Click on a tag to see relevant list of lectures.
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Introduction | Slide | Numpy Tutorial | M1 / M2 / M3 | 
| Algebra Review | Slide | Khanacademy Math + CMU study note | scikit-learn tutorials | 
| Scikit-learn | Slide | basic tutorial + scikit-learn code examples | How install | 
| Machine Learning in a Nutshell | Slide | two modes running example | M1 / M2 / M3 | 
| Linear Regression | Slide | linear regression coderun + regression on COVID19 | M1 / M2 / M3 / M4 | 
| ProbReview + MLE | Slide | Error Metrics | M1 | 
| Prob Review | Slide | M1 + M2 | |
| Review | Slide | [ML Cheatsheets] | video + HW1-3 Key HW4-key + Quiz-keys | 
| Project Presentations (on Dec7 and Dec8) | Slide | [deep2reproduce] | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Linear Regression | Slide | linear regression coderun + regression on COVID19 | M1 / M2 / M3 / M4 | 
| GD and SGD for LR | Slide | SGD Jupyter notebook + numpy linalg | M1 + M2 | 
| LR with basis | Slide | polynomial regression notebook + RBF regression notebook | M1 + M2 | 
| Workflow for model selection | Slide | hyperpara select notebook + flow API | M1 | 
| Linear Prediction with Regularization | Slide | notebook regularized RBF regression + old video on advanced | M1 + M2 + Extra M3 | 
| Lasso and Elastic Net | Slide | Elastic paper | Extra M3 | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| KNN and Theory | Slide | kNN notebook | M1 + M2 | 
| Logistic and NN | Slide | code + compare classifiers | M1 + M2 | 
| NN and Deep Learning | Slide | DNN Cheatsheets | M1+ M2+ M3+ M4 | 
| CNN | Slide | Keras + FastAI examples | M1+ M2 | 
| Generative Classification | Slide | text NBC notebook | M1 + M2 + (Extra M3 ) | 
| NaiveBC on Text | Slide | text NBC notebook | M1 + M2 + (Extra M3 + M4) | 
| Quick survey of recent deep learning | Slide | DNN Cheatsheets | M1 + M2 + M3 + M4 | 
| Gaussian GBC | Slide | Paper Discr vs. Genera | Extra M4 | 
| Learning to Generate | Slide | ||
| SVM | Slide | PCA+SVM Notebook | M1 + M2 | 
| SVM, Kernel | Slide | Practical Guide | M1 + M2 + M3 + (Extra M4) | 
| DecisionTree and Bagging | Slide | M1 + M2 + M3 | |
| RF and Boosting | Slide | xgboost | M1 + M2 + M3 + M4 | 
| SVM, Dual | Slide | SMO | Extra M4 | 
| convex optim with Dual | Slide | VC Theory | |
| More on Boosting | Slide | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Recent deep learning on Text | Slide | Keras Notebook on DNN text | M1 + M2 + M3 | 
| Quick survey of recent deep learning | Slide | DNN Cheatsheets | M1 + M2 + M3 + M4 | 
| Clustering Hier | Slide | compare Hier clusterings | M1 + M2 | 
| Clustering Partition | Slide | compare clusterings | M1 + M2 + (Extra M3) | 
| Clustering GMM | Slide | ||
| Clustering GMM | Slide | EM primer | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| KNN and Theory | Slide | kNN notebook | M1 + M2 | 
| Bias Variance Tradeoff | Slide | notebook validation and learning curves | M1 + M2 | 
| SVM | Slide | PCA+SVM Notebook | M1 + M2 | 
| SVM, Kernel | Slide | Practical Guide | M1 + M2 + M3 + (Extra M4) | 
| DecisionTree and Bagging | Slide | M1 + M2 + M3 | |
| SVM, Dual | Slide | SMO | Extra M4 | 
| convex optim with Dual | Slide | VC Theory | |
| More on Boosting | Slide | ||
| Clustering GMM | Slide | ||
| Clustering GMM | Slide | EM primer | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Logistic and NN | Slide | code + compare classifiers | M1 + M2 | 
| NN and Deep Learning | Slide | DNN Cheatsheets | M1+ M2+ M3+ M4 | 
| CNN | Slide | Keras + FastAI examples | M1+ M2 | 
| Recent deep learning on Text | Slide | Keras Notebook on DNN text | M1 + M2 + M3 | 
| Quick survey of recent deep learning | Slide | DNN Cheatsheets | M1 + M2 + M3 + M4 | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| PCA, Feature Selection | Slide | Great PCA Video + PCA Notebook | M1 | 
| Feature Selection | Slide | ELS Ch3.4 and Ch3.3 + API | (Extra M2 + M3 ) | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Logistic and NN | Slide | code + compare classifiers | M1 + M2 | 
| NN and Deep Learning | Slide | DNN Cheatsheets | M1+ M2+ M3+ M4 | 
| CNN | Slide | Keras + FastAI examples | M1+ M2 | 
| Recent deep learning on Text | Slide | Keras Notebook on DNN text | M1 + M2 + M3 | 
| Quick survey of recent deep learning | Slide | DNN Cheatsheets | M1 + M2 + M3 + M4 | 
| SVM | Slide | PCA+SVM Notebook | M1 + M2 | 
| SVM, Kernel | Slide | Practical Guide | M1 + M2 + M3 + (Extra M4) | 
