Agent Efficiency - Model Serving + PPO
- SlideDeck: W11.2-team6-PPO
- Version: next
- Lead team: team-6
In this session, our readings cover:
Required Readings:
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
- Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré
- [Submitted on 27 May 2022 (v1), last revised 23 Jun 2022 (this version, v2)]
- Transformers are slow and memory-hungry on long sequences, since the time and memory complexity of self-attention are quadratic in sequence length. Approximate attention methods have attempted to address this problem by trading off model quality to reduce the compute complexity, but often do not achieve wall-clock speedup. We argue that a missing principle is making attention algorithms IO-aware – accounting for reads and writes between levels of GPU memory. We propose FlashAttention, an IO-aware exact attention algorithm that uses tiling to reduce the number of memory reads/writes between GPU high bandwidth memory (HBM) and GPU on-chip SRAM. We analyze the IO complexity of FlashAttention, showing that it requires fewer HBM accesses than standard attention, and is optimal for a range of SRAM sizes. We also extend FlashAttention to block-sparse attention, yielding an approximate attention algorithm that is faster than any existing approximate attention method. FlashAttention trains Transformers faster than existing baselines: 15% end-to-end wall-clock speedup on BERT-large (seq. length 512) compared to the MLPerf 1.1 training speed record, 3× speedup on GPT-2 (seq. length 1K), and 2.4× speedup on long-range arena (seq. length 1K-4K). FlashAttention and block-sparse FlashAttention enable longer context in Transformers, yielding higher quality models (0.7 better perplexity on GPT-2 and 6.4 points of lift on long-document classification) and entirely new capabilities: the first Transformers to achieve better-than-chance performance on the Path-X challenge (seq. length 16K, 61.4% accuracy) and Path-256 (seq. length 64K, 63.1% accuracy).
FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning
- Tri Dao
- [Submitted on 17 Jul 2023]
- Scaling Transformers to longer sequence lengths has been a major problem in the last several years, promising to improve performance in language modeling and high-resolution image understanding, as well as to unlock new applications in code, audio, and video generation. The attention layer is the main bottleneck in scaling to longer sequences, as its runtime and memory increase quadratically in the sequence length. FlashAttention exploits the asymmetric GPU memory hierarchy to bring significant memory saving (linear instead of quadratic) and runtime speedup (2-4× compared to optimized baselines), with no approximation. However, FlashAttention is still not nearly as fast as optimized matrix-multiply (GEMM) operations, reaching only 25-40\% of the theoretical maximum FLOPs/s. We observe that the inefficiency is due to suboptimal work partitioning between different thread blocks and warps on the GPU, causing either low-occupancy or unnecessary shared memory reads/writes. We propose FlashAttention-2, with better work partitioning to address these issues. In particular, we (1) tweak the algorithm to reduce the number of non-matmul FLOPs (2) parallelize the attention computation, even for a single head, across different thread blocks to increase occupancy, and (3) within each thread block, distribute the work between warps to reduce communication through shared memory. These yield around 2× speedup compared to FlashAttention, reaching 50-73\% of the theoretical maximum FLOPs/s on A100 and getting close to the efficiency of GEMM operations. We empirically validate that when used end-to-end to train GPT-style models, FlashAttention-2 reaches training speed of up to 225 TFLOPs/s per A100 GPU (72\% model FLOPs utilization).
Efficient Transformers: A Survey
- Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler
- [Submitted on 14 Sep 2020 (v1), last revised 14 Mar 2022 (this version, v3)]
- Transformer model architectures have garnered immense interest lately due to their effectiveness across a range of domains like language, vision and reinforcement learning. In the field of natural language processing for example, Transformers have become an indispensable staple in the modern deep learning stack. Recently, a dizzying number of “X-former” models have been proposed - Reformer, Linformer, Performer, Longformer, to name a few - which improve upon the original Transformer architecture, many of which make improvements around computational and memory efficiency. With the aim of helping the avid researcher navigate this flurry, this paper characterizes a large and thoughtful selection of recent efficiency-flavored “X-former” models, providing an organized and comprehensive overview of existing work and models across multiple domains.
PPO Readings:
Towards a Unified View of Preference Learning for Large Language Models: A Survey
- [Submitted on 4 Sep 2024 (v1), last revised 31 Oct 2024 (this version, v5)]
- Bofei Gao, Feifan Song, Yibo Miao, Zefan Cai, Zhe Yang, Liang Chen, Helan Hu, Runxin Xu, Qingxiu Dong, Ce Zheng, Shanghaoran Quan, Wen Xiao, Ge Zhang, Daoguang Zan, Keming Lu, Bowen Yu, Dayiheng Liu, Zeyu Cui, Jian Yang, Lei Sha, Houfeng Wang, Zhifang Sui, Peiyi Wang, Tianyu Liu, Baobao Chang
- Large Language Models (LLMs) exhibit remarkably powerful capabilities. One of the crucial factors to achieve success is aligning the LLM’s output with human preferences. This alignment process often requires only a small amount of data to efficiently enhance the LLM’s performance. While effective, research in this area spans multiple domains, and the methods involved are relatively complex to understand. The relationships between different methods have been under-explored, limiting the development of the preference alignment. In light of this, we break down the existing popular alignment strategies into different components and provide a unified framework to study the current alignment strategies, thereby establishing connections among them. In this survey, we decompose all the strategies in preference learning into four components: model, data, feedback, and algorithm. This unified view offers an in-depth understanding of existing alignment algorithms and also opens up possibilities to synergize the strengths of different strategies. Furthermore, we present detailed working examples of prevalent existing algorithms to facilitate a comprehensive understanding for the readers. Finally, based on our unified perspective, we explore the challenges and future research directions for aligning large language models with human preferences.
Insights into Alignment: Evaluating DPO and its Variants Across Multiple Tasks
- Amir Saeidi, Shivanshu Verma, Md Nayem Uddin, Chitta Baral
- This study evaluates Direct Preference Optimization (DPO) and its variants for aligning Large Language Models (LLMs) with human preferences, testing three configurations: (1) with Supervised Fine Tuning (SFT), (2) without SFT, and (3) without SFT but using an instruction tuned model. We further investigate how training set size influences model performance. Our evaluation spans 13 benchmarks covering dialogue, reasoning, mathematical problem-solving, question answering, truthfulness, MT-Bench, Big Bench, and the Open LLM Leaderboard. We find that: (1) alignment methods often achieve near optimal performance even with smaller subsets of training data; (2) although they offer limited improvements on complex reasoning tasks, they enhance mathematical problem-solving; and (3) using an instruction tuned model improves truthfulness. These insights highlight the conditions under which alignment methods excel, as well as their limitations.
More Readings:
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
- [Submitted on 22 Jan 2025]
- DeepSeek-AI, (100 additional authors not shown)
- We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.