G X%
Linear Yay =0

C>a 2 0,Vietrain

: 1
With _kernel max_ Zai —Ezaiajyiyjl{(xi,xj)
function - i i

nonlinear Y oy, =0

C>a 2 0,Vietrain

9/30/15 60
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Summary:
Modification Due to Kernel Function

‘ * For testing, the new data x_ts \

Original i r
Linear i = SI8N ieénaiyixi X, +b
With kernel
funCtIOn - yts :Sign( Z aiyiK(Xi’th)—i_b)
nonllnear ietrain
9/30/15 .

K(x;,%x;) = ¢(x;)T¢(x;) is called the kernel function
More examples of kernel functions

" Linear kernel (we've seen it) K(x,x")= x'x' \
A

* Polynomial kernel (we just saw an example) O("’I )

K(x,x')=(1+xTx')d d 0[”/‘)

where p =2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

* Radial basis kernel K(x,x")= exp(—’”| |x—x'| ‘2)

In this case., r is hyperpara. The feature space of the RBF kernel has an infinite
number of dimensions

Never represent features explicitly
[0 Compute dot products in closed form
Very interesting theory — Reproducing Kernel Hilbert Spaces

9/30/15 O Not covered in detail here

A2




Kernel Function : Implicit Basis
Representation

* For some kernels (e.g. RBF ) the implicit
transform basis form \phi( x ) is infinite-
dimensional!

— But calculations with kernel are done in original space, so
computational burden and curse of dimensionality aren’t a
problem.

An example: Support vector machines with
polynomial kernel

0.9 o - i
0.8F -
0.7

0.6r

0.4+
0.3

0.21-

Figure 5.29. Decision boundary produced by a nonlinear SVM with polynomial kernel.
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Kernel Functions

* |n practical use of SVM, only the kernel function (and not
\phi(.)) is specified

* Kernel function can be thought of as a similarity measure
between the input objects

* Not all similarity measure can be used as kernel function,
however Mercer's condition states that any positive semi-

definite kernel K(x, y), i.e.
) Z K(zi,zj)cic; > 0

i,

can be expressed as a dot product in a high dimensional space.

9/30/15 65
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Choosing the Kernel Function

* Probably the most tricky part of using SVM.

* The kernel function is important because it creates the kernel
matrix, which summarize all the data

* Many principles have been proposed (diffusion kernel, Fisher
kernel, string kernel, tree kernel, graph kernel, ...)

— Kernel trick has helped Non-traditional data like strings and trees able
to be used as input to SVM, instead of feature vectors

In practice, a low degree polynomial kernel or RBF kernel with
a reasonable width is a good initial try for most applications.

9/30/15 66
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Why do SVMs work?

‘EI If we are using huge features spaces (e.g., with T
kernels), how come we are not overfitting the data?

v" Number of parameters remains the same (and most
are set to 0)

v' While we have a lot of input values, at the end we
only care about the support vectors and these are
usually a small group of samples

v" The minimization (or the maximizing of the margin)
function acts as a sort of regularization term leading to
reduced overfitting

9/30/15 67
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Why SVM Works?

‘ * Vapnik argues that the fundamental problem is not the number of parameters \

to be estimated. Rather, the problem is about the flexibility of a classifier

* Vapnik argues that the flexibility of a classifier should not be characterized by
the number of parameters, but by the capacity of a classifier
— This is formalized by the _“VC-dimension” of a classifier

* The SVM objective can also be justified by structural risk minimization: the
empirical risk (training error), plus a term related to the generalization ability
of the classifier, is minimized

* Another view: the SVM loss function is analogous to ridge regression. The
term % | |w| |2 “shrinks” the parameters towards zero to avoid overfitting

9/30/15 68
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Today

‘ (J Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

‘\/ Practical Guide

9/30/15 69
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Software

‘ + Alist of SVM implementation can be found at T

— http://www.kernel-machines.org/software.html

» Some implementation (such as LIBSVM) can handle
multi-class classification

« SVMLight is among one of the earliest implementation
of SVM

» Several Matlab toolboxes for SVM are also available

9/30/15 70




Summary: Steps for Using SVM in HW

Prepare the feature-data matrix
Select the kernel function to use

Select the parameter of the kernel function and the
value of C

— You can use the values suggested by the SVM software, or you
can set apart a validation set to determine the values of the
parameter

Execute the training algorithm and obtain the \alpha,

Unseen data can be classified using the \alpha,and the
support vectors

Practical Guide to SVM

* From authors of as LIBSVM:

— A Practical Guide to Support Vector Classification
Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen
Lin, 2003-2010

— http://www.csie.ntu.edu.tw/~cjlin/papers/guide/

guide.pdf




LIBSVM

e http://www.csie.ntu.edu.tw/~cjlin/libsvm/
v'Developed by Chih-Jen Lin etc.
v'Tools for Support Vector classification

v'Also support multi-class classification
v'C++/Java/Python/Matlab/Perl wrappers
v'Linux/UNIX/Windows

v'SMO implementation, fast!!!

A Practical Guide to Support Vector
Classification

(a) Data file formats for LIBSVM

* Training.dat

+1 1:0.708333 2:1 3:1 4:-0.320755
-11:0.583333 2:-1 4:-0.603774 5:1

+1 1:0.166667 2:1 3:-0.333333 4:-0.433962
-11:0.458333 2:1 3:1 4:-0.358491 5:0.374429

e Testing.dat
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(b) Feature Preprocessing

°‘ (1) Categorical Feature T

— Recommend using m numbers to represent an m-
category attribute.

— Only one of the m numbers is one, and others are zero.

— For example, a three-category attribute such as {red,
green, blue} can be represented as (0,0,1), (0,1,0), and
(1,0,0)

A Practical Guide to Support Vector
75
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Feature Preprocessing

* (2) Scaling before applying SVM is very T
important

— to avoid attributes in greater numeric ranges
dominating those in smaller numeric ranges.

— to avoid numerical difficulties during the calculation

— Recommend linearly scaling each attribute to the
range [1, +1] or [0, 1].

A Practical Guide to Support Vector
76

9/30/15 Classification




Of course we have to use the same method to scale both training and testing
data. For example, suppose that we scaled the first attribute of training data from
[~10,+410] to [—1,+1]. If the first attribute of testing data lies in the range [—11, +8]|,
we must scale the testing data to [—1.1,40.8]. See Appendix B for some real examples.

If training and testing sets are separately scaled to [0, 1], the resulting accur;is
lower than 70%.

$ ../svm-scale -1 O svmguide4 > svmguide4.scale

$ ../svm-scale -1 O svmguide4.t > svmguide4.t.scale
$ python easy.py svmguided.scale svmguide4.t.scale
Accuracy = 69.2308% (216/312) (classification)

Using the same scaling factors for training and testing sets, we obtain much better
accuracy.

$ ../svm-scale -1 0 -s range4 svmguide4 > svmguide4.scale
$ ../svm-scale -r range4 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguided.scale svmguide4.t.scale
Accuracy = 89.4231% (279/312) (classification)
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Feature Preprocessing

* (3) missing value T
— Very very tricky !
E> — Easy way: to substitute the missing values by the
mean value of the variable

— A little bit harder way: imputation using nearest
neighbors

— Even more complex: e.g. EM based (beyond the
scope)

A Practical Guide to Support Vector
78
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(c) Model Selection

Our goal: find the model M which minimizes the test error:
A

test error

error

training error

model complexity
9/30/15

79
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(c) Model Selection (e.g. for linear kernel)

o — T
e linear: K(x;,x;) = X/ X;.
|7 L

Select the
right
penalty

Y

(a) Training data and an overfitting classifier (b) Applying an overfitting classifier on testing
data

9/30/15

80
(¢) Training data and a better classifier (d) Applying a better classifier on testing data
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(c) Model Selection

I— B
e radial basis function (RBF): K (x;,%;) = exp(—v||x: — x;°), v > 0.

two parameters for an RBF kernel: C and 7y

e polynomial: K(x;,x;) = (yx;7x; +7)% v > 0.

Three parameters for a polynomial kernel

A Practical Guide to Support Vector
81
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(d) Pipeline Procedures

1) train / test T

(
(2) k-folds cross validation
(

* (3) k-CV on train to choose
hyperparameter / then test

9/30/15 82




training
dataset

test
dataset
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Evaluation Choice-I:
Train and Test

target/class
}
: Training dataset
B model | consists of input-
- learn f output pairs
B
? B — !
] [
? B 1 -
? apply 4 N :
! model A Measure Loss on pair

f(x? ) 2 (f(x), y»)

9/30/15 83
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Evaluation Choice-11I:
Cross Validation

e Problem: don’t have enough data to set aside a
test set
e Solution: Each data point is used both as train
and test
e Common types:
-K-fold cross-validation (e.g. K=5, K=10)
-2-fold cross-validation
-Leave-one-out cross-validation (LOOCV)

A good practice is : to random shuffle all
training sample before splitting

9/30/15 84




Why Maximum Margin for SVM ?

‘ ° denotes +1

o

denotes -1

Support Vectors
are those
datapoints that the
margin pushes up
against

9/30/15

]
N

°

[Q

Intuitively this feels safest.

If we’ ve made a small error in the
location of the boundary (it’ s been jolted
in its perpendicular direction) this gives us
least chance of causing a
misclassification.

LOOCYV is easy since the model is
immune to removal of any non-support-
vector datapoints.

There’ s some theory (using VC
dimension) that is related to (but not the
same as) the proposition that this is a good
thing.

Empirically it works very very well.

Dr. Yanjun Qi /UVE%S 6316/
f15

Evaluation Choice-I11I;
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Many beginners use the following procedure now:

e Transform data to the format of an SVM package

e Randomly try a few kernels and parameters

We propose that beginners try the following procedure first:

e Transform data to the format of an SVM package

Conduct simple scaling on the data

For HW2-Q2

Consider the RBF kernel K (x,y) = e~ 7Ix-¥I*

e Use cross-validation to find the best parameter C and =y

9/30/15 @

Test

Use the best parameter C' and « to train the whole training set®

A Practical Guide to Support Vector Classification
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[=/[0][x]
File Run
Training Fils Scalar Grd
Trainat
Tast Fila Scalerz Pradictor
Running ~/libsvm-2.36d/svm-predict AmpA@12792.8 tmpi@13338.10 AmpA@13338.12 S
Accuracy = 87.8049% (36/41) (classification)
Mean squared error = 0.487805 (regression) . "
Squared correlation coefficient = nan {regression) A Pra‘cjuca‘l Guide to Support Vector
Classification j
L |
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Today: Review & Practical Guide

‘ O Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

‘ v’ Practical Guide

v" File format / LIBSVM
v’ Feature preprocsssing
v Model selection

v’ Pipeline procedure
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