
3 Maximum Likelihood Estimation

3.1 Motivating example

We now come to the most important idea in the course: maximum likelihood estimation.

Let us begin with a special case. Our data is a a Binomial random variable X with

parameters 10 and p0. The parameter p0 is a fixed constant, unknown to us. That is,

f(x; p0) = P

p0(X = x) =

✓
n

x

◆
p

x

0(1� p0)
n�x

.

Suppose that we observe X = 3. This we regard as our fixed data.

Our goal, as in all point estimation problems, is to estimate the actual parameter value

p0 based on the available data.

We consider now some thought experiments. We do not know p0, but we can consider the

scenario in which the value of p0 is 1/2. Under this particular assumption, the probability

of generating the data which we actually saw – namely X = 3 – is

f(3; 0.5) = P0.5(X = 3) =

✓
10

3

◆
(0.5)3(0.5)7 ⇡ 0.117 .

We can calculate this probability under the assumption that p0 = p for each p 2 [0, 1]. For

a given p, this probability is

f(3; p) = P

p

(X = 3) =

✓
10

3

◆
p

3(1� p)7
.

We thus obtain a function p 7! f(3; p). This function is called the likelihood function. We

write L(p; 3) for the value of this function at p = 3.

The principle of maximum likelihood says we should use as our estimate of p0 the value

p which makes L(p; 3) as large as possible. This is a reasonable idea: we pick the parameter

value p which makes the observed data most likely when assuming p0 equals p.

Notice that since log is an increasing function, the value of p which maximizes L(p; 3)

is the same value which maximizes log L(p; 3). It is often convenient to maximizes the

logarithm of the likelihood function instead of the function itself, so we give this function

a name and notation: we write `(p; 3) for the log-likelihood function, defined as `(p; 3)
def
=

log L(p; 3).
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Here,

`(p; 3) = 3 log p + 7 log(1� p) + log(

✓
n

k

◆
) .

We use calculus to maximize this function. We can first graph ` to see its general shape –

see Figure 1.
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Figure 1: Graph of `(p; 3).

We note in particular the ` has a unique maximum at the single critical point. [A

critical point of a function is a point in the domain where the derivative is zero.]

We compute:

0 =
@`

@p

(p; 3)

0 =
3

p

� 7

1� p

0 = 3(1� p)� 7p

p =
3

10
.

Thus the value of p maximizing `(p; 3) is p = 3
10 . We call this the maximum likelihood

estimate of p0, for the data X = 3.

It is clear that if we observed X = k, where k = 0, 1 . . . , n, the maximum likelihood

estimate of p0 would be k/n. Thus, the estimate is determined by the value of X, and we

have the estimator p̂ = X/n. This is a statistic (a function of our sample, which in this

case consists only of X).
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3.2 Definitions

The generic situation is that we observe a n-dimensional random vector X with probability

density (or mass) function f(x; ✓). It is assumed that ✓ is a fixed, unknown constant

belonging to the set ⇥ ⇢ Rk.

Definition 7. For x 2 Rn, the likelihood function of ✓ is defined as

L(✓; x) = f(x; ✓) .

x is regarded as fixed, and ✓ is regarded as the variable for L. The log-likelihood function

is defined as `(✓; x) = log L(✓; x).

Definition 8. The maximum likelihood estimate (or mle) is the value ✓̂ = ✓̂(x) 2 ⇥

maximizing L(✓; x), provided it exists:

L(✓̂(x)) = max
✓2⇥

L(✓,x) .

4 Examples

We see that the problem of finding a maximum likelihood estimate is now reduced to the

problem of optimizing the likelihood function. As in any optimization problem, one must

be careful; we give some examples and pitfalls here.

Example 1 (Poisson). Let X1, . . . , Xn

be an i.i.d. collection of Poisson(µ) random vari-

ables, where µ > 0. Thus the likelihood function is

L(µ; x) =
nY

i=1

e

�µ

µ

xi

x

i

!

= e

�nµ

µ

Pn
i=1 xi

1Q
n

i=1 x

i

!

`(µ; x) = �nµ +
nX

i=1

x

i

log µ� log
nY

i=1

x

i

! .
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We note that `(µ; x) is a di↵erentiable function over the domain (0,1), and so we first

find the critical points:

0 =
@`

@µ

(µ; x)

= �n +

P
n

i=1 x

i

µ

µ = x̄ .

