Model serving - Efficiency + PPO
Customization
Serving
Required Readings:
A Survey on Model Compression for Large Language Models
- [Submitted on 15 Aug 2023 (v1), last revised 30 Jul 2024 (this version, v4)]
- Xunyu Zhu, Jian Li, Yong Liu, Can Ma, Weiping Wang
- https://arxiv.org/abs/2308.07633
- Large Language Models (LLMs) have transformed natural language processing tasks successfully. Yet, their large size and high computational needs pose challenges for practical use, especially in resource-limited settings. Model compression has emerged as a key research area to address these challenges. This paper presents a survey of model compression techniques for LLMs. We cover methods like quantization, pruning, and knowledge distillation, highlighting recent advancements. We also discuss benchmarking strategies and evaluation metrics crucial for assessing compressed LLMs. This survey offers valuable insights for researchers and practitioners, aiming to enhance efficiency and real-world applicability of LLMs while laying a foundation for future advancements.
Comments: Accepted for publication in TACL; a pre-MIT Press publication version
Efficient AI in Practice: Training and Deployment of Efficient LLMs for Industry Applications
- https://arxiv.org/abs/2502.14305
- Large language models (LLMs) have demonstrated remarkable performance across a wide range of industrial applications, from search and recommendations to generative tasks. Although scaling laws indicate that larger models generally yield better generalization and performance, their substantial computational requirements often render them impractical for many real-world scenarios at scale. In this paper, we present methods and insights for training small language models (SLMs) that deliver high performance and efficiency in deployment. We focus on two key techniques: (1) knowledge distillation and (2) model compression via quantization and pruning. These approaches enable SLMs to retain much of the quality of their larger counterparts while significantly reducing training, serving costs, and latency. We detail the impact of these techniques on a variety of use cases at a large professional social network platform and share deployment lessons - including hardware optimization strategies that enhance speed and throughput for both predictive and reasoning-based applications.
Keep the Cost Down: A Review on Methods to Optimize LLM’ s KV-Cache Consumption
- [Submitted on 25 Jul 2024 (v1), last revised 20 Nov 2024 (this version, v4)]
- Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, Hai Zhao
- Large Language Models (LLMs), epitomized by ChatGPT’s release in late 2022, have revolutionized various industries with their advanced language comprehension. However, their efficiency is challenged by the Transformer architecture’s struggle with handling long texts. KV Cache has emerged as a pivotal solution to this issue, converting the time complexity of token generation from quadratic to linear, albeit with increased GPU memory overhead proportional to conversation length. With the development of the LLM community and academia, various KV Cache compression methods have been proposed. In this review, we dissect the various properties of KV Cache and elaborate on various methods currently used to optimize the KV Cache space usage of LLMs. These methods span the pre-training phase, deployment phase, and inference phase, and we summarize the commonalities and differences among these methods. Additionally, we list some metrics for evaluating the long-text capabilities of large language models, from both efficiency and capability perspectives. Our review thus sheds light on the evolving landscape of LLM optimization, offering insights into future advancements in this dynamic field. Links to the papers mentioned in this review can be found in our Github Repo this https URL.
PPO readings
Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
- Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu, Yi Wu
- [Submitted on 16 Apr 2024 (v1), last revised 10 Oct 2024 (this version, v3)]
- Reinforcement Learning from Human Feedback (RLHF) is currently the most widely used method to align large language models (LLMs) with human preferences. Existing RLHF methods can be roughly categorized as either reward-based or reward-free. Novel applications such as ChatGPT and Claude leverage reward-based methods that first learn a reward model and apply actor-critic algorithms, such as Proximal Policy Optimization (PPO). However, in academic benchmarks, state-of-the-art results are often achieved via reward-free methods, such as Direct Preference Optimization (DPO). Is DPO truly superior to PPO? Why does PPO perform poorly on these benchmarks? In this paper, we first conduct both theoretical and empirical studies on the algorithmic properties of DPO and show that DPO may have fundamental limitations. Moreover, we also comprehensively examine PPO and reveal the key factors for the best performances of PPO in fine-tuning LLMs. Finally, we benchmark DPO and PPO across a collection of RLHF testbeds, ranging from dialogue to code generation. Experiment results demonstrate that PPO is able to surpass other alignment methods in all cases and achieve state-of-the-art results in challenging code competitions. Our code is publicly available at this https URL.
more readings
- Zeinab Nezami, Maryam Hafeez, Karim Djemame, Syed Ali Raza Zaidi
- [Submitted on 18 Nov 2024]
- 6G’s AI native vision of embedding advance intelligence in the network while bringing it closer to the user requires a systematic evaluation of Generative AI (GenAI) models on edge devices. Rapidly emerging solutions based on Open RAN (ORAN) and Network-in-a-Box strongly advocate the use of low-cost, off-the-shelf components for simpler and efficient deployment, e.g., in provisioning rural connectivity. In this context, conceptual architecture, hardware testbeds and precise performance quantification of Large Language Models (LLMs) on off-the-shelf edge devices remains largely unexplored. This research investigates computationally demanding LLM inference on a single commodity Raspberry Pi serving as an edge testbed for ORAN. We investigate various LLMs, including small, medium and large models, on a Raspberry Pi 5 Cluster using a lightweight Kubernetes distribution (K3s) with modular prompting implementation. We study its feasibility and limitations by analyzing throughput, latency, accuracy and efficiency. Our findings indicate that CPU-only deployment of lightweight models, such as Yi, Phi, and Llama3, can effectively support edge applications, achieving a generation throughput of 5 to 12 tokens per second with less than 50\% CPU and RAM usage. We conclude that GenAI on the edge offers localized inference in remote or bandwidth-constrained environments in 6G networks without reliance on cloud infrastructure.