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Where we are ? =
Five major sections of this course

T

[ Classification (supervised)

=

O Unsupervised models
O Learning theory
O Graphical models

9/28/15 2
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Where we are ? =
Three major sections for classification

‘ * We can divide the Iar%e variety of classification T
approaches into roughly three major types

E> 1. Discriminative

- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree

2. Generative:
- build a generative statistical model

- e.g., Bayesian networks
3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

9/28/15
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% X X ‘Y A Dataset
for binary
‘ cIassiﬁcation“
fixXi—lY
Output as Binary
Class Label:
1 or-1

» Data/points/instances/examples/samples/records: [ rows ]
» Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]
* Target/outcome/response/label/dependent variable: special
o2¢/15column to be predicted [ last column | 4
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Max margin classifiers

‘ * Instead of fitting all points, focus on boundary points \

* Learn a boundary that leads to the largest margin from points on both
sides

XZ ° P y
/
° / Why?
Y/
° o V4 « Intuitive, ‘makes
# sense’
/ .
® o y ° ° « Some theoretical
4 support
4 o o
3 ° * Works well in practice
/
/ o
/
/ o
/
/
9/28/15 X 5
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When linearly Separable Case

* The decision boundary should be as far away from
the data of both classes as possible

-
\

1. Correctly classifies all points
2. Maximizes the margin (or equivalently minimizes w'w)

W is a p-dim
vector; b is a
scalar

9/28/15 6
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Today

‘ (J Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

v’ Practical Guide
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Today

‘ J Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
‘\/ Optimization to learn model parameters (w, b)

v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

v’ Practical Guide
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Optimization Step
I.e. learning optimal parameter for SVM

g ¥\ 2
‘ P"ed'\c‘ cla® - \ W B w'w \
_xA -
\N‘x’fb’* 0
Txro= A
W S
A dick &¥2°
\N‘)ﬁ“'b pre
N

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)
y,

Min (w'w)/2
subject to the following constraints:

A

For all xin class + 1

wix+b >=1 'Bit\ A total of n
_ constrajnts if
For all xin class - 1

samples

wTx+b <= -1

9/28/15
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Optimization Step
I.e. learning optimal parameter for SVM

g ¥\ 2
‘ oredict &g \ L “
—xA -
\N‘(s/\-\'b’—\’ 0
Wer” s A
= dict &2
\NT)(“'b pre
N

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)
y,

w,b =
subject to V'x; € Dirain

10

Min (w'w)/2
subject to the following constraints:

For all xin class + 1

wix+b >=1

For all xin class - 1

wTx+b <= -1

9/28/15
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Optimization Review:
Ingredients

* Objective function T
e Variables
* Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

9/28/15 11
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Optimization with Quadratic
programming (QP)

‘ Quadratic programming solves optimization problems of the following form: \
u"Ru
2

min,, +d u+c

subject to n inequality constraints:

a . u+a.u+..<b .
1t T Gl 1 Quadratic term

a,u +a, u,+..<b When a problem can be
specified as a QP problem we
can use solvers that are better
than gradient descent or

el + Uy +=b, simulated annealing

n

and k equivalency constraints:

a

Ay T4, oUy + o= b,
9/28/15 12
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SVM as a QP prOblem R as | matrix, d as zero

vector, ¢ as 0 value

A 2
dict VeSS W M=—— T l
pre wow . URu
min,, 2 +d u+c
’(s/\-\'b;—\’)\ -
v =0 bjecttoni lit traints:
\NT)(_\_\O, . <5 A Supbject 1o n Inequality constraints:
. 2
Nwm?« wadc a,u, + a,u, + ...<b,
Min (wWTw)/2 a u +a,u,+..<b,
subject to the following inequality and k equivalency constraints:
constraints: Ay Uy + Ay ol + = b,
Forall xinclass + 1
wix+b >=1 A total of n Ay gty + Aoty + .= b,y
, constraints if
For all xin class - 1 we have n
wTx+b <= -1 input samples