[Here x̄ denotes n

�1
P

n

i=1 x

i

.]

Thus there is a single critical point at µ = x̄. Taking the second derivative gives

@

2
`

@µ

2
= �µ

�2
nX

i=1

x

i

< 0 .

Thus there is a local maximum at µ = x̄. We then note that as µ ! 0 or µ ! 1, the

log-likelihood `(µ; x) approaches �1. Thus µ = x̄ is a global maximum, and the maximum

likelihood estimate of µ is µ̂ = x̄.

The maximum likelihood estimator in this example is then µ̂(X) = X̄. Since µ is the

expectation of each X

i

, we have already seen that X̄ is a reasonable estimator of µ: by the

Weak Law of Large numbers, X̄

Pr�! µ as n!1. We have just seen that according to the

maximum likelihood principle, X̄ is the preferred estimator of µ.

Example 2 (Multinomial). Suppose that we have n independent experiments, each of

which must result in one of r mutually exclusive outcomes. On each trial, the probability

of the ith outcome is p

i

, for i = 1, . . . , r. For example, we drop n balls into r boxes. Let N

i

be the number of these experiments which result in the ith outcome, where i = 1, . . . , r.

The joint mass function for (N1, . . . , Nr

) is given by

f(n; p) =

✓
n

n1n2 . . . n

r

◆
rY

i=1

p

ni
i

.

Notice the parameter space is the simplex

⇥ = {p : p

i

� 0 ,

rX

i=1

p

i

= 1} ⇢ Rr

.
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Notice that ⇥ is a curved surface inside Rr. We want to maximize the likelihood over this

surface, not over all of Rr. Thus we might use the method of Lagrange multipliers.

We recall the following from multi-variable calculus:

Theorem 6 (Constrained optimization). Let f : A ⇢ Rn ! R be a continuously

di↵erentiable function, where A is an open set. Let g : A ⇢ Rn ! R also be a continuously

di↵erentiable function. For c 2 R, let S = g

�1(c) = {x : g(x) = c}. If, among all points

in S, the function f has an extreme point at p0, then rf(p0) = �rg(p0), where � is a real

number.

We use this theorem by finding all solutions to rf(x) = �rg(x); the extremes of f

must be among these solutions.

In our example, we want to find the maximum of `(p) among all p 2 h

�1(1), where

h(p) =
P

n

i=1 p

i

.

We first write

`(p; n) =
rX

i=1

n

i

log p

i

+ log

✓
n

n1 . . . n

r

◆
.

We calculate

r`(p; n) =
�
n1p

�1
1 , . . . , n

r

p

�1
r

�

rg(p) = (1, . . . , 1) .

Solving r`(p; x) = �rg(p) yields p

i

= �

�1
n

i

. Since
P

i

p

i

= 1, and
P

i

n

i

= n, we have

� = n and the solution is p

i

= n

i

/n, for i = 1, . . . , r.

We conclude that the mle of p is

p̂(N ) =

✓
N1

n

,

N2

n

, . . . ,

N

r

n

◆
.

An alternative way to maximize ` in this problem is to write p

r

= 1 �
P

r�1
i=1 p

i

, so that

there are now r � 1 free parameters (p1, . . . , pr�1) 2 (0, 1)r�1, reducing the optimization

problem to one with domain equal to an open subset of Euclidean space.

Example 3 (Uniform). Here is an example to keep in mind. Let X1, . . . , Xn

be i.i.d.

Uniform on the interval [0, ✓], where ✓ > 0. That is, X

i

has pdf

f(x
i

) = ✓

�1
1 {0  x

i

 ✓} .
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The indicator appearing in the density is important. In examples where the support of the

density (the interval where it is positive) depends on the parameter, one must be careful

to always indicate the support when writing down the density.

So

L(✓; x) =
nY

i=1

✓

�1
1 {0  x

i

 ✓} = ✓

�n

1

�
0  x(1)  x(n)  ✓

 
.

Sketching L will show that it is maximized at ✓ = x(n), so the maximum likelihood estimator

is ✓̂(X) = X(n). Notice that since the likelihood function has a discontinuity, the maximum

is not attained at a critical point.
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