| RF and Boosting | Slide | xgboost | M1 + M2 + M3 + M4 | 
| SVM, Dual | Slide | SMO | Extra M4 | 
| convex optim with Dual | Slide | VC Theory | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| DecisionTree and Bagging | Slide | M1 + M2 + M3 | |
| RF and Boosting | Slide | xgboost | M1 + M2 + M3 + M4 | 
| More on Boosting | Slide | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Gaussian GBC | Slide | Paper Discr vs. Genera | Extra M4 | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Generative Classification | Slide | text NBC notebook | M1 + M2 + (Extra M3 ) | 
| NaiveBC on Text | Slide | text NBC notebook | M1 + M2 + (Extra M3 + M4) | 
| Recent deep learning on Text | Slide | Keras Notebook on DNN text | M1 + M2 + M3 | 
| Quick survey of recent deep learning | Slide | DNN Cheatsheets | M1 + M2 + M3 + M4 | 
| Gaussian GBC | Slide | Paper Discr vs. Genera | Extra M4 | 
| probabilistic programming | Slide | ||
| Clustering Partition | Slide | compare clusterings | M1 + M2 + (Extra M3) | 
| Clustering GMM | Slide | ||
| Clustering GMM | Slide | EM primer | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Linear Regression | Slide | linear regression coderun + regression on COVID19 | M1 / M2 / M3 / M4 | 
| Logistic and NN | Slide | code + compare classifiers | M1 + M2 | 
| SVM | Slide | PCA+SVM Notebook | M1 + M2 | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| LR with basis | Slide | polynomial regression notebook + RBF regression notebook | M1 + M2 | 
| Workflow for model selection | Slide | hyperpara select notebook + flow API | M1 | 
| KNN and Theory | Slide | kNN notebook | M1 + M2 | 
| Bias Variance Tradeoff | Slide | notebook validation and learning curves | M1 + M2 | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| LR with basis | Slide | polynomial regression notebook + RBF regression notebook | M1 + M2 | 
| Workflow for model selection | Slide | hyperpara select notebook + flow API | M1 | 
| Linear Prediction with Regularization | Slide | notebook regularized RBF regression + old video on advanced | M1 + M2 + Extra M3 | 
| KNN and Theory | Slide | kNN notebook | M1 + M2 | 
| Lasso and Elastic Net | Slide | Elastic paper | Extra M3 | 
| Feature Selection | Slide | ELS Ch3.4 and Ch3.3 + API | (Extra M2 + M3 ) | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| LR with basis | Slide | polynomial regression notebook + RBF regression notebook | M1 + M2 | 
| Workflow for model selection | Slide | hyperpara select notebook + flow API | M1 | 
| Logistic and NN | Slide | code + compare classifiers | M1 + M2 | 
| NN and Deep Learning | Slide | DNN Cheatsheets | M1+ M2+ M3+ M4 | 
| CNN | Slide | Keras + FastAI examples | M1+ M2 | 
| Recent deep learning on Text | Slide | Keras Notebook on DNN text | M1 + M2 + M3 | 
| Quick survey of recent deep learning | Slide | DNN Cheatsheets | M1 + M2 + M3 + M4 | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| GD and SGD for LR | Slide | SGD Jupyter notebook + numpy linalg | M1 + M2 | 
| Linear Prediction with Regularization | Slide | notebook regularized RBF regression + old video on advanced | M1 + M2 + Extra M3 | 
| Lasso and Elastic Net | Slide | Elastic paper | Extra M3 | 
| auto differentiation | Slide | ||
| probabilistic programming | Slide | ||
| SVM | Slide | PCA+SVM Notebook | M1 + M2 | 
| SVM, Kernel | Slide | Practical Guide | M1 + M2 + M3 + (Extra M4) | 
| SVM, Dual | Slide | SMO | Extra M4 | 
| convex optim with Dual | Slide | VC Theory | |
| More on Boosting | Slide | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Linear Prediction with Regularization | Slide | notebook regularized RBF regression + old video on advanced | M1 + M2 + Extra M3 | 
| Lasso and Elastic Net | Slide | Elastic paper | Extra M3 | 
| SVM | Slide | PCA+SVM Notebook | M1 + M2 | 
| SVM, Kernel | Slide | Practical Guide | M1 + M2 + M3 + (Extra M4) | 
| SVM, Dual | Slide | SMO | Extra M4 | 
| convex optim with Dual | Slide | VC Theory | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| deep RL Gym | Slide | Invited Speaker | |
| self/semi-supervised | Slide | 
| Title | Lecture | Notes | Video | 
|---|---|---|---|
| Scikit-learn | Slide | basic tutorial + scikit-learn code examples | How install | 
| machine leanring in the AWS cloud | Slide | Invited Speaker | video | 
| pyTorch + Keras | Slide | S3-L0-pytorch + FastAI Cov19-Notebook | see slack | 
| adversarial text | Slide | Invited Speaker |