9/28/15 13
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Today

‘ J Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter

v Optimization to learn model parameters (w, b)
W) v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

v’ Practical Guide
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Non linearly separable case

* So far we assumed that a linear plane can perfectly
separate the points

* But this is not usally the case
How can we convert this to a

- noise, outliers QP problem?
Hard to solve (two - Minimize training errors?

e o minimization problems) min wTw

o © min #errors

o
® - Penalize training errors:

° o . o min ww+C*(#errors)

o Hard to encode in a QP
problem

9/28/15 15
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Non linearly separable case

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane
The new optimization problem is:

Coww &
min +Z Ce.
w 1
i=1

2

subject to the following inequality
constraints:

For all x;in class + 1

+1 plane
/

For all x;in class - 1
wTix+b <= -1+&,

Wait. Are we missing
something?

4
9/28/15 . 16
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Final optimization for non linearly
separable case

‘ The new optimization problem is:

T n
I +ng% hejpeypsrh
+1 ;/:Iane 2 i=1

subject to the following inequality
constraints:

Forall x;in class + 1

wixtb >=1-£, total of n
For all xin class - 1 straints
Wix+b <= -1+€,;

For all i
} Arrc}ther n

81’ >0 constraints

9/28/15 17
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Where we are

Two optimization problems: For the separable and non separable cases

T n
W W
min w W min +EC£i
L] 2 i=l
Forall xin class + 1 Forall x;in class + 1

wTx+b >= 1 wix+b >= 1-81

. Forall x;inclass - 1
For all xin class - 1

wix+b <= -1 +81

wTx+b <=-1
For all i
. v e 20 . v
° / 1 ° ° /
e/ e/
) ) / ,/ / ) ) / ,/ /
/ P / ° / P ’
/ , / / , /
/ ’ / /
° ° / // ) [ ° / // [
’ , % 4 ’ ’
/ / /7 /
/ /I / ° / /I 7 °
’ % ’ ’ ® °
4 VAR ° 4 /7 © )
4 ’ 4 ’
’ , 4 ° ’ , 4 ®
/ , / / , /
/ . 4 ha / . / hd
+ 9/28/15
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Today

‘ (J Support Vector Machine (SVM) T

v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case
—) Optimization with dual form
v Nonlinear decision boundary
v’ Practical Guide
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Where we are

Two optimization problems: For the separable and non separable cases

T n
. W W
‘ Min (Ww)/2 min, ==+ >,Ce —‘
For all xin class + 1 Forall x;in class + 1

wix+b >=1

. For all x;in class - 1
Forall xin class -1

WTix+b <= -1+€,
wix+b <=-1 . )
For all i

81.20

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

» The main reason for switching to this type of representation
is that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)

9/28/15 20
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Optimization Review:
Constrained Optimization

T

min, u? Yo ¥//Allowed min
s

_ ~
s.t.u>=b ~ o _',\:\
é) Global min
Case 1: ‘
Allowed min
Global min
Case 2:

9/28/15 21
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Optimization Review:
Constrained Optimization with Lagrange

‘  When equal constraints T
* =>» optimize f(x), subject to g,(x)=0

* Method of Lagrange multipliers: convert to a )(V\)
higher-dimensional problem (w((,"fl/"’

Minimize &\'3)\,, 17\
@+ Ae6) A

° w.r.t. 'Xl. @’ 2) V\’t\L

Introducing a Lagrange multlpller for onstraint
Construct the Lagrangian for the original optimization problem %2

9/28/15




An alternative representation of the
SVM QP

Min (w'w)/2
» We will start with the linearly separable case Forall xin class +1

T =
* Instead of encoding the correct classification rule wix+b >=1

and constraint we will use Lagrange multiplies to For all xin class -1
encode it as part of the our minimization problem

wix+b <= -1
v U
Why?
Min (w'w)/2

E (Wix+b)y, >= 1

An alternative (dual) representation
of the SVM QP

Min (wTw)/2

. . . (Wxtb)y; >= 1
* We will start with the linearly separable case

* Instead of encoding the correct classification rule a
constraint we will use Lagrange multiplies to encode it as
part of the our minimization problem

Recall that Lagrange multipliers can be
applied to turn the following problem:

min, x2

st.x=b b-x <0 . s’ .
‘ . N /7 Allowed min
o e . R
~ ~ L. s
min, max, x2-o.(x-b) T

st.a=0 N b
|

Global min
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Lagrange multiplier for SVMs

agrangeformulationy\ Original formulation \
T
Zt\xi[(wai+b)yi—1 Min wiwy2 X

w w

min A max
w,b o

2
020 Vi (Wix+bly,>= 1 X>b
Usi . . 2
sing this new formulation we can derive w and b by , )< — 0( (,(_/))

ivative w.r.t. w and & leading to:

b=y, -w'x, Set partial

derivatives to 0 - .
for i st. a;>0 "@7 A 'fM(I/\

Finally, taking the derivative w.r.t. b we get: Q)/
V
Eaiyi =0

9/28/15 25
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Dual SVM - interpretation

For o’.s that are
0, no influence

9/28/15 26
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A Geometrical Interpretation

9/28/15 27
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Dual SVM for linearly separable
case

o

. OW'w
Substituting w into our target min,, ,
function and using the

additional constraint we g a,z0 Vi

. w = Eai'xiyi
Dual formulation ;

1 T b=y -
maxazai _Ezaiajyiiji X; Vi
i i

for i st. oa,;>0

et:

Zaiyi =0 Eaiyi =

a =0 Yi

1

Easier than original QP, a QP solver can be used to find a,
9/28/15 29
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Dual SVM for linearly ieparable
case Mz

‘ N, /) % o= T
Our dual target function: max Eal_%Eaiani T

i= ij
T .JD
Eociyi =0 Dot product for all

; training samples

o,=0 Vi Dot product with
training samples

To evaluate a new sample (x,
we need to compute:

' .0
SJ(W% Is this too much computational work (for 0(1/7

example when using transformation of the
data)?

9/28/15 30
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Dual formulation for non linearly
separable case

Dual target function: \ To evaluate a new sample x; \

we need to compute:
1
max,, Eal. —Ezaiajyiijij
i 1,
EO‘-Y =0 WTx.+b=Ea.y.x.Tx.+b
v Hyperparameter C J —
should be tuned !
2 0,Vi through k-folds CV
This is very similar to the
optimization problem in the linear
The only difference is separable case, except that there is
that the \alpha are now an upper bound C on a, now
\ bounded /
Once again, a QP solver can be used
to find a

9/28/15 31
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Today

‘ J Support Vector Machine (SVM) T

v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case
v Optimization with dual form
‘\/ Nonlinear decision boundary
v’ Practical Guide
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Classifying in 1-d

=

Can an SVM correctly What about this?
classify this data?

9/28/15 33
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Classifying in 1-d

—

Can an SVM correctly And now? (extend with polynomial basis )
classify this data?

/
X? ’

9/28/15 34




Dr. Yanjun Qi / UVA CS 6316 / f15

RECAP: Polynomial regression

For example, ¢(z) = [1, z, 2?]

Y
10} tL’)cf ¢("3 ©

=Q,+X0,tX'g

9/28/15 35
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

X=(X,X,) O(x) =(X,2,X,%, 2 XXy
r . :
e . ° ®
L I ° °
o |® (D: X — ([)(X) ® °
o ° ' ° o
® ® ¢ © °
® ® ® Y o o 2
) e ° X)
° o ® ° ° °
o fu” ™ o ®
X1 2 °

%ﬁfglsﬁide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (¢(x) )where the training set is separable:

X=(X,X,) 0(x) =(X,%,X,%, 2xX,

t — 2X1X;
If data is mapped into sufficiently high dimension, then
‘e samples will in general be linearly separable;
# N data points are in general separable in a space of N-1
° | dimensions or more!!!

‘Clvr%l%lsﬁide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
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A little bit theory:
Vapnik-Chervonenkis (VC) dimension

r If data is mapped into sufficiently high dimension, then samples
will in general be linearly separable;
N data points are in general separable in a space of N-1
dimensions or more!!!
* VC dimension of the set of oriented lines in R?is 3

— It can be shown that the VC dimension of the family of
oriented separating hyperplanes in RN is at least N+1

S

O [ ]

o o 0 o
o// o// o e
9/28/15 O ) O Y 38
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Transformation of Inputs

» Possible problems
- High computation burden due to high-dimensionality \

- Many more parameters

* SVM solves these two issues simultaneously
—“Kernel tricks” for efficient computation
—Dual formulation only assigns parameters to samples, not
features

A

v

/28115 Input space Feature space .
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Quadratic kernels
‘- While working in higher dimensions is max,, 20@ -EGiajyiyj

beneficial, it also increases our running time

because of the dot product computation Eaiyi =0
* However, there is a neat trick we canuse vz
» consider all quadratic terms for x4, X, ... X, mis the
@\ number of
The [¥]2 (1 features in
term will 2 m+1 linear terms each vector
become s, X =S @ ( X)
clear in the @
next slide x “~ mquadratic terms [K(x,z) = cI)(X)TcI)(Z)}

V2,

i m(m-1)/2 pairwise terms
’\/Exmflxm
9/28/15 40
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Dot product for quadratic kernels

many operations do we need for the dot product?
‘ O m}‘i L D(m z)
e A )
; | 0(m)

\/Ex”l ﬁzrﬂ
D(x) ()
Xf 2 = szizi + Exfzf + E E2xisz,-zj +1
: : i i i j=itl
2 2

@ “ m m m(m-1)2  =~m?
\/E'XIXZ \/Ezlzz T

; ; K(x.2) = 0(x) ()
\/Exm—l 'xm \/Ezm—] Zm

9/28/15 n
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The kernel trick

‘ How many operations do we need for the dot product?
L
D(x) D(z) = E2xizi + Exzz2 + E EZx,.szizj +1 O (h

i j=i+l

m m m(m-1)/2 =~ m?

owever, we can obtain dramatic savings by noting that
(x)" D7) (x"z+1)? (x.2)* +2(x.2)+1

O xiz) + ¥ 2xz+1
m . | omly need m So, if we define the kernel function as follows, there is

e PSS g,
S no need to carry out basis function phi(.) explicitly

T it
9/28/15 (xTz + 1)2 42
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Where we are

m we need to compute:
(X: Y‘\)WT(I)(X2+b = Eozl.y1 (x;) P(XRY b
") } .

| / k( Xe,XE)

mr operations where r are
the number of support
vectors (whose alpha;>0)

mn? operations at each

iteration
So, if we define the kernel function as follows, there
is no need to carry out phi(.) representation explicitly
T 2
9/28/15 K(X,Z) = (x 7+ 1) 43

K(x;,%x;) = ¢(x;)T¢(x;) is called the kernel function
More examples of kernel functions

" Linear kernel (we've seen it) K(x,x")= x'x' \
A)

* Polynomial kernel (we just saw an example) O ( M

K(x,x')=(1+xTx')d d 0[”/‘)

where p =2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

* Radial basis kernel K(x,x') = exp(—%”x—x'uz ]

In this case., the feature space of the kernel has an infinite number of
dimensions

Never represent features explicitly
[0 Compute dot products in closed form
Very interesting theory — Reproducing Kernel Hilbert Spaces

oS O Not covered in detail here

a4




Dr. Yanjun Qi / UVA CS 6316 / f15

Why do SVMs work?

‘EI If we are using huge features spaces (e.g., with T
kernels), how come we are not overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care
about the support vectors and these are usually a small group of
samples

- The minimization (or the maximizing of the margin) function acts
as a sort of regularization term leading to reduced overfitting

9/28/15 45
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Today

‘ J Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

mmm) v Practical Guide
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Software

+ Alist of SVM implementation can be found at
— http://www.kernel-machines.org/software.html

» Some implementation (such as LIBSVM) can handle
multi-class classification

« SVMLight is among one of the earliest implementation
of SVM

» Several Matlab toolboxes for SVM are also available

9/28/15 47
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Practical Guide to SVM

* From authors of as LIBSVM:

— A Practical Guide to Support Vector Classification
Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen
Lin, 2003-2010

— http://www.csie.ntu.edu.tw/~cjlin/papers/guide/

guide.pdf

9/28/15 48
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LIBSVM
‘ e http://www.csie.ntu.edu.tw/~cjlin/libsvm/ T

v'Developed by Chih-Jen Lin etc.
v'Tools for Support Vector classification

v'Also support multi-class classification
v'C++/Java/Python/Matlab/Perl wrappers
v'Linux/UNIX/Windows

v'SMO implementation, fast!!!

A Practical Guide to Support Vector

9/28/15 Classification N
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Multi-class classification with SVMs

‘ What if we have data from more than two \

classes?
* Most common solution: One vs. all
- create a classifier for each class against
PY o
[ all other data
° ® : o
PY - for a new point use all classifiers and
® o o compare the margin for all selected
° classes
® o °
® o Note that this is not necessarily valid
° o since this is not what we trained the

SVM for, but often works well in
practice

9/28/15 50




(a) Data file formats for LIBSVM

* Training.dat

+1 1:0.708333 2:1 3:1 4:-0.320755
-11:0.583333 2:-1 4:-0.603774 5:1

+1 1:0.166667 2:1 3:-0.333333 4:-0.433962
-11:0.458333 2:1 3:1 4:-0.358491 5:0.374429

e Testing.dat

(b) Feature Preprocessing

*| (1) Categorical Feature
— Recommend using m numbers to represent an m-
category attribute.
— Only one of the m numbers is one, and others are zero.

— For example, a three-category attribute such as {red,
green, blue} can be represented as (0,0,1), (0,1,0), and
(1,0,0)

A Practical Guide to Support Vector
Classification
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Feature Preprocessing

‘ * (2) Scaling before applying SVM is very T

important

— to avoid attributes in greater numeric ranges
dominating those in smaller numeric ranges.

— to avoid numerical difficulties during the calculation

— Recommend linearly scaling each attribute to the
range [1, +1] or [O, 1].

A Practical Guide to Support Vector
53

9/28/15 Classification

Of course we have to use the same method to scale both training and testing
data. For example, suppose that we scaled the first attribute of training data from
[-10,+410] to [—1,+1]. If the first attribute of testing data lies in the range [—11, +8]|,
we must scale the testing data to [—1.1,40.8]. See Appendix B for some real examples.

If training and testing sets are separately scaled to [0, 1], the resulting accur;is
lower than 70%.

$ ../svm-scale -1 O svmguide4 > svmguide4.scale

$ ../svm-scale -1 O svmguide4.t > svmguide4.t.scale
$ python easy.py svmguided.scale svmguide4.t.scale
Accuracy = 69.2308% (216/312) (classification)

Using the same scaling factors for training and testing sets, we obtain much better
accuracy.

$ ../svm-scale -1 0 -s range4 svmguide4 > svmguide4.scale
$ ../svm-scale -r range4 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguided.scale svmguide4.t.scale
Accuracy = 89.4231% (279/312) (classification)
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Feature Preprocessing

* (3) missing value T
— Very very tricky !
E> — Easy way: to substitute the missing values by the
mean value of the variable

— A little bit harder way: imputation using nearest
neighbors

— Even more complex: e.g. EM based (beyond the
scope)

A Practical Guide to Support Vector
55

9/28/15 Classification
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(c) Model Selection

Our goal: find the model M which minimizes the test error:
A
test error

error

training error

model complexity

9/28/15 56
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(c) Model Selection (e.g. for linear kernel)

enr — T
e linear: K(x;,x;) = X/ X;.

—

Select the
right
penalty

Y

(a) Training data and an overfitting classifier (b) Applying an overfitting classifier on testing
data

9/28/15
/28/ (¢) Training data and a better classifier (d) Applying a better classifier on testing data

Dr. Yanjun Qi / UVA CS 6316 / f15

(c) Model Selection

I— B
e radial basis function (RBF): K (x;,x;) = exp(—||x; — x;{%), v > 0.

two parameters for an RBF kernel: C' and v

e polynomial: K(x;,x;) = (yx;7x; +7)% v>0.

Three parameters for a polynomial kernel

A Practical Guide to Support Vector
58

9/28/15 Classification
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(d) Pipeline Procedures

;- (1) train / test T
e (2) k-folds cross validation

* (3) k-CV on train to choose
hyperparameter / then test
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Evaluation Choice-I:
Train and Test

target/class
}
: Training dataset
B model | consists of input-
training q
dataset i learn f output pairs
B
test ? B
dataset ? B
-y .
! apply A
! model A Measure Loss on pair

f(x? ) 2 (f(x), ¥»)

9/28/15 60




Dr. Yanjun Qi / UVA CS 6316 / f15

Evaluation Choice-11I:
Cross Validation

e Problem: don’t have enough data to set aside a
test set
e Solution: Each data point is used both as train
and test
e Common types:
-K-fold cross-validation (e.g. K=5, K=10)
-2-fold cross-validation
-Leave-one-out cross-validation (LOOCV)

A good practice is : to random shuffle all
training sample before splitting
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Why Maximum Margin for SVM ?

1. Intuitively this feels safest.
‘ e denotes +1 2. If we’ ve made a small error in the
enotes . location of the boundary (it’ s been jolted
° denotes -1 . . in its perpendicular direction) this gives us
° least chance of causing a
1 ° ° misclassification.
/ﬁ
- ° 3. LOOCV is easy since the model is
TN——
Support Vectors ° immune to removal of any non-support-
are those vector datapoints.
datapoints that the

There’ s some theory (using VC
dimension) that is related to (but not the
same as) the proposition that this is a good

margin pushes up
against

thing.
/ 5. Empirically it works very very well.
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Evaluation Choice-I11I;

Many beginners use the following procedure now:

r e Transform data to the format of an SVM package

e Randomly try a few kernels and parameters

Dr. Yanjun Qi / UVA CS 6316 / f15

We propose that beginners try the following procedure first:

e Transform data to the format of an SVM package

e Conduct simple scaling on the data

9/28/15 @

Consider the RBF kernel K (x,y) = e~ 7Ix-¥I*

solution
For HW2-Q2

Use cross-validation to find the best parameter C' and ~

Use the best parameter C' and « to train the whole training set®

Test

A Practical Guide to Support Vector Classification
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=» SVM for Dunmies

ama Appr e ps % Ao Ne VAswas saww W VLS Jma W VAW [ASNAS LA AALAL § A4s LrAsawmA | ASAW L Aes faweioasar i T aass T ass__as

File Run
Training File Scalat Grid
Teainar
| |
Test Fila Scalar2 Pradictor

TRy

Running ~/libsvm-2.36d/svm—predict AmpA@12792.8 AmpA@13338.10 AmpA@13338.12
Accuracy = 87.8049% (36/41) (classification)
Mean squared error = 0.487805 (regression)
Squared correlation coefficient = nan {regression)

=

Classification

A Practical Guide to Support Vector

>
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Today: Review & Practical Guide

‘ O Support Vector Machine (SVM) T

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case

v' Optimization with dual form

v Nonlinear decision boundary

‘ v’ Practical Guide

v’ File format / LIBSVM
v’ Feature preprocsssing
v Model selection

v’ Pipeline procedure